51
|
Abu-Odeh AM, Talib WH. Middle East Medicinal Plants in the Treatment of Diabetes: A Review. Molecules 2021; 26:742. [PMID: 33572627 PMCID: PMC7867005 DOI: 10.3390/molecules26030742] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/17/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a global health problem, and the number of diabetic patients is in continuous rise. Conventional antidiabetic therapies are associated with high costs and limited efficiency. The use of traditional medicine and plant extracts to treat diabetes is gaining high popularity in many countries. Countries in the Middle East region have a long history of using herbal medicine to treat different diseases, including diabetes. In this review, we compiled and summarized all the in vivo and in vitro studies conducted for plants with potential antidiabetic activity in the Middle East region. Plants of the Asteraceae and Lamiaceae families are the most investigated. It is hoped that this review will contribute scientifically to evidence the ethnobotanical use of medicinal plants as antidiabetic agents. Work has to be done to define tagetes, mechanism of action and the compound responsible for activity. In addition, safety and pharmacokinetic parameters should be investigated.
Collapse
Affiliation(s)
- Alaa M. Abu-Odeh
- Department of pharmaceutical sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931-166, Jordan
| |
Collapse
|
52
|
D'Andrea F, Sartini S, Piano I, Franceschi M, Quattrini L, Guazzelli L, Ciccone L, Orlandini E, Gargini C, La Motta C, Nencetti S. Oxy-imino saccharidic derivatives as a new structural class of aldose reductase inhibitors endowed with anti-oxidant activity. J Enzyme Inhib Med Chem 2021; 35:1194-1205. [PMID: 32396745 PMCID: PMC7269086 DOI: 10.1080/14756366.2020.1763331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aldose reductase is a key enzyme in the development of long term diabetic complications and its inhibition represents a viable therapeutic solution for people affected by these pathologies. Therefore, the search for effective aldose reductase inhibitors is a timely and pressing challenge. Herein we describe the access to a novel class of oxyimino derivatives, obtained by reaction of a 1,5-dicarbonyl substrate with O-(arylmethyl)hydroxylamines. The synthesised compounds proved to be active against the target enzyme. The best performing inhibitor, compound (Z)-8, proved also to reduce both cell death and the apoptotic process when tested in an in vitro model of diabetic retinopathy made of photoreceptor-like 661w cell line exposed to high-glucose medium, counteracting oxidative stress triggered by hyperglycaemic conditions.
Collapse
Affiliation(s)
| | | | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | | | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Elisabetta Orlandini
- Department of Earth Sciences, University of Pisa, Pisa, Italy.,Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
53
|
Nowak A, Cybulska K, Makuch E, Kucharski Ł, Różewicka-Czabańska M, Prowans P, Czapla N, Bargiel P, Petriczko J, Klimowicz A. In Vitro Human Skin Penetration, Antioxidant and Antimicrobial Activity of Ethanol-Water Extract of Fireweed ( Epilobium angustifolium L.). Molecules 2021; 26:E329. [PMID: 33435259 PMCID: PMC7827182 DOI: 10.3390/molecules26020329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022] Open
Abstract
Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin-Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts.
Collapse
Affiliation(s)
- Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Krystyna Cybulska
- Department of Microbiology and Environmental Chemistry, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology, Szczecin, PL-71434 Szczecin, Poland;
| | - Edyta Makuch
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, PL-70322 Szczecin, Poland;
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| | - Monika Różewicka-Czabańska
- Clinic of Skin and Venereal Diseases, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland;
| | - Piotr Prowans
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Norbert Czapla
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Piotr Bargiel
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Jan Petriczko
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University in Szczecin, PL-72010 Police, Poland; (P.P.); (N.C.); (P.B.); (J.P.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, PL-70111 Szczecin, Poland; (Ł.K.); (A.K.)
| |
Collapse
|
54
|
Synthesis, characterization and bioactivities of dative donor ligand N-heterocyclic carbene (NHC) precursors and their Ag(I)NHC coordination compounds. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114866] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
55
|
Murugan M, Rajendran K, Velmurugan T, Muthu S, Gundappa M, Thangavel S. Antagonistic and antioxidant potencies of Centrosema pubescens benth extracts against nosocomial infection pathogens. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
56
|
Aras A, Türkan F, Yildiko U, Atalar MN, Kılıç Ö, Alma MH, Bursal E. Biochemical constituent, enzyme inhibitory activity, and molecular docking analysis of an endemic plant species, Thymus migricus. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01375-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
57
|
Dhull SB, Punia S, Kumar R, Kumar M, Nain KB, Jangra K, Chudamani C. Solid state fermentation of fenugreek ( Trigonella foenum- graecum): implications on bioactive compounds, mineral content and in vitro bioavailability. Journal of Food Science and Technology 2020; 58:1927-1936. [PMID: 33897029 DOI: 10.1007/s13197-020-04704-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 12/01/2022]
Abstract
In the present study, solid-state fermentation (SSF) of four fenugreek cultivars viz. HM-57, AFG-2, RMT-1 and RMT-303 were carried out using Aspergillus awamori and its effect on antioxidant properties, phenolic content and bioactive compounds were studied. Macro (Ca, K, and Na) as well as micro (Fe, Zn, and Cu) elements and in vitro bioavailability of the unfermented fenugreek (UFF) and Aspergillus-fermented fenugreek (AFF) samples were assessed with standard methods. On 5th day, total phenolic and condensed tannin contents showed significant (p ≤ 0.05) increase for all cultivars. Further, HPLC analysis confirmed formation of some new bioactive (vanillin, benzoic acid and catechin) compounds. Similarly, extracts from all AFF also showed an increase in the antioxidant potential such as inhibition of DPPH, hydroxyl free radical scavenging, reducing power, and total antioxidant capacity up to 5th day of SSF. Mineral in AFF were found with enhanced values when compared with respective UFF. In vitro bioavailability of Fe, Zn and Ca was also improved during SSF. Results from the present study may be helpful to food industry in developing new health foods and may provide a rational for development of functional ingredient in preparation of novel nutraceuticals.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Rajesh Kumar
- Department of Biosciences, Zoology Division, Career Point University, Hamirpur, Himachal Pradesh India
| | - Manoj Kumar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Kiran Bala Nain
- Department of Food Science and Technology, University College, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Kanchan Jangra
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| | - Chanchal Chudamani
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana India
| |
Collapse
|
58
|
Günsel A, Bilgiçli AT, Barut B, Taslimi P, Özel A, Gülçin İ, Biyiklioglu Z, Yarasir MN. Synthesis of water soluble tetra-substituted phthalocyanines: Investigation of DNA cleavage, cytotoxic effects and metabolic enzymes inhibition. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128210] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
59
|
Lekmine S, Boussekine S, Kadi K, Martín-García AI, Kheddouma A, Nagaz K, Bensouici C. A comparative study on chemical profile and biological activities of aerial parts (stems, flowers, leaves, pods and seeds) of Astragalus gombiformis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
60
|
Polat Kose L, Bingol Z, Kaya R, Goren AC, Akincioglu H, Durmaz L, Koksal E, Alwasel SH, Gülçin İ. Anticholinergic and antioxidant activities of avocado (Folium perseae) leaves – phytochemical content by LC-MS/MS analysis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1761829] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Leyla Polat Kose
- Vocational School, Department of Pharmacy Services, Beykent University, Buyukcekmece, Istanbul, Turkey
| | - Zeynebe Bingol
- Faculty of Sciences, Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Ruya Kaya
- Faculty of Sciences, Department of Chemistry, Atatürk University, Erzurum, Turkey
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, Turkey
| | - Ahmet C. Goren
- Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
- Drug Application and Research Center, Bezmialem Vakif University, Istanbul, Turkey
| | - Hulya Akincioglu
- Department of Chemistry, Faculty of Sciences and Arts, Agri Ibrahim Cecen University, Agri, Turkey
| | - Lokman Durmaz
- Department of Medical Services and Technology, Cayirli Vocational School, Erzincan Binali Yildirim University, Cayirli, Erzincan, Turkey
| | - Ekrem Koksal
- Faculty of Sciences and Arts, Department of Chemistry, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Saleh H. Alwasel
- King Saud University, Department of Zoology, College of Science, Saudi Arabia
| | - İlhami Gülçin
- Faculty of Sciences, Department of Chemistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
61
|
Jurinjak Tušek A, Marić L, Benković M, Valinger D, Jurina T, Gajdoš Kljusurić J. In-vitro digestion of the bioactives originating from the Lamiaceae family herbal teas: A kinetic and PLS modeling study. J Food Biochem 2020; 44:e13233. [PMID: 32490545 DOI: 10.1111/jfbc.13233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
The stability of lavender, lemon balm, mint, sage, and thyme teas was investigated using in-vitro simulation of the digestive system. Kinetics of changes in the total polyphenolic content (TPC) and the antioxidant activity during the in-vitro trials were also evaluated. Results showed that TPC of mint teas decreases the fastest. Mathematical models for prediction of the TPC and the antioxidant activity of prepared teas based on UV-VIS and NIR spectra collected before, during, and after simulation showed that the best prediction was obtained for the wavelength ranges from 410 to 900 nm, 904 to 928 nm, and 1,399 to 1699 nm. It was concluded that the NIR can be used for calibration, validation, and classification of teas prepared from Lamiaceae plants. PRACTICAL APPLICATIONS: The bioactives' in-vitro digestion process can successfully be characterized by chemical, spectroscopic, and mathematical analysis. Application of NIR spectroscopy, in combination with multivariate analysis, leads to a reduction of time, costs, and chemical consumption and gives reliable results that pharmaceutical, food, and chemical industries can benefit from.
Collapse
Affiliation(s)
- Ana Jurinjak Tušek
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Lucija Marić
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Maja Benković
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Davor Valinger
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, Department of Process Engineering, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
62
|
Aydin T. Secondary metabolites of Helichrysum plicatum DC. subsp. plicatum flowers as strong carbonic anhydrase, cholinesterase and α-glycosidase inhibitors. ACTA ACUST UNITED AC 2020; 75:153-159. [PMID: 32383693 DOI: 10.1515/znc-2020-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Indexed: 01/29/2023]
Abstract
Helichrysum plicatum species are used in Turkish folk medicine as lithagogue, diuretic, and nephritic. Research on the methanol (MeOH) extract of flowers of H. plicatum DC. subsp. plicatum resulted in the isolation of eight known compounds (1-8). The chemical structures of the compounds were determined as β-sitosterol (1), apigenin (2), nonacosanoic acid (3), astragalin (4), β-sitosterol-3-O-β-D-glucopyranoside (5), helichrysin A (6), helichrysin B (7), and isosalipurposide (8) by spectroscopic and chromatographic/spectrometric methods, including 1D and 2D nuclear magnetic resonance and liquid chromatography-tandem mass spectrometry. Nonacosanoic acid (3) was isolated for the first time from H. plicatum DC. subsp. plicatum. The MeOH extract and isolated compounds were evaluated for their in vitro human carbonic anhydrase I (hCAI) and II (hCAII), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase inhibitory activities. The IC50 values of H. plicatum DC. subsp. plicatum MeOH extract for hCAI, hCAII, AChE, BChE, and α-glycosidase were found to be 77.87, 52.90, 115.50, 117.46, and 81.53 mg/mL, respectively. The compounds showed IC50 values of 1.43-4.47, 1.40-4.32, 1.69-2.90, 1.09-3.89, and 1.61-3.80 μM against hCAI, hCAII, AChE, BChE, and α-glycosidase, respectively. In summary, H. plicatum DC. subsp. plicatum secondary metabolites demonstrated strong inhibitory effects especially against hCAI and hCAII, whereas the MeOH extract showed a weak inhibitory effect on all enzymes.
Collapse
Affiliation(s)
- Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Agri Ibrahim Cecen University, 04100 Agri, Turkey
| |
Collapse
|
63
|
Artunc T, Menzek A, Taslimi P, Gulcin I, Kazaz C, Sahin E. Synthesis and antioxidant activities of phenol derivatives from 1,6-bis(dimethoxyphenyl)hexane-1,6-dione. Bioorg Chem 2020; 100:103884. [PMID: 32388430 DOI: 10.1016/j.bioorg.2020.103884] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Starting from the compound (3,4-dimethoxyphenyl)(2-(3,4-dimethoxyphenyl)cyclopent-1-en-1-yl)methanone (4), two diols and three tetrol derivatives were synthesised. Morover, from the reactions of 1,3-dimethoxybenzene and 1,4-dimethoxybenzene with adipoyl chloride, fifteen new along with nine known compounds were obtained. For the characterizations of compounds, spectroscopic methods such as NMR including DEPT, COSY, HMQC and HMBC experiments and X-ray diffraction were used. The antioxidant activities of novel synthesized seventeen molecules were investigated by analytical methods like ABTS•+ and DPPH• scavenging. Also, reducing power these molecules were investigated by Fe3+, Cu2+, and [Fe3+-(TPTZ)2]3+. Some of the molecules record powerful antioxidant profile when compared to putative standards. The inhibition effects of the phenols compounds against AChE and BChE activities were analysed. Also, these phenols were found as effective inhibitors for AChE, hCA I, hCA II, and BChE with Kis in the range of 122.95 ± 18.41-351.31 ± 69.12 nM for hCA I, 62.35 ± 9.03-363.17 ± 180.1 nM for hCA II, 134.57 ± 3.99-457.43 ± 220.10 nM for AChE, and 27.06 ± 9.12-72.98 ± 9.53 nM for BChE, respectively.
Collapse
Affiliation(s)
- Tekin Artunc
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Abdullah Menzek
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Cavit Kazaz
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| | - Ertan Sahin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
64
|
Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 2020; 94:651-715. [PMID: 32180036 DOI: 10.1007/s00204-020-02689-3] [Citation(s) in RCA: 741] [Impact Index Per Article: 185.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Antioxidants had a growing interest owing to their protective roles in food and pharmaceutical products against oxidative deterioration and in the body and against oxidative stress-mediated pathological processes. Screening of antioxidant properties of plants and plant-derived compounds requires appropriate methods, which address the mechanism of antioxidant activity and focus on the kinetics of the reactions including the antioxidants. Many studies evaluating the antioxidant activity of various samples of research interest using different methods in food and human health have been conducted. These methods are classified, described, and discussed in this review. Methods based on inhibited autoxidation are the most suited for termination-enhancing antioxidants and for chain-breaking antioxidants, while different specific studies are needed for preventive antioxidants. For this purpose, the most common methods used in vitro determination of antioxidant capacity of food constituents were examined. Also, a selection of chemical testing methods was critically reviewed and highlighted. In addition, their advantages, disadvantages, limitations and usefulness were discussed and investigated for pure molecules and raw extracts. The effect and influence of the reaction medium on the performance of antioxidants are also addressed. Hence, this overview provides a basis and rationale for developing standardized antioxidant methods for the food, nutraceuticals, and dietary supplement industries. In addition, the most important advantages and shortcomings of each method were detected and highlighted. The chemical principles of these methods are outlined and critically discussed. The chemical principles of methods of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS·+) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH·) radical scavenging, Fe3+-Fe2+ transformation assay, ferric reducing antioxidant power (FRAP) assay, cupric ions (Cu2+) reducing power assay (Cuprac), Folin-Ciocalteu reducing capacity (FCR assay), peroxyl radical (ROO·), superoxide radical anion (O2·-), hydrogen peroxide (H2O2) scavenging assay, hydroxyl radical (OH·) scavenging assay, singlet oxygen (1O2) quenching assay, nitric oxide radical (NO·) scavenging assay and chemiluminescence assay are outlined and critically discussed. Also, the general antioxidant aspects of main food components were discussed by a number of methods, which are currently used for the detection of antioxidant properties of food components. This review consists of two main sections. The first section is devoted to the main components in the food and pharmaceutical applications. The second general section comprises some definitions of the main antioxidant methods commonly used for the determination of the antioxidant activity of components. In addition, some chemical, mechanistic and kinetic basis, and technical details of the used methods are given.
Collapse
|
65
|
Zengin G, Mahomoodally MF, Sinan KI, Picot-Allain MCN, Yildiztugay E, Cziáky Z, Jekő J, Saleem H, Ahemad N. Chemical characterization, antioxidant, enzyme inhibitory and cytotoxic properties of two geophytes: Crocus pallasii and Cyclamen cilicium. Food Res Int 2020; 133:109129. [PMID: 32466933 DOI: 10.1016/j.foodres.2020.109129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023]
Abstract
The Crocus and Cyclamen genus have been reported to possess diverse biological properties. In the present investigation, two geophytes from these genus, namely Crocus pallasi and Cyclamen cilicium have been studied. The in vitro antioxidant, enzyme inhibitory, and cytotoxic effects of the methanol extracts of Crocus pallasii and Cyclamen cilicium aerial and underground parts were investigated. Antioxidant abilities of the extracts were investigated via different antioxidant assays (metal chelating, radical quenching (ABTS and DPPH), reducing power (CUPRAC and FRAP) and phosphomolybdenum). Cholinesterases, amylase, tyrosinase, and glucosidase were used as target enzymes for detecting enzyme inhibitory abilities of the samples. Regarding the cytotoxic abilities, breast cancer cell lines (MDA-MB 231 and MCF-7) and prostate cancer cell lines (DU-145) were used. The flowers extracts of Crocus pallasii and C. cilicium possessed the highest flavonoid content. The highest phenolic content was recorded from C. cilicium root extract (47.62 mg gallic acid equivalent/g extract). Cyclamen cilicium root extract showed significantly (p < 0.05) high radical scavenging (94.28 and 139.60 mg trolox equivalent [TE]/g extract, against DPPH and ABTS radicals, respectively) and reducing potential (173.30 and 109.53 mg TE/g extract, against CUPRAC and FRAP, respectively). The best acetylcholinesterase, glucosidase and tyrosinase inhibition was observed in C. cilicium root (4.46 mg GALAE/g; 15.75 mmol ACAE/g; 136.99 mg KAE/g, respectively). Methanolic extracts of C. pallasii and C. cilicium showed toxicity against breast cancer cell lines. In light of the above findings, C. cilicium might be considered as an interesting candidate in the development of anti-cancer agent coupled with antioxidant properties.
Collapse
Affiliation(s)
- Gokhan Zengin
- Department of Biology, Science Faculty, Selçuk University, Campus, Konya, Turkey.
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, VietNam; Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | | | | | - Evren Yildiztugay
- Department of Biotechnology, Science Faculty, Selçuk University, Campus, Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - József Jekő
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, Nyíregyháza, Hungary
| | - Hammad Saleem
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutical Sciences (IPS), University of Veterinary & Animal Sciences (UVAS), Lahore, Pakistan
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|