51
|
Rauch A, Hennig D, Schäfer C, Wirth M, Marx C, Heinzel T, Schneider G, Krämer OH. Survivin and YM155: how faithful is the liaison? Biochim Biophys Acta Rev Cancer 2014; 1845:202-20. [PMID: 24440709 DOI: 10.1016/j.bbcan.2014.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/01/2014] [Accepted: 01/04/2014] [Indexed: 02/07/2023]
Abstract
Survivin belongs to the family of apoptosis inhibitors (IAPs), which antagonizes the induction of cell death. Dysregulated expression of IAPs is frequently observed in cancers, and the high levels of survivin in tumors compared to normal adult tissues make it an attractive target for pharmacological interventions. The small imidazolium-based compound YM155 has recently been reported to block the expression of survivin via inhibition of the survivin promoter. Recent data, however, question that this is the sole and main effect of this drug, which is already being tested in ongoing clinical studies. Here, we critically review the current data on YM155 and other new experimental agents supposed to antagonize survivin. We summarize how cells from various tumor entities and with differential expression of the tumor suppressor p53 respond to this agent in vitro and as murine xenografts. Additionally, we recapitulate clinical trials conducted with YM155. Our article further considers the potency of YM155 in combination with other anti-cancer agents and epigenetic modulators. We also assess state-of-the-art data on the sometimes very promiscuous molecular mechanisms affected by YM155 in cancer cells.
Collapse
Affiliation(s)
- Anke Rauch
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Dorle Hennig
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Claudia Schäfer
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Matthias Wirth
- II Department of Internal Medicine, Technical University of Munich, Munich, Germany
| | - Christian Marx
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Thorsten Heinzel
- Center for Molecular Biomedicine, Institute for Biochemistry and Biophysics, Department of Biochemistry, Friedrich Schiller University of Jena, Hans-Knöll-Straße 2, 07745 Jena, Germany
| | - Günter Schneider
- II Department of Internal Medicine, Technical University of Munich, Munich, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, 55131 Mainz, Germany.
| |
Collapse
|
52
|
Sharma S, Yao HP, Zhou YQ, Zhou J, Zhang R, Wang MH. Prevention of BMS-777607-induced polyploidy/senescence by mTOR inhibitor AZD8055 sensitizes breast cancer cells to cytotoxic chemotherapeutics. Mol Oncol 2014; 8:469-82. [PMID: 24444656 DOI: 10.1016/j.molonc.2013.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 12/31/2022] Open
Abstract
Targeted inhibition of MET/RON signaling by tyrosine kinase inhibitor BMS-777607 for cancer treatment is currently under clinical trials. We have previously shown that BMS-777607 induces chemoresistance in vitro by causing polyploidy, which hampers therapeutic efficacy. Here, we studied polyploidy-associated senescence induced by BMS-777607 in breast cancer cells and its prevention by mTOR inhibitor AZD8055, leading to increased chemosensitivity. In breast cancer T-47D and ZR-75-1 cells, BMS-777607 induced phenotypic changes including enlarged cellular size, flattened morphology, increased DNA content, and activity of senescence-associated β-galactosidase. These changes were accompanied by increased p21/WAF1 expression and decreased Retinoblastoma Ser(780) phosphorylation, indicating that BMS-777607 induces not only polyploidy but also senescence. The appearance of senescence was associated with polyploidy in which β-galactosidase is exclusively expressed in polyploid cells. Survivin expression was increased in polyploid/senescent cells as analyzed by Western blotting. Increased survivin accumulated both in the nucleus and cytoplasm and dissociated with condensed DNA and mitotic spindle at the metaphase. Abnormal accumulation of survivin also rendered polyploid/senescent cells insensitive to cytotoxic activities of YM155, a DNA damaging agent with a suppressive effect on survivin gene transcription. AZD8055, a specific mTOR inhibitor, effectively prevented BMS-777607-induced polyploidy and senescence and restored survivin expression and its nuclear localization to normal levels. Although a synergism was not observed, BMS-777607 plus AZD8055 increased cancer cell sensitivity toward different cytotoxic chemotherapeutics. In conclusion, BMS-777607-induced chemoresistance is associated with cell polyploidy and senescence. Inhibition of mTOR signaling by AZD8055 prevents BMS-777607-induced polyploidy/senescence and increases breast cancer cell chemosensitivity.
Collapse
Affiliation(s)
- Sharad Sharma
- Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Hang-Ping Yao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases and Department of Neurosurgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| | - Yong-Qing Zhou
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases and Department of Neurosurgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, PR China.
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| | - Ruiwen Zhang
- Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Ming-Hai Wang
- Cancer Biology Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Department of Biomedical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
53
|
Mir R, Stanzani E, Martinez-Soler F, Villanueva A, Vidal A, Condom E, Ponce J, Gil J, Tortosa A, Giménez-Bonafé P. YM155 sensitizes ovarian cancer cells to cisplatin inducing apoptosis and tumor regression. Gynecol Oncol 2013; 132:211-20. [PMID: 24262875 DOI: 10.1016/j.ygyno.2013.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective of this study is to chemosensitize ovarian cancer (OVCa) cells to cisplatin (CDDP) using an inhibitor of Survivin, YM155. The efficacy of YM155 in combination with CDDP was determined in vitro, ex vivo and in vivo. METHODS Human OVCa cell lines A2780p and their cisplatin-resistant derivative A2780cis, were treated with CDDP, YM155, and the combined treatment (YM155+CDDP), and cell viability, mRNA and protein expression levels, cell-cycle distribution, and DNA damage were then evaluated. Furthermore, the efficacy of YM155 combined with CDDP was further examined in established primary cell cultures and xenograft models. RESULTS The combination of YM155 with CDDP induced G2/M cell cycle arrest and apoptosis, increased DNA damage, and decreased Survivin levels, especially in A2780cis CDDP-resistant cells. Additionally, YM155 in combination with CDDP sensitized primary cell cultures to CDDP. Studies in vivo showed how this combination significantly decreased the tumor size of OVCa xenografts. CONCLUSIONS Our results demonstrate that in OVCa cells the expression of Survivin did not affect their sensitivity to YM155, suggesting that Survivin was not the only target of YM155. The combination of YM155 with CDDP could be a good option for therapy of CDDP-resistant OVCa, independently of p53 status.
Collapse
Affiliation(s)
- Roser Mir
- Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Spain
| | - Elisabetta Stanzani
- Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Spain
| | - Fina Martinez-Soler
- Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Spain; Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, IDIBELL, Spain
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, IDIBELL, Spain
| | - August Vidal
- Department of Pathology, Hospital de Bellvitge, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Spain
| | - Enric Condom
- Department of Pathology, Hospital de Bellvitge, Department of Pathology and Experimental Therapeutics, Universitat de Barcelona, IDIBELL, Spain
| | - Jordi Ponce
- Department of Gynecology, Hospital de Bellvitge, Barcelona, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Spain
| | - Avelina Tortosa
- Department of Basic Nursing, School of Nursing of the Health Campus of Bellvitge, Universitat de Barcelona, IDIBELL, Spain.
| | - Pepita Giménez-Bonafé
- Departament de Ciències Fisiològiques II, Faculty of Medicine, Campus of Health Sciences of Bellvitge, Universitat de Barcelona, IDIBELL, Spain.
| |
Collapse
|
54
|
Dresang LR, Guastafierro A, Arora R, Normolle D, Chang Y, Moore PS. Response of Merkel cell polyomavirus-positive merkel cell carcinoma xenografts to a survivin inhibitor. PLoS One 2013; 8:e80543. [PMID: 24260412 PMCID: PMC3832378 DOI: 10.1371/journal.pone.0080543] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a neuroendocrine skin cancer associated with high mortality. Merkel cell polyomavirus (MCV), discovered in 2008, is associated with ~80% of MCC. The MCV large tumor (LT) oncoprotein upregulates the cellular oncoprotein survivin through its conserved retinoblastoma protein-binding motif. We confirm here that YM155, a survivin suppressor, is cytotoxic to MCV-positive MCC cells in vitro at nanomolar levels. Mouse survival was significantly improved for NOD-Scid-Gamma mice treated with YM155 in a dose and duration dependent manner for 3 of 4 MCV-positive MCC xenografts. One MCV-positive MCC xenograft (MS-1) failed to significantly respond to YM155, which corresponds with in vitro dose-response activity. Combination treatment of YM155 with other chemotherapeutics resulted in additive but not synergistic cell killing of MCC cell lines in vitro. These results suggest that survivin targeting is a promising therapeutic approach for most but not all MCV-positive MCCs.
Collapse
Affiliation(s)
- Lindsay R. Dresang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Anna Guastafierro
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Reety Arora
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, GKVK Campus, Bangalore, India
| | - Daniel Normolle
- Biostatistics Facility, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Yuan Chang
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| | - Patrick S. Moore
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
55
|
Kelly RJ, Thomas A, Rajan A, Chun G, Lopez-Chavez A, Szabo E, Spencer S, Carter CA, Guha U, Khozin S, Poondru S, Van Sant C, Keating A, Steinberg SM, Figg W, Giaccone G. A phase I/II study of sepantronium bromide (YM155, survivin suppressor) with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 2013; 24:2601-2606. [PMID: 23857959 DOI: 10.1093/annonc/mdt249] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND This phase I/II study examined the safety and efficacy of Sepantronium Bromide (S), a small-molecule selective survivin suppressant, administered in combination with carboplatin (C) and paclitaxel (P). PATIENTS AND METHODS Forty-one patients were treated on study. Twenty-two patients received escalating doses of S (3.6-12 mg/m(2)) and 19 with untreated stage IV non-small-cell lung cancer (NSCLC) were treated with the maximum tolerated dose of 10 mg/m(2) in combination with standard doses of C (AUC6) and P (200 mg/m(2)) for six cycles. S was administered as a continuous intravenous infusion (CIVI) over 72 h in 21-day treatment cycles. Study end points included safety and toxic effect, response rate, progression-free and overall survival (PFS and OS), as well as exploratory pharmacodynamic correlates. RESULTS Treatment with S was well tolerated, and toxic effects were mostly hematological in the phase II study. Two (11%) partial responses were observed with a median PFS of 5.7 months and median OS 16.1 months. Pharmacodynamic analysis did not demonstrate an association with response. CONCLUSION The combination of S (10 mg/m(2)/day 72-h CIVI) administered with C and P every 3 weeks exhibited a favorable safety profile but failed to demonstrate an improvement in response rate in advanced NSCLC. CLINICAL TRIAL NUMBER NCT01100931.
Collapse
Affiliation(s)
- R J Kelly
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore
| | - A Thomas
- Medical Oncology Branch, Center for Cancer Research
| | - A Rajan
- Medical Oncology Branch, Center for Cancer Research
| | - G Chun
- Medical Oncology Branch, Center for Cancer Research
| | | | - E Szabo
- Lung and Upper Aerodigestive Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda
| | - S Spencer
- Medical Oncology Branch, Center for Cancer Research
| | - C A Carter
- Medical Oncology, Walter Reed National Military Medical Center, Bethesda
| | - U Guha
- Medical Oncology Branch, Center for Cancer Research
| | - S Khozin
- Medical Oncology Branch, Center for Cancer Research
| | - S Poondru
- Astellas Pharma Global Development, Northbrook
| | - C Van Sant
- Astellas Pharma Global Development, Northbrook
| | - A Keating
- Astellas Pharma Global Development, Northbrook
| | - S M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - W Figg
- Medical Oncology Branch, Center for Cancer Research
| | - G Giaccone
- Medical Oncology Branch, Center for Cancer Research.
| |
Collapse
|
56
|
Li F. Discovery of survivin inhibitors and beyond: FL118 as a proof of concept. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:217-52. [PMID: 23890383 DOI: 10.1016/b978-0-12-407695-2.00005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Survivin, a novel antiapoptotic protein molecule, plays a central role in cancer cell survival/proliferation networks and has therefore become a therapeutic target for cancer drug discovery efforts. There are two strategies for discovering survivin inhibitors. One is based on survivin interactions within the cell and the other strategy is based on blocking survivin expression. Survivin inhibitors developed by the first strategy would disrupt a particular survivin function. These survivin inhibitors could also be useful tools for delineating the mechanism of action of survivin. The second strategy may use a reporter system of the survivin gene to screen drug libraries. To date, two molecules, YM155 and FL118, have been identified using this strategy. These two examples provide a proof of concept that screens for inhibitors of survivin expression using survivin gene reporter assays as surrogate markers will uncover versatile small molecules that not only inhibit survivin but also inhibit other essential cancer survival/proliferation-associated targets and/or signaling pathways. This review provides an overview of current information in the area relevant to survivin inhibitors that may facilitate future studies.
Collapse
Affiliation(s)
- Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.
| |
Collapse
|