51
|
Crews FT, Walter TJ, Coleman LG, Vetreno RP. Toll-like receptor signaling and stages of addiction. Psychopharmacology (Berl) 2017; 234:1483-1498. [PMID: 28210782 PMCID: PMC5420377 DOI: 10.1007/s00213-017-4560-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. AIM This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. METHOD This study reviews the relevant research regarding the relationship between the innate immune system and addiction. CONCLUSION Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - T Jordan Walter
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
52
|
Kamens HM, Silva C, McCarthy R, Cox RJ, Ehringer MA. No evidence of a role of the β4 subunit of the nicotinic acetylcholine receptor in alcohol-related behaviors. BMC Res Notes 2017; 10:151. [PMID: 28381286 PMCID: PMC5382442 DOI: 10.1186/s13104-017-2470-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 03/27/2017] [Indexed: 11/10/2022] Open
Abstract
Background Nicotinic acetylcholine receptors have gained attention in the last several years as mediators of alcohol-related behaviors. The genes that code for the α5, α3, and β4 subunits (Chrna5, Chrna3, and Chrnb4, respectively) map adjacent to each other on human chromosome 15/mouse chromosome 9. Genetic variants in this region have been associated with alcohol phenotypes and mice that overexpress these three subunits have reduced ethanol intake. In the present experiments, we examined the role of the Chrnb4 gene in three ethanol behaviors: consumption, ataxia, and sedation. Wildtype, heterozygous, and knockout mice were tested for ethanol consumption with a 2-bottle choice procedure and the drinking-in-the-dark paradigm. Ethanol-induced ataxia was measured with the balance beam and dowel test. Finally, the sedative effects of ethanol were measured with the loss of righting reflex paradigm. Results We observed no significant genotypic effects on any of the ethanol behaviors examined, suggesting that the β4 subunit is not involved in mediating these responses. Conclusions While we found no evidence for the involvement of the β4 subunit in ethanol responses, it is possible that this subunit modulates other behaviors not tested and further work should address this before completely ruling out its involvement. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA. .,Center for Brain, Behavior, and Cognition, Penn State University, University Park, PA, USA.
| | - Constanza Silva
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Riley McCarthy
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Ryan J Cox
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| |
Collapse
|
53
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
54
|
Glial and Neuroimmune Mechanisms as Critical Modulators of Drug Use and Abuse. Neuropsychopharmacology 2017; 42:156-177. [PMID: 27402494 PMCID: PMC5143481 DOI: 10.1038/npp.2016.121] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/26/2022]
Abstract
Drugs of abuse cause persistent alterations in synaptic plasticity that may underlie addiction behaviors. Evidence suggests glial cells have an essential and underappreciated role in the development and maintenance of drug abuse by influencing neuronal and synaptic functions in multifaceted ways. Microglia and astrocytes perform critical functions in synapse formation and refinement in the developing brain, and there is growing evidence that disruptions in glial function may be implicated in numerous neurological disorders throughout the lifespan. Linking evidence of function in health and under pathological conditions, this review will outline the glial and neuroimmune mechanisms that may contribute to drug-abuse liability, exploring evidence from opioids, alcohol, and psychostimulants. Drugs of abuse can activate microglia and astrocytes through signaling at innate immune receptors, which in turn influence neuronal function not only through secretion of soluble factors (eg, cytokines and chemokines) but also potentially through direct remodeling of the synapses. In sum, this review will argue that neural-glial interactions represent an important avenue for advancing our understanding of substance abuse disorders.
Collapse
|
55
|
Syapin PJ, Martinez JM, Curtis DC, Marquardt PC, Allison CL, Groot JA, Baby C, Al-Hasan YM, Segura I, Scheible MJ, Nicholson KT, Redondo JL, Trotter DRM, Edwards DS, Bergeson SE. Effective Reduction in High Ethanol Drinking by Semisynthetic Tetracycline Derivatives. Alcohol Clin Exp Res 2016; 40:2482-2490. [PMID: 27859416 DOI: 10.1111/acer.13253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND New pharmacotherapies to treat alcohol use disorders (AUD) are needed. Given the complex nature of AUD, there likely exist multiple novel drug targets. We, and others, have shown that the tetracycline drugs, minocycline and doxycycline, reduced ethanol (EtOH) drinking in mice. To test the hypothesis that suppression of high EtOH consumption is a general property of tetracyclines, we screened several derivatives for antidrinking activity using the Drinking-In-the-Dark (DID) paradigm. Active drugs were studied further using the dose-response relationship. METHODS Adult female and male C57BL/6J mice were singly housed and the DID paradigm was performed using 20% EtOH over a 4-day period. Mice were administered a tetracycline or its vehicle 20 hours prior to drinking. Water and EtOH consumption was measured daily. Body weight was measured at the start of drug injections and after the final day of the experiment. Blood was collected for EtOH content measurement immediately following the final bout of drinking. RESULTS Seven tetracyclines were tested at a 50 mg/kg dose. Only minocycline and tigecycline significantly reduced EtOH drinking, and doxycycline showed a strong effect size trend toward reduced drinking. Subsequent studies with these 3 drugs revealed a dose-dependent decrease in EtOH consumption for both female and male mice, with sex differences in efficacy. Minocycline and doxycycline reduced water intake at higher doses, although to a lesser degree than their effects on EtOH drinking. Tigecycline did not negatively affect water intake. The rank order of potency for reduction in EtOH consumption was minocycline > doxycycline > tigecycline, indicating efficacy was not strictly related to their partition coefficients or distribution constants. CONCLUSIONS Due to its effectiveness in reducing high EtOH consumption coupled without an effect on water intake, tigecycline was found to be the most promising lead tetracycline compound for further study toward the development of a new pharmacotherapy for the treatment of AUD.
Collapse
Affiliation(s)
- Peter J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Carol Baby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Yazan M Al-Hasan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ismael Segura
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Matthew J Scheible
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Pharmacology, University of Houston, Houston, Texas
| | - Katy T Nicholson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jose Luis Redondo
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David R M Trotter
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David S Edwards
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
56
|
Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the Innate Immune Response in the Actions of Ethanol on the Central Nervous System. Alcohol Clin Exp Res 2016; 40:2260-2270. [PMID: 27650785 DOI: 10.1111/acer.13208] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022]
Abstract
The innate immune response in the central nervous system (CNS) participates in both synaptic plasticity and neural damage. Emerging evidence from human and animal studies supports the role of the neuroimmune system response in many actions of ethanol (EtOH) on the CNS. Research studies have shown that alcohol stimulates brain immune cells, microglia, and astrocytes, by activating innate immune receptors Toll-like receptors (TLRs) and NOD-like receptors (inflammasome NLRs) triggering signaling pathways, which culminate in the production of pro-inflammatory cytokines and chemokines that lead to neuroinflammation. This review focuses on evidence that indicates the participation of TLRs and the inflammasome NLRs signaling response in many effects of EtOH on the CNS, such as neuroinflammation associated with brain damage, cognitive and behavioral dysfunction, and adolescent brain development alterations. It also reviews findings that indicate the role of TLR4-dependent signaling immune molecules in alcohol consumption, reward, and addiction. The research data suggest that overactivation of TLR4 or NLRs increases pro-inflammatory cytokines and mediators to cause neural damage in the cerebral cortex and hippocampus, while modest TLR4 activation, along with the generation of certain cytokines and chemokines in specific brain areas (e.g., amygdala, ventral tegmental area), modulate neurotransmission, alcohol drinking, and alcohol rewards. Elimination of TLR4 and NLRP3 abolishes many neuroimmune effects of EtOH. Despite much progress being made in this area, there are some research gaps and unanswered questions that this review discusses. Finally, potential therapies that target neuroimmune pathways to treat neuropathological and behavioral consequences of alcohol abuse are also evaluated.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Silvia Alfonso-Loeches
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, Valencia, Spain.
| |
Collapse
|
57
|
Breese GR, Knapp DJ. Persistent adaptation by chronic alcohol is facilitated by neuroimmune activation linked to stress and CRF. Alcohol 2016; 52:9-23. [PMID: 27139233 PMCID: PMC4855305 DOI: 10.1016/j.alcohol.2016.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/10/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023]
Abstract
This review updates the conceptual basis for the association of alcohol abuse with an insidious adaptation that facilitates negative affect during withdrawal from chronic intermittent alcohol (CIA) exposure - a change that later supports sensitization of stress-induced anxiety following alcohol abstinence. The finding that a CRF1-receptor antagonist (CRF1RA) minimized CIA withdrawal-induced negative affect supported an association of alcohol withdrawal with a stress mechanism. The finding that repeated stresses or multiple CRF injections into selected brain sites prior to a single 5-day chronic alcohol (CA) exposure induced anxiety during withdrawal provided critical support for a linkage of CIA withdrawal with stress. The determination that CRF1RA injection into positive CRF-sensitive brain sites prevented CIA withdrawal-induced anxiety provided support that neural path integration maintains the persistent CIA adaptation. Based upon reports that stress increases neuroimmune function, an effort was undertaken to test whether cytokines would support the adaptation induced by stress/CA exposure. Twenty-four hours after withdrawal from CIA, cytokine mRNAs were found to be increased in cortex as well as other sites in brain. Further, repeated cytokine injections into previously identified brain sites substituted for stress and CRF induction of anxiety during CA withdrawal. Discovery that a CRF1RA prevented the brain cytokine mRNA increase induced by CA withdrawal provided critical evidence for CRF involvement in this neuroimmune induction after CA withdrawal. However, the CRF1RA did not block the stress increase in cytokine mRNA increases in controls. The latter data supported the hypothesis that distinct mechanisms linked to stress and CA withdrawal can support common neuroimmune functions within a brain site. As evidence evolves concerning neural involvement in brain neuroimmune function, a better understanding of the progressive adaptation associated with CIA exposure will advance new knowledge that could possibly lead to strategies to combat alcohol abuse.
Collapse
Affiliation(s)
- George R Breese
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Curriculum in Neurobiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; The UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA.
| | - Darin J Knapp
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA; Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7178, USA
| |
Collapse
|