51
|
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014; 5:88. [PMID: 24795750 PMCID: PMC4005958 DOI: 10.3389/fgene.2014.00088] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 01/17/2023] Open
Abstract
The goal of this review is to discuss how behavioral tests in mice relate to the pathological and neuropsychological features seen in human Alzheimer's disease (AD), and present a comprehensive analysis of the temporal progression of behavioral impairments in commonly used AD mouse models that contain mutations in amyloid precursor protein (APP). We begin with a brief overview of the neuropathological changes seen in the AD brain and an outline of some of the clinical neuropsychological assessments used to measure cognitive deficits associated with the disease. This is followed by a critical assessment of behavioral tasks that are used in AD mice to model the cognitive changes seen in the human disease. Behavioral tests discussed include spatial memory tests [Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze), recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the strengths and weaknesses of each of these behavioral tasks, and how they may correlate with clinical assessments in humans. Finally, the temporal progression of both cognitive and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8, J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed in detail. Mouse models of AD and the behavioral tasks used in conjunction with those models are immensely important in contributing to our knowledge of disease progression and are a useful tool to study AD pathophysiology and the resulting cognitive deficits. However, investigators need to be aware of the potential weaknesses of the available preclinical models in terms of their ability to model cognitive changes observed in human AD. It is our hope that this review will assist investigators in selecting an appropriate mouse model, and accompanying behavioral paradigms to investigate different aspects of AD pathology and disease progression.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Neurology, University of Kentucky Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Anatomy and Neurobiology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
52
|
Blázquez G, Cañete T, Tobeña A, Giménez-Llort L, Fernández-Teruel A. Cognitive and emotional profiles of aged Alzheimer's disease (3×TgAD) mice: effects of environmental enrichment and sexual dimorphism. Behav Brain Res 2014; 268:185-201. [PMID: 24746486 DOI: 10.1016/j.bbr.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease is a neurodegenerative disorder associated with age which represents the most common cause of dementia. It is characterized by an accelerated memory loss compared to normal aging, and deterioration of other cognitive abilities that interfere with mood, reason, judgment and language. The main neuropathological hallmarks of the disorder are β-amyloid (βA) plaques and neurofibrillary Tau tangles. Triple transgenic 3×TgAD mouse model develops βA and Tau pathologies in a progressive manner, with a specific temporal and anatomic profile mimicking the pattern that takes place in the human brain with AD, and showing cognitive alterations characteristic of the disease. Environmental enrichment treatment in mice induces behavioral and emotional reactivity changes, including cognitive improvements in some AD-related transgenic mice. The present work intended to characterize the behavioral profile of 3×TgAD mice at advanced stages of neuropathological development (12 and 15 months of age) and to investigate whether environmental enrichment administered during adulthood was able to modify some of their behavioral and cognitive alterations. Results show that, at advanced stages of the disease 3×TgAD mice show deficits of spatial learning acquisition, as well as short-term and working memory deficits, while displaying increased levels of anxiety/fearfulness and normal sensorimotor functions. 3×TgAD mice also show sexual dimorphism, as reflected by increased cognitive deficits in females and increased levels of novelty-induced behavioral inhibition in males. Environmental enrichment exerts some slight positive effects, by mainly improving the initial acquisition of the spatial learning and working memory in 12-month-old 3×TgAD mice. Such effects vary depending on the gender.
Collapse
Affiliation(s)
- Gloria Blázquez
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Toni Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Adolf Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Lydia Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
53
|
Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2013; 256:261-72. [DOI: 10.1016/j.bbr.2013.08.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
|
54
|
Xu ZQ, Zhang LQ, Wang Q, Marshall C, Xiao N, Gao JY, Wu T, Ding J, Hu G, Xiao M. Aerobic exercise combined with antioxidative treatment does not counteract moderate- or mid-stage Alzheimer-like pathophysiology of APP/PS1 mice. CNS Neurosci Ther 2013; 19:795-803. [PMID: 23827013 DOI: 10.1111/cns.12139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/27/2022] Open
Abstract
AIMS The present study evaluated the combined treatment effects of aerobic exercise and antioxidative stress on moderate-stage Alzheimer's disease (AD). METHODS Ten-month-old APP/PS1 mice were given antioxidative treatment with acetylcysteine, along with aerobic exercise for 6 weeks. Spatial learning and memory were tested using the Morris water maze, and β-amyloid (Aβ) plaque deposits in the forebrain were quantified by Thioflavin-S staining. Levels of soluble Aβ1-42, β-secretase enzyme, ү-secretase enzyme, oxidative and antioxidant stress markers nitrotyrosine and peroxiredoxin-1, glial markers glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1, and synaptic protein synaptophysin in the hippocampus were all measured by western blotting and/or immunohistochemistry. RESULTS APP/PS1 mice showed severe declines in spatial learning and memory compared with their wild-type littermates, which were not attenuated by aerobic exercise combined with antioxidative treatment. The pathologic analysis revealed that Aβ deposition and production, oxidative stress, glial inflammation, and synaptic loss were not mitigated in the brain of exercised APP/PS1 mice, compared with the sedentary APP/PS1 animals. CONCLUSION This study reveals that a combined treatment of aerobic exercise plus antioxidative stress does not counteract pathophysiology in the moderate- or mid-stages of AD.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Effect of voluntary physical exercise and post-training epinephrine on acquisition of a spatial task in the barnes maze. Behav Brain Res 2013; 247:178-81. [DOI: 10.1016/j.bbr.2013.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/21/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
|
56
|
Webster SJ, Bachstetter AD, Van Eldik LJ. Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer's disease. Alzheimers Res Ther 2013; 5:28. [PMID: 23705774 PMCID: PMC3706792 DOI: 10.1186/alzrt182] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/29/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite the extensive mechanistic and pathological characterization of the amyloid precursor protein (APP)/presenilin-1 (PS-1) knock-in mouse model of Alzheimer's disease (AD), very little is known about the AD-relevant behavioral deficits in this model. Characterization of the baseline behavioral performance in a variety of functional tasks and identification of the temporal onset of behavioral impairments are important to provide a foundation for future preclinical testing of AD therapeutics. Here we perform a comprehensive behavioral characterization of this model, discuss how the observed behavior correlates with the mechanistic and pathological observations of others, and compare this model with other commonly used AD mouse models. METHODS FOUR DIFFERENT GROUPS OF MICE RANGING ACROSS THE LIFESPAN OF THIS MODEL (TEST GROUPS: 7, 11, 15, and 24 months old) were run in a behavioral test battery consisting of tasks to assess motor function (grip strength, rotor rod, beam walk, open field ambulatory movement), anxiety-related behavior (open field time spent in peripheral zone vs. center zone, elevated plus maze), and cognitive function (novel object recognition, radial arm water maze). RESULTS There were no differences in motor function or anxiety-related behavior between APP/PS-1 knock-in mice and wild-type counterpart mice for any age group. Cognitive deficits in both recognition memory (novel object recognition) and spatial reference memory (radial arm water maze) became apparent for the knock-in animals as the disease progressed. CONCLUSION This is the first reported comprehensive behavioral analysis of the APP/PS1 knock-in mouse model of AD. The lack of motor/coordination deficits or abnormal anxiety levels, coupled with the age/disease-related cognitive decline and high physiological relevance of this model, make it well suited for utilization in preclinical testing of AD-relevant therapeutics.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
- Department of Anatomy and Neurobiology, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
57
|
Fuss J, Richter SH, Steinle J, Deubert G, Hellweg R, Gass P. Are you real? Visual simulation of social housing by mirror image stimulation in single housed mice. Behav Brain Res 2013; 243:191-8. [PMID: 23333841 DOI: 10.1016/j.bbr.2013.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 01/19/2023]
Abstract
Individual housing of social species is a common phenomenon in laboratory animal facilities. Single housing, however, is known to inflict social deprivation with a number of detrimental consequences. Aiming to improve housing conditions of single housed rodents, we investigated the simulation of social housing by mirrors in a series of behavioural experiments and biochemical parameters in mice. We found that chronic mirror-image stimulation increased exploratory behaviours in the holeboard and novel cage tests, but did not alter anxiety, locomotor, or depression-like behaviours. Moreover, no influence on visual recognition memory was observed. Hippocampal brain-derived neurotrophic factor (BDNF) levels, a biomarker for enrichment effects, were unaltered. In line, mirror-image stimulation did not alter home cage behaviour in mice housed with and without mirrors when left undisturbed. Thus, though we found subtle behavioural effects after long-term mirror exposure, we conclude that the simulation of social housing by mirrors is not sufficient to gain the presumably beneficial outcomes induced by social housing.
Collapse
Affiliation(s)
- Johannes Fuss
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
58
|
Souza LC, Filho CB, Goes ATR, Fabbro LD, de Gomes MG, Savegnago L, Oliveira MS, Jesse CR. Neuroprotective Effect of Physical Exercise in a Mouse Model of Alzheimer’s Disease Induced by β-Amyloid1–40 Peptide. Neurotox Res 2013; 24:148-63. [DOI: 10.1007/s12640-012-9373-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/04/2012] [Accepted: 12/28/2012] [Indexed: 12/18/2022]
|
59
|
What have we learned from the streptozotocin-induced animal model of sporadic Alzheimer’s disease, about the therapeutic strategies in Alzheimer’s research. J Neural Transm (Vienna) 2012; 120:233-52. [DOI: 10.1007/s00702-012-0877-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/26/2012] [Indexed: 12/30/2022]
|
60
|
Pareja-Galeano H, Brioche T, Sanchís-Gomar F, Escrivá C, Dromant M, Gómez-Cabrera MC, Viña J. [Effects of physical exercise on cognitive alterations and oxidative stress in an APP/PSN1 transgenic model of Alzheimer's disease]. Rev Esp Geriatr Gerontol 2012; 47:198-204. [PMID: 22884639 DOI: 10.1016/j.regg.2012.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/04/2012] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The beneficial effects of physical exercise, in both the treatment and the prevention of several diseases, have been extensively demonstrated. The most common dementia, Alzheimer's disease (AD), is a disorder in which exercise induces significant improvement at pathophysiopathological and cognitive levels. In the present work, we studied the relationship between physical exercise, oxidative stress, and cognition in the double transgenic mice model (2×Tg) for AD, APP/PSN1. This model is mainly based on the cerebral deposition of amyloid β plaques. MATERIAL AND METHODS Eighteen ten-month-old mice were divided into four experimental groups: exercised 2×Tg (2×Tg-E) (n=5), rested 2×Tg (2×Tg-R) (n=5), exercised controls (control-E) (n=4) and rested controls (control-R) (n=4). We trained the animals for twelve weeks with a combination of forced exercise (treadmill running three days/week) and spontaneous wheel running. The animals were evaluated with physical and cognitive tests before and after the training period. We analyzed systemic and cortical oxidative damage and the induction of antioxidant enzymes. RESULTS The 2×Tg-R mice showed a decrease in their grip strength and VO(2max) as they grew older which was prevented by training. The 2×Tg-E group showed better memory than the 2×Tg-R animals. All the trained groups demonstrated greater exploratory capacity and less anxiety than the sedentary animals. Systemic oxidative damage was slightly decreased in the 2×Tg, although we found no difference in the lipoperoxidation and in the induction of the antioxidant defense in cortex between groups. CONCLUSIONS Physical exercise leads to improvements in the grip strength, VO(2max), cognition, and memory in 2×Tg mice. These improvements are not significantly related to changes in the antioxidant defenses or a reduction in the oxidative damage brought about by exercise.
Collapse
Affiliation(s)
- Helios Pareja-Galeano
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
61
|
Knight EM, Brown TM, Gümüsgöz S, Smith JCM, Waters EJ, Allan SM, Lawrence CB. Age-related changes in core body temperature and activity in triple-transgenic Alzheimer's disease (3xTgAD) mice. Dis Model Mech 2012; 6:160-70. [PMID: 22864021 PMCID: PMC3529348 DOI: 10.1242/dmm.010173] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Alzheimer’s disease (AD) is characterised, not only by cognitive deficits and neuropathological changes, but also by several non-cognitive behavioural symptoms that can lead to a poorer quality of life. Circadian disturbances in core body temperature and physical activity are reported in AD patients, although the cause and consequences of these changes are unknown. We therefore characterised circadian patterns of body temperature and activity in male triple transgenic AD mice (3xTgAD) and non-transgenic (Non-Tg) control mice by remote radiotelemetry. At 4 months of age, daily temperature rhythms were phase advanced and by 6 months of age an increase in mean core body temperature and amplitude of temperature rhythms were observed in 3xTgAD mice. No differences in daily activity rhythms were seen in 4- to 9-month-old 3xTgAD mice, but by 10 months of age an increase in mean daily activity and the amplitude of activity profiles for 3xTgAD mice were detected. At all ages (4–10 months), 3xTgAD mice exhibited greater food intake compared with Non-Tg mice. The changes in temperature did not appear to be solely due to increased food intake and were not cyclooxygenase dependent because the temperature rise was not abolished by chronic ibuprofen treatment. No β-amyloid (Aβ) plaques or neurofibrillary tangles were noted in the hypothalamus of 3xTgAD mice, a key area involved in temperature regulation, although these pathological features were observed in the hippocampus and amygdala of 3xTgAD mice from 10 months of age. These data demonstrate age-dependent changes in core body temperature and activity in 3xTgAD mice that are present before significant AD-related neuropathology and are analogous to those observed in AD patients. The 3xTgAD mouse might therefore be an appropriate model for studying the underlying mechanisms involved in non-cognitive behavioural changes in AD.
Collapse
Affiliation(s)
- Elysse M Knight
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
62
|
Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging 2012; 34:211-25. [PMID: 22727275 DOI: 10.1016/j.neurobiolaging.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/17/2012] [Accepted: 05/22/2012] [Indexed: 01/15/2023]
Abstract
Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present. Interestingly, early-life exposure to EE, while slightly reducing forebrain surface covered by amyloid plaques, did not significantly impact aberrant inhibitory remodeling in the hippocampus of Tg2576 mice. Thus, transient early-life exposure to EE exerts long-lasting protection against cognitive impairment during AD pathology. In addition, these data define the existence of a specific life time frame during which stimulatory activity most efficiently builds a cognitive reserve, limiting AD progression and favoring successful aging.
Collapse
|
63
|
Effects of environmental manipulations in genetically targeted animal models of affective disorders. Neurobiol Dis 2012; 57:12-27. [PMID: 22525570 DOI: 10.1016/j.nbd.2012.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 12/31/2022] Open
Abstract
Mental illness is the leading cause of disability worldwide. We are only just beginning to reveal and comprehend the complex interaction that exists between the genetic makeup of an organism and the potential modifying effect of the environment in which it lives, and how this translates into mediating susceptibility to neurological and psychiatric conditions. The capacity to address this issue experimentally has been facilitated by the availability of rodent models which allow the precise manipulation of genetic and environmental factors. In this review, we discuss the valuable nature of animal models in furthering our understanding of the relationship between genetic and environmental factors in affective illnesses, such as anxiety and depressive disorders. We first highlight the behavioral impairments exhibited by genetically targeted animal models of affective disorders, and then provide a discussion of the underlying neurobiology, focusing on animal models that involve exposure to stress. This is followed by a review of recent studies that report of beneficial effects of environmental manipulations such as environmental enrichment and enhanced physical activity and discuss the likely mechanisms that mediate those benefits.
Collapse
|
64
|
Klaus F, Amrein I. Running in laboratory and wild rodents: Differences in context sensitivity and plasticity of hippocampal neurogenesis. Behav Brain Res 2012; 227:363-70. [DOI: 10.1016/j.bbr.2011.04.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/23/2011] [Accepted: 04/19/2011] [Indexed: 01/01/2023]
|
65
|
Novak CM, Burghardt PR, Levine JA. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward. Neurosci Biobehav Rev 2012; 36:1001-1014. [PMID: 22230703 DOI: 10.1016/j.neubiorev.2011.12.012] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 12/07/2011] [Accepted: 12/22/2011] [Indexed: 12/21/2022]
Abstract
Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity.
Collapse
Affiliation(s)
- Colleen M Novak
- Department of Biological Sciences, Kent State University, PO Box 5190, 222 Cunningham Hall, Kent, OH 44242, United States
| | | | - James A Levine
- Mayo Clinic, Endocrine Research Unit, Rochester, MN 55905, United States
| |
Collapse
|
66
|
Cotel MC, Jawhar S, Christensen DZ, Bayer TA, Wirths O. Environmental enrichment fails to rescue working memory deficits, neuron loss, and neurogenesis in APP/PS1KI mice. Neurobiol Aging 2012; 33:96-107. [DOI: 10.1016/j.neurobiolaging.2010.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/25/2010] [Accepted: 02/16/2010] [Indexed: 01/24/2023]
|
67
|
Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC. Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc 2011; 86:876-84. [PMID: 21878600 PMCID: PMC3258000 DOI: 10.4065/mcp.2011.0252] [Citation(s) in RCA: 487] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A rapidly growing literature strongly suggests that exercise, specifically aerobic exercise, may attenuate cognitive impairment and reduce dementia risk. We used PubMed (keywords exercise and cognition) and manuscript bibliographies to examine the published evidence of a cognitive neuroprotective effect of exercise. Meta-analyses of prospective studies documented a significantly reduced risk of dementia associated with midlife exercise; similarly, midlife exercise significantly reduced later risks of mild cognitive impairment in several studies. Among patients with dementia or mild cognitive impairment, randomized controlled trials (RCTs) documented better cognitive scores after 6 to 12 months of exercise compared with sedentary controls. Meta-analyses of RCTs of aerobic exercise in healthy adults were also associated with significantly improved cognitive scores. One year of aerobic exercise in a large RCT of seniors was associated with significantly larger hippocampal volumes and better spatial memory; other RCTs in seniors documented attenuation of age-related gray matter volume loss with aerobic exercise. Cross-sectional studies similarly reported significantly larger hippocampal or gray matter volumes among physically fit seniors compared with unfit seniors. Brain cognitive networks studied with functional magnetic resonance imaging display improved connectivity after 6 to 12 months of exercise. Animal studies indicate that exercise facilitates neuroplasticity via a variety of biomechanisms, with improved learning outcomes. Induction of brain neurotrophic factors by exercise has been confirmed in multiple animal studies, with indirect evidence for this process in humans. Besides a brain neuroprotective effect, physical exercise may also attenuate cognitive decline via mitigation of cerebrovascular risk, including the contribution of small vessel disease to dementia. Exercise should not be overlooked as an important therapeutic strategy.
Collapse
Affiliation(s)
- J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
68
|
Ke HC, Huang HJ, Liang KC, Hsieh-Li HM. Selective improvement of cognitive function in adult and aged APP/PS1 transgenic mice by continuous non-shock treadmill exercise. Brain Res 2011; 1403:1-11. [DOI: 10.1016/j.brainres.2011.05.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/22/2011] [Accepted: 05/24/2011] [Indexed: 12/30/2022]
|
69
|
|
70
|
Walker JM, Fowler SW, Miller DK, Sun AY, Weisman GA, Wood WG, Sun GY, Simonyi A, Schachtman TR. Spatial learning and memory impairment and increased locomotion in a transgenic amyloid precursor protein mouse model of Alzheimer's disease. Behav Brain Res 2011; 222:169-75. [PMID: 21443906 DOI: 10.1016/j.bbr.2011.03.049] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/17/2011] [Accepted: 03/19/2011] [Indexed: 12/23/2022]
Abstract
This study provides an examination of spatial learning and a behavioral assessment of irritability and locomotion in TgCRND8 mice, an amyloid precursor protein transgenic model of Alzheimer's disease. Performance was assessed using the Barnes maze, the touch escape test, and an open-field test. While past research focused primarily on 2-5-month-old TgCRND8 mice, the present study used an older age cohort (9-month-old female mice), in addition to a 4-month-old cohort of both transgenic (Tg) and wildtype female mice. Both younger and older Tg mice displayed poor spatial learning in the Barnes maze task compared to their wildtype littermates, as demonstrated by significantly longer latencies and more errors both during acquisition and at a 2-week retest. No differences in irritability were found between Tg and control mice in the younger cohort; however, older Tg mice displayed significantly higher irritability compared with wildtype littermates, as measured by the touch escape test. Additionally, Tg mice of both age cohorts showed increased locomotion and slowed habituation during a 60-min open-field test over 3 days of testing. These results demonstrate that TgCRND8 mice show significant deficits in spatial and nonspatial behavioral tasks at advanced stages of amyloid pathology.
Collapse
Affiliation(s)
- J M Walker
- Department of Psychological Sciences, 210 McAlester Hall, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Liu HL, Zhao G, Cai K, Zhao HH, Shi LD. Treadmill exercise prevents decline in spatial learning and memory in APP/PS1 transgenic mice through improvement of hippocampal long-term potentiation. Behav Brain Res 2011; 218:308-14. [DOI: 10.1016/j.bbr.2010.12.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 01/12/2023]
|
72
|
Mechanisms mediating brain and cognitive reserve: experience-dependent neuroprotection and functional compensation in animal models of neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:331-9. [PMID: 21112312 DOI: 10.1016/j.pnpbp.2010.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 10/13/2010] [Accepted: 10/29/2010] [Indexed: 01/01/2023]
Abstract
'Brain and cognitive reserve' (BCR) refers here to the accumulated neuroprotective reserve and capacity for functional compensation induced by the chronic enhancement of mental and physical activity. BCR is thought to protect against, and compensate for, a range of different neurodegenerative diseases, as well as other neurological and psychiatric disorders. In this review we will discuss BCR, and its potential mechanisms, in neurodegenerative disorders, with a focus on Huntington's disease (HD) and Alzheimer's disease (AD). Epidemiological studies of AD, and other forms of dementia, provided early evidence for BCR. The first evidence for the beneficial effects of enhanced mental and physical activity, and associated mechanistic insights, in an animal model of neurodegenerative disease was provided by experiments using HD transgenic mice. More recently, experiments on animal models of HD, AD and various other brain disorders have suggested potential molecular and cellular mechanisms underpinning BCR. We propose that sophisticated insight into the processes underlying BCR, and identification of key molecules mediating these beneficial effects, will pave the way for therapeutic advances targeting these currently incurable neurodegenerative diseases.
Collapse
|
73
|
Giménez-Llort L, García Y, Buccieri K, Revilla S, Suñol C, Cristofol R, Sanfeliu C. Gender-Specific Neuroimmunoendocrine Response to Treadmill Exercise in 3xTg-AD Mice. Int J Alzheimers Dis 2010; 2010:128354. [PMID: 20981262 PMCID: PMC2964036 DOI: 10.4061/2010/128354] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 08/09/2010] [Indexed: 12/04/2022] Open
Abstract
The 3xTg-AD mouse develops a progressive Alzheimer's disease- (AD-) like brain pathology that causes cognitive- and neuropsychiatric-like symptoms of dementia. Since its neuroimmunoendocrine axis is likewise impaired, this mouse is also useful for modelling complex age-related neurodegeneration. This study analyzed behavioral, physiological, neurochemical, pathological and immunoendocrine alterations in male and female 3xTg-AD mice and assayed the effects of a short therapy of forced physical exercise at the moderate pathology stage of 6 months of age. Gender effects were observed in most AD-related pathology and dysfunctions. Five weeks of treadmill training produced beneficial effects, such as the reduction of brain oxidative stress and GABA-A receptor dysfunction in males and improvement of sensorimotor function in females. In both sexes, exercise decreased the brain amyloid β 42/40 ratio levels. The results highlight the importance of analyzing experimental therapies in both mouse model genders in order to improve our understanding of the disease and develop more appropriate therapies.
Collapse
Affiliation(s)
- Lydia Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
74
|
Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM, Morris JC, Head D. Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann Neurol 2010; 68:311-8. [PMID: 20818789 DOI: 10.1002/ana.22096] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE In addition to the increasingly recognized role of physical exercise in maintaining cognition, exercise may influence Alzheimer's disease (AD) pathology, as transgenic mouse studies show lowered levels of AD pathology in exercise groups. The objective of this study was to elucidate the association between exercise and AD pathology in humans using Pittsburgh compound-B (PIB), amyloid-beta (Abeta)(42), tau, and phosphorylated tau (ptau)(181) biomarkers. METHODS Sixty-nine older adults (17 males, 52 females) aged 55 to 88 years, were recruited and confirmed to be cognitively normal. A questionnaire on physical exercise levels over the past decade was administered to all. Cerebrospinal fluid samples were collected from 56 participants, and amyloid imaging with PIB was performed on 54 participants. RESULTS Participants were classified based on biomarker levels. Those with elevated PIB (p = 0.030), tau (p = 0.040), and ptau(181) (p = 0.044) had significantly lower exercise, with a nonsignificant trend for lower Abeta(42) (p = 0.135) to be associated with less exercise. Results were similar for PIB after controlling for covariates; tau (p = 0.115) and ptau(181) (p = 0.123) differences were reduced to nonsignificant trends. Additional analyses also demonstrated that active individuals who met the exercise guidelines set by the American Heart Association had significantly lower PIB binding and higher Abeta(42) levels with and without controlling for covariates (PIB: p = 0.006 and p = 0.001; Abeta(42): p = 0.042 and p = 0.046). Last, the associations between exercise engagement and PIB levels were more prominent in APOE epsilon 4 noncarriers. INTERPRETATION Collectively, these results are supportive of an association between exercise engagement and AD biomarkers in cognitively normal older adults.
Collapse
Affiliation(s)
- Kelvin Y Liang
- From the Program in Neuroscience, Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Villette V, Poindessous-Jazat F, Simon A, Léna C, Roullot E, Bellessort B, Epelbaum J, Dutar P, Stéphan A. Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. J Neurosci 2010; 30:10991-1003. [PMID: 20720106 PMCID: PMC6633464 DOI: 10.1523/jneurosci.6284-09.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 05/26/2010] [Accepted: 06/22/2010] [Indexed: 01/22/2023] Open
Abstract
The memory deficits associated with Alzheimer's disease result to a great extent from hippocampal network dysfunction. The coordination of this network relies on theta (symbol) oscillations generated in the medial septum. Here, we investigated in rats the impact of hippocampal amyloid beta (Abeta) injections on the physiological and cognitive functions that depend on the septohippocampal system. Hippocampal Abeta injections progressively impaired behavioral performances, the associated hippocampal theta power, and theta frequency response in a visuospatial recognition test. These alterations were associated with a specific reduction in the firing of the identified rhythmic bursting GABAergic neurons responsible for the propagation of the theta rhythm to the hippocampus, but without loss of medial septal neurons. Such results indicate that hippocampal Abeta treatment leads to a specific functional depression of inhibitory projection neurons of the medial septum, resulting in the functional impairment of the temporal network.
Collapse
Affiliation(s)
- Vincent Villette
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Frédérique Poindessous-Jazat
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Axelle Simon
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Clément Léna
- Laboratoire de Neurobiologie, UMR 8544, Ecole Normale Supérieure, 75005 Paris, France, and
| | - Elodie Roullot
- Ecole Spéciale de Mécanique et d'Electricité-Sudria, Pôle de Recherche en Imagerie Appliquée à la Médecine, 94200 Ivry sur Seine, France
| | - Brice Bellessort
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Jacques Epelbaum
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Patrick Dutar
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| | - Aline Stéphan
- Inserm Centre de Psychiatrie et Neurosciences, Unité Mixte de Recherche (UMR) 894, 75014 Paris, France
- Université Paris Descartes, Faculté de Médecine, 75005 Paris, France
| |
Collapse
|
76
|
Pawlowicz A, Demner A, Lewis MH. Effects of access to voluntary wheel running on the development of stereotypy. Behav Processes 2009; 83:242-6. [PMID: 19944132 DOI: 10.1016/j.beproc.2009.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/12/2009] [Accepted: 11/15/2009] [Indexed: 11/26/2022]
Abstract
Stereotyped motor behaviors are a common consequence of environmental restriction in a wide variety of species. Although environmental enrichment has been shown to substantially reduce stereotypy levels, the various components of enrichment have not been evaluated independently to determine which is responsible for this effect. Exercise, particularly voluntary wheel running, is a promising candidate based on several lines of behavioral and neurobiological evidence. To test the hypothesis that access to wheel running will reduce stereotyped motor behavior, we reared deer mice from weaning with continuous access to either a functional running wheel or a locked wheel. We assessed running behavior throughout this time period and stereotypy levels in a test context at 30 and 45 days post-weaning. We found that exercise did not significantly affect stereotypy level nor was there an association between wheel running and stereotypy. Thus, exercise alone, unlike environmental enrichment, does not prevent the development of stereotypy. These results have important implications for animal welfare.
Collapse
Affiliation(s)
- Artur Pawlowicz
- Department of Psychiatry and McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
77
|
Filali M, Lalonde R, Rivest S. Cognitive and non-cognitive behaviors in an APPswe/PS1 bigenic model of Alzheimer’s disease. GENES BRAIN AND BEHAVIOR 2009; 8:143-8. [DOI: 10.1111/j.1601-183x.2008.00453.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
78
|
Catlow BJ, Rowe AR, Clearwater CR, Mamcarz M, Arendash GW, Sanchez-Ramos J. Effects of environmental enrichment and physical activity on neurogenesis in transgenic PS1/APP mice. Brain Res 2008; 1256:173-9. [PMID: 19135431 DOI: 10.1016/j.brainres.2008.12.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/29/2022]
Abstract
Rodents exposed to environmental enrichment show many differences, including improved cognitive performance, when compared to those living in standard (impoverished) housing. The purpose of the present study was to determine if a selective increase in neurogenesis occurred in cognitively-protected Tg mice raised in an enriched environment compared to those reared in physical activity housing. At weaning, double Tg APP+PS1 mice were placed into one of three environments: complete environmental enrichment (CE), enhanced physical activity (PA), or individual, impoverished housing (IMP). At 9-10 months of age, Tg mice were injected with BrdU (100 mg/kg BID) followed by euthanasia either 24 h or 2 weeks after the last injection. Unbiased estimates of BrdU positive cells in the hippocampal subgranular zone revealed a significant increase in cellular proliferation in Tg mice raised in CE or PA compared to Tg mice reared in IMP housing. However, counts of BrdU birth-dated cells 2 weeks after labeling showed no difference among the three groups, indicating decreased survival of cells in those groups (CE and PA) with higher cellular proliferation rates in the neurogenic niche. Counts of calretinin-expressing cells, a marker of immature neurons, also indicated no difference among the three groups of mice. In view of our prior study showing that enhanced cognitive activity (but not enhanced physical activity) protects Tg mice against cognitive impairment, the present results indicate that increased generation and survival of new neurons in the hippocampal dentate gyrus is not involved with the cognitively-protective effects of complete CE in Alzheimer's transgenic mice.
Collapse
Affiliation(s)
- Briony J Catlow
- Department of Psychology, University of South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | |
Collapse
|