51
|
Varela MJ, Lage S, Caruncho HJ, Cadavid MI, Loza MI, Brea J. Reelin influences the expression and function of dopamine D2 and serotonin 5-HT2A receptors: a comparative study. Neuroscience 2015; 290:165-74. [PMID: 25637489 DOI: 10.1016/j.neuroscience.2015.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/04/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
Abstract
Reelin is an extracellular matrix protein that plays a critical role in neuronal guidance during brain neurodevelopment and in synaptic plasticity in adults and has been associated with schizophrenia. Reelin mRNA and protein levels are reduced in various structures of post-mortem schizophrenic brains, in a similar way to those found in heterozygous reeler mice (HRM). Reelin is involved in protein expression in dendritic spines that are the major location where synaptic connections are established. Thus, we hypothesized that a genetic deficit in reelin would affect the expression and function of dopamine D2 and serotonin 5-HT2A receptors that are associated with the action of current antipsychotic drugs. In this study, D2 and 5-HT2A receptor expression and function were quantitated by using radioligand binding studies in the frontal cortex and striatum of HRM and wild-type mice (WTM). We observed increased expression (p<0.05) in striatum membranes and decreased expression (p<0.05) in frontal cortex membranes for both dopamine D2 and serotonin 5-HT2A receptors from HRM compared to WTM. Our results show parallel alterations of D2 and 5-HT2A receptors that are compatible with a possible hetero-oligomeric nature of these receptors. These changes are similar to changes described in schizophrenic patients and provide further support for the suitability of using HRM as a model for studying this disease and the effects of antipsychotic drugs.
Collapse
Affiliation(s)
- M J Varela
- BioFarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - S Lage
- BioFarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - H J Caruncho
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - M I Cadavid
- BioFarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - M I Loza
- BioFarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - J Brea
- BioFarma Research Group, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
52
|
Perez-Aguilar JM, Shan J, LeVine M, Khelashvili G, Weinstein H. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2. J Am Chem Soc 2014; 136:16044-54. [PMID: 25314362 PMCID: PMC4235374 DOI: 10.1021/ja508394x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 01/16/2023]
Abstract
With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT(2A)R) in the absence of ligand and bound to four distinct serotonergic agonists. The 5-HT(2A)R is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT(2A)R agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT(2A)R interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. The findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT(2A)R activation.
Collapse
Affiliation(s)
- Jose Manuel Perez-Aguilar
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Jufang Shan
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Michael
V. LeVine
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - George Khelashvili
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| | - Harel Weinstein
- Department
of Physiology and Biophysics and The HRH Prince Alwaleed Bin Talal
Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, New York 10065, United States
| |
Collapse
|
53
|
Guidolin D, Agnati LF, Marcoli M, Borroto-Escuela DO, Fuxe K. G-protein-coupled receptor type A heteromers as an emerging therapeutic target. Expert Opin Ther Targets 2014; 19:265-83. [PMID: 25381716 DOI: 10.1517/14728222.2014.981155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The discovery of receptor-receptor interactions (RRIs) in the early 1980s provided evidence that G-protein-coupled receptors (GPCRs) operate not only as monomers but also as heteromers, in which integration of the incoming signals takes place already at the plasma membrane level through allosteric RRIs. These integrative mechanisms give sophisticated dynamics to the structure and function of these receptor assemblies in terms of modulation of recognition, G-protein signaling and selectivity and switching to β-arrestin signaling. AREAS COVERED The present review briefly describes the concept of direct RRI and the available data on the mechanisms of oligomer formation. Further, pharmacological data concerning the best characterized heteromers involving type A GPCRs will be analyzed to evaluate their profile as possible targets for the treatment of various diseases, in particular of impacting diseases of the CNS. EXPERT OPINION GPCR heteromers have the potential to open a completely new field for pharmacology with likely a major impact in molecular medicine. Novel pharmacological strategies for the treatment of several pathologies have already been proposed. However, several challenges still exist to accurately characterize the role of the identified heteroreceptor complexes in pathology and to develop heteromer-specific ligands capable of efficiently exploiting their pharmacological features.
Collapse
Affiliation(s)
- Diego Guidolin
- University of Padova, Department of Molecular Medicine , via Gabelli 65, 35121 Padova , Italy +39 049 8272316 ; +39 049 8272319 ;
| | | | | | | | | |
Collapse
|
54
|
Falus P, Boros Z, Kovács P, Poppe L, Nagy J. Lipase-Catalyzed Kinetic Resolution of 1-(2-Hydroxycyclohexyl)Indoles in Batch and Continuous-Flow Systems. J Flow Chem 2014. [DOI: 10.1556/jfc-d-14-00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Brugarolas M, Navarro G, Martínez-Pinilla E, Angelats E, Casadó V, Lanciego JL, Franco R. G-protein-coupled receptor heteromers as key players in the molecular architecture of the central nervous system. CNS Neurosci Ther 2014; 20:703-9. [PMID: 24809909 DOI: 10.1111/cns.12277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 12/16/2022] Open
Abstract
The overall architecture of the nervous system, especially the CNS, is remarkable. The anatomy of the nervous system is constituted not only by macroscopic and microscopy identifiable regions and neuronal cell types, but also by protein complexes whose identification and localization require sophisticated techniques. G-protein-coupled receptors (GPCRs) constitute an example of proteins that are the key factors in the framework needed to sustain brain and nerve structure and function. The versatility underlying nervous system anatomy takes advantage of a recently discovered feature of GPCRs, the possibility to form heteromers that, placed at specific neuronal subsets and at specific locations (pre-, post-, or peri-synaptic), contribute to attain unique neural functions.
Collapse
Affiliation(s)
- Marc Brugarolas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain; Centro investigación biomédica en red enfermedades neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
56
|
Fuxe K, Borroto-Escuela DO, Tarakanov AO, Romero-Fernandez W, Ferraro L, Tanganelli S, Perez-Alea M, Di Palma M, Agnati LF. Dopamine D2 heteroreceptor complexes and their receptor-receptor interactions in ventral striatum: novel targets for antipsychotic drugs. PROGRESS IN BRAIN RESEARCH 2014; 211:113-39. [PMID: 24968778 DOI: 10.1016/b978-0-444-63425-2.00005-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review is focused on the D2 heteroreceptor complexes within the ventral striatum with their receptor-receptor interactions and relevance for the treatment of schizophrenia. A "guide-and-clasp" manner for receptor-receptor interactions is proposed where "adhesive guides" may be amino acid triplet homologies, which were determined for different kinds of D2 heteroreceptor complexes. The first putative D2 heteroreceptor complex to be discovered in relation to schizophrenia was the A2A-D2 heteroreceptor complex where antagonistic A2A-D2 receptor-receptor interactions were demonstrated after A2A agonist treatment in the ventral striatum. The A2A agonist CGS 21680 with atypical antipsychotic properties may at least in part act by increasing β-arrestin2 signaling over the D2 protomer in the A2A-D2 heteroreceptor complex in the ventral striatum. The antagonistic NTS1-D2 interactions in the NTS1-D2 heteroreceptor complex in the ventral striatum are proposed as one molecular mechanism for the potential antipsychotic effects of NT. Indications were obtained that the psychotic actions of the 5-HT2AR hallucinogens LSD and DOI can involve enhancement of D2R protomer signaling via a biased agonist action at the 5-HT2A protomer in the D2-5-HT2A heteroreceptor complex in the ventral striatum. Facilitatory allosteric D2likeR-OTR interactions in heteroreceptor complexes in nucleus accumbens may have a role in social and emotional behaviors. By blocking the D2 protomers of these heteroreceptor complexes, antipsychotics can fail to reduce the negative symptoms of schizophrenia. The discovery of different types of D2 heteroreceptor complexes gives an increased understanding of molecular mechanisms involved in causing schizophrenia and new strategies for its treatment and understanding the side effects of antipsychotics.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | - Alexander O Tarakanov
- Russian Academy of Sciences, St Petersburg Institute for Informatics and Automatation, St. Petersburg, Russia
| | | | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mileidys Perez-Alea
- Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Michael Di Palma
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Earth, Life and Environmental Sciences, Section of Physiology, Campus Scientifico 'Enrico Mattei', Urbino, Italy
| | | |
Collapse
|
57
|
Fuxe K, Tarakanov A, Romero Fernandez W, Ferraro L, Tanganelli S, Filip M, Agnati LF, Garriga P, Diaz-Cabiale Z, Borroto-Escuela DO. Diversity and Bias through Receptor-Receptor Interactions in GPCR Heteroreceptor Complexes. Focus on Examples from Dopamine D2 Receptor Heteromerization. Front Endocrinol (Lausanne) 2014; 5:71. [PMID: 24860548 PMCID: PMC4026686 DOI: 10.3389/fendo.2014.00071] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/28/2014] [Indexed: 01/14/2023] Open
Abstract
Allosteric receptor-receptor interactions in GPCR heteromers appeared to introduce an intermolecular allosteric mechanism contributing to the diversity and bias in the protomers. Examples of dopamine D2R heteromerization are given to show how such allosteric mechanisms significantly change the receptor protomer repertoire leading to diversity and biased recognition and signaling. In 1980s and 1990s, it was shown that neurotensin (NT) through selective antagonistic NTR-D2 like receptor interactions increased the diversity of DA signaling by reducing D2R-mediated dopamine signaling over D1R-mediated dopamine signaling. Furthermore, D2R protomer appeared to bias the specificity of the NTR orthosteric binding site toward neuromedin N vs. NT in the heteroreceptor complex. Complex CCK2R-D1R-D2R interactions in possible heteroreceptor complexes were also demonstrated further increasing receptor diversity. In D2R-5-HT2AR heteroreceptor complexes, the hallucinogenic 5-HT2AR agonists LSD and DOI were recently found to exert a biased agonist action on the orthosteric site of the 5-HT2AR protomer leading to the development of an active conformational state different from the one produced by 5-HT. Furthermore, as recently demonstrated allosteric A2A-D2R receptor-receptor interaction brought about not only a reduced affinity of the D2R agonist binding site but also a biased modulation of the D2R protomer signaling in A2A-D2R heteroreceptor complexes. A conformational state of the D2R was induced, which moved away from Gi/o signaling and instead favored β-arrestin2-mediated signaling. These examples on allosteric receptor-receptor interactions obtained over several decades serve to illustrate the significant increase in diversity and biased recognition and signaling that develop through such mechanisms.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Kjell Fuxe, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 17177, Sweden e-mail:
| | - Alexander Tarakanov
- St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences, Saint Petersburg, Russia
| | | | - Luca Ferraro
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Sergio Tanganelli
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Luigi F. Agnati
- Istituto di Ricovero e Cura a Carattere Scientifico, Venice Lido, Italy
| | - Pere Garriga
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Zaida Diaz-Cabiale
- Department of Physiology, School of Medicine, University of Málaga, Málaga, Spain
| | | |
Collapse
|
58
|
Fuxe K, Borroto-Escuela DO, Ciruela F, Guidolin D, Agnati LF. Receptor-receptor interactions in heteroreceptor complexes: a new principle in biology. Focus on their role in learning and memory. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2052-6946-2-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|