51
|
Pradima J, Kulkarni MR, Archna. Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production. RESOURCE-EFFICIENT TECHNOLOGIES 2017. [DOI: 10.1016/j.reffit.2017.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
52
|
Varrone C, Floriotis G, Heggeset TM, Le SB, Markussen S, Skiadas IV, Gavala HN. Continuous fermentation and kinetic experiments for the conversion of crude glycerol derived from second-generation biodiesel into 1,3 propanediol and butyric acid. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
53
|
Vivek N, Sindhu R, Madhavan A, Anju AJ, Castro E, Faraco V, Pandey A, Binod P. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview. BIORESOURCE TECHNOLOGY 2017; 239:507-517. [PMID: 28550990 DOI: 10.1016/j.biortech.2017.05.056] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 05/12/2023]
Abstract
One of the major ecological concerns associated with biodiesel production is the generation of waste/crude glycerol during the trans-esterification process. Purification of this crude glycerol is not economically viable. In this context, the development of an efficient and economically viable strategy would be biotransformation reactions converting the biodiesel derived crude glycerol into value added chemicals. Hence the process ensures the sustainability and waste management in biodiesel industry, paving a path to integrated biorefineries. This review addresses a waste to wealth approach for utilization of crude glycerol in the production of value added chemicals, current trends, challenges, future perspectives, metabolic approaches and the genetic tools developed for the improved synthesis over wild type microorganisms were described.
Collapse
Affiliation(s)
- Narisetty Vivek
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Alphonsa Jose Anju
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695 019, Kerala, India
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126 Naples, Italy
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India; Center of Innovative and Applied Bioprocessing, Sector 81, Mohali 160 071, Punjab, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695 019, Kerala, India.
| |
Collapse
|
54
|
Zhang Y, Jia Z, Lin J, Xu D, Fu S, Gong H. Deletingpckimproves growth and suppresses by-product formation during 1,3-propanediol fermentation byKlebsiella pneumoniae. J Appl Microbiol 2017. [DOI: 10.1111/jam.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zongxiao Jia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jie Lin
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Danfeng Xu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| |
Collapse
|
55
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
56
|
Serrano-Bermúdez LM, González Barrios AF, Maranas CD, Montoya D. Clostridium butyricum maximizes growth while minimizing enzyme usage and ATP production: metabolic flux distribution of a strain cultured in glycerol. BMC SYSTEMS BIOLOGY 2017; 11:58. [PMID: 28571567 PMCID: PMC5455137 DOI: 10.1186/s12918-017-0434-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/16/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND The increase in glycerol obtained as a byproduct of biodiesel has encouraged the production of new industrial products, such as 1,3-propanediol (PDO), using biotechnological transformation via bacteria like Clostridium butyricum. However, despite the increasing role of Clostridium butyricum as a bio-production platform, its metabolism remains poorly modeled. RESULTS We reconstructed iCbu641, the first genome-scale metabolic (GSM) model of a PDO producer Clostridium strain, which included 641 genes, 365 enzymes, 891 reactions, and 701 metabolites. We found an enzyme expression prediction of nearly 84% after comparison of proteomic data with flux distribution estimation using flux balance analysis (FBA). The remaining 16% corresponded to enzymes directionally coupled to growth, according to flux coupling findings (FCF). The fermentation data validation also revealed different phenotype states that depended on culture media conditions; for example, Clostridium maximizes its biomass yield per enzyme usage under glycerol limitation. By contrast, under glycerol excess conditions, Clostridium grows sub-optimally, maximizing biomass yield while minimizing both enzyme usage and ATP production. We further evaluated perturbations in the GSM model through enzyme deletions and variations in biomass composition. The GSM predictions showed no significant increase in PDO production, suggesting a robustness to perturbations in the GSM model. We used the experimental results to predict that co-fermentation was a better alternative than iCbu641 perturbations for improving PDO yields. CONCLUSIONS The agreement between the predicted and experimental values allows the use of the GSM model constructed for the PDO-producing Clostridium strain to propose new scenarios for PDO production, such as dynamic simulations, thereby reducing the time and costs associated with experimentation.
Collapse
Affiliation(s)
- Luis Miguel Serrano-Bermúdez
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia. Ciudad Universitaria, Carrera 30 No. 45-03, Bogotá, D.C Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química, Universidad de los Andes, Carrera 1 N.° 18A – 12, Bogotá, Colombia
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 USA
| | - Dolly Montoya
- Bioprocesses and Bioprospecting Group, Universidad Nacional de Colombia. Ciudad Universitaria, Carrera 30 No. 45-03, Bogotá, D.C Colombia
| |
Collapse
|
57
|
Rodier JD, D'Anna V, Ritter N, Dalicieux S, Sautet P, Pascault JP, Rousseau A, Fleury E. Isosorbide telechelic bio-based oligomers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jean-David Rodier
- Université-Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, IMP, UMR 5223; Villeurbanne 69621 France
- Gattefossé SAS; Saint-Priest 69804 France
| | - Vincenza D'Anna
- Université de Lyon, CNRS, Ecole Normale Supérieure de Lyon, Laboratoire de Chimie, UMR 5182; Lyon 69342 France
| | | | | | - Philippe Sautet
- Department of Chemical & Biomolecular Engineering; California State University; Los Angeles California 90095
| | - Jean-Pierre Pascault
- Université-Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, IMP, UMR 5223; Villeurbanne 69621 France
| | - Alain Rousseau
- Université-Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, IMP, UMR 5223; Villeurbanne 69621 France
| | - Etienne Fleury
- Université-Lyon, INSA-Lyon, Ingénierie des Matériaux Polymères, IMP, UMR 5223; Villeurbanne 69621 France
| |
Collapse
|
58
|
Huang J, Wu Y, Wu W, Zhang Y, Liu D, Chen Z. Cofactor recycling for co-production of 1,3-propanediol and glutamate by metabolically engineered Corynebacterium glutamicum. Sci Rep 2017; 7:42246. [PMID: 28176878 PMCID: PMC5296756 DOI: 10.1038/srep42246] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 01/03/2023] Open
Abstract
Production of 1,3-propanediol (1,3-PDO) from glycerol is a promising route toward glycerol biorefinery. However, the yield of 1,3-PDO is limited due to the requirement of NADH regeneration via glycerol oxidation process, which generates large amounts of undesired byproducts. Glutamate fermentation by Corynebacterium glutamicum is an important oxidation process generating excess NADH. In this study, we proposed a novel strategy to couple the process of 1,3-PDO synthesis with glutamate production for cofactor regeneration. With the optimization of 1,3-PDO synthesis route, C. glutamicum can efficiently convert glycerol into 1,3-PDO with the yield of ~ 1.0 mol/mol glycerol. Co-production of 1,3-PDO and glutamate was also achieved which increased the yield of glutamate by 18% as compared to the control. Since 1,3-PDO and glutamate can be easily separated in downstream process, this study provides a potential green route for coupled production of 1,3-PDO and glutamate to enhance the economic viability of biorefinery process.
Collapse
Affiliation(s)
- Jinhai Huang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yao Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wenjun Wu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ye Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| | - Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
59
|
Park ES, Park S, Shin JS. Spectrophotometric assay for sensitive detection of glycerol dehydratase activity using aldehyde dehydrogenase. J Biosci Bioeng 2017; 123:528-533. [PMID: 28052817 DOI: 10.1016/j.jbiosc.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/08/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022]
Abstract
Glycerol dehydratase (GDHt) is a pivotal enzyme for fermentative utilization of glycerol by catalyzing radical-mediated conversion of glycerol into 3-hydroxypropionaldehyde (3-HPA). Precise and sensitive monitoring of cellular GDHt activity during the fermentation process is a prerequisite for reliable metabolic analysis to afford efficient cellular engineering and process optimization. Here we report a new spectrophotometric assay for the sensitive measurement of the GDHt activity with a sub-nanomolar limit of detection (LOD). The assay method employs aldehyde dehydrogenase (ALDH) as a reporter enzyme, so the readout of the GDHt activity is recorded at 340 nm as an increase in UV absorbance which results from NADH generation accompanied by oxidation of 3-HPA to 3-hydroxypropionic acid (3-HP). The GDHt assay was performed under the reaction conditions where the ALDH activity overwhelms the GDHt activity (i.e., 50-fold higher activity of ALDH relative to GDHt activity), affording sensitive detection of GDHt with 360 pM LOD. The ALDH-coupled assay was used to determine kinetic parameters of GDHt for glycerol, leading to KM = 0.73 ± 0.09 mM and kcat = 400 ± 20 s-1 which are in reasonable agreements with the previous reports. Our assay method allowed measurement of even a 104-fold decrease in the cellular GDHt activity during fermentative production of 3-HP, which demonstrates the detection sensitivity much higher than the previous methods.
Collapse
Affiliation(s)
- Eul-Soo Park
- Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Sunghoon Park
- Department of Chemical and Biomolecular Engineering, Pusan National University, Busan 609-735, South Korea
| | - Jong-Shik Shin
- Department of Biotechnology, Yonsei University, Seoul 120-749, South Korea.
| |
Collapse
|
60
|
Tudorache M, Negoi A, Parvulescu VI. Enhancement of the valorization of renewable glycerol: The effects of the surfactant-enzyme interaction on the biocatalytic synthesis of glycerol carbonate. Catal Today 2017. [DOI: 10.1016/j.cattod.2016.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
61
|
Rodriguez A, Wojtusik M, Masca F, Santos VE, Garcia-Ochoa F. Kinetic modeling of 1,3-propanediol production from raw glycerol by Shimwellia blattae : Influence of the initial substrate concentration. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
62
|
Vegetable Oil-Biorefinery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:69-98. [DOI: 10.1007/10_2016_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
63
|
Multi-modular engineering of 1,3-propanediol biosynthesis system in Klebsiella pneumoniae from co-substrate. Appl Microbiol Biotechnol 2016; 101:647-657. [PMID: 27761634 DOI: 10.1007/s00253-016-7919-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
Abstract
1,3-Propanediol (1,3-PDO) is a monomer for the synthesis of various polyesters. It is widely used in industries including cosmetics, solvents, and lubricants. Here, the multi-modular engineering was used to improve the concentration and tolerance of 1,3-PDO in Klebsiella pneumoniae. Firstly, the concentration of 1,3-PDO was increased by 25 %, while the concentrations of by-products were reduced considerably through one-step evolution which focused on the glycerol pathway. In addition, the 1,3-PDO tolerance was improved to 150 g L-1. Secondly, co-substrate transport system was regulated, and the 1,3-PDO concentration, yield, and productivity of the mutant were improved to 76.4 g L-1, 0.53 mol mol-1, and 2.55 g L-1 h-1, respectively. Finally, NADH regeneration was introduced and the recombinant strain was successfully achieved with a high productivity of 2.69 g L-1 h-1. The concentration and yield of 1,3-PDO were also improved to 86 g L-1 and 0.59 mol mol-1. This strategy described here provides an approach of achieving a superior strain which is able to produce 1,3-PDO with high productivity and yield.
Collapse
|
64
|
|
65
|
Lakhundi SS, Duedu KO, Cain N, Nagy R, Krakowiak J, French CE. Citrobacter freundii as a test platform for recombinant cellulose degradation systems. Lett Appl Microbiol 2016; 64:35-42. [PMID: 27617802 DOI: 10.1111/lam.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/27/2016] [Accepted: 09/08/2016] [Indexed: 01/03/2023]
Abstract
Cellulosic biomass represents a huge reservoir of renewable carbon, but converting it into useful products is challenging. Attempts to transfer cellulose degradation capability to industrially useful micro-organisms have met with limited success, possibly due to poorly understood synergy between multiple cellulases. This is best studied by co-expression of many combinations of cellulases and associated proteins. Here, we describe the development of a test platform based on Citrobacter freundii, a cellobiose-assimilating organism closely related to Escherichia coli. Standard E. coli cloning vectors worked well in Cit. freundii. Expression of cellulases CenA and Cex of Cellulomonas fimi in Cit. freundii gave recombinant strains which were able to grow at the expense of cellulosic filter paper or microcrystalline cellulose (Avicel) in a mineral medium supplemented with a small amount of yeast extract. Periodic physical agitation of the cultures was highly beneficial for growth at the expense of filter paper. This provides a test platform for the expression of combinations of genes encoding biomass-degrading enzymes to develop effective genetic cassettes for degradation of different biomass streams. SIGNIFICANCE AND IMPACT OF THE STUDY Biofuels have been shown to be the best sustainable and alternative source of fuel to replace fossil fuels. Of the different types of feedstocks used for producing biofuels, lignocellulosic biomass is the most abundant. Converting this biomass to useful products has met with little success. Different approaches are being used and microbial platforms are the most promising and sustainable method. This study shows that Citrobacter freundii is a better test platform than Escherichia coli for testing various combinations of cellulases for the development of microbial systems for biomass conversion.
Collapse
Affiliation(s)
- S S Lakhundi
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - K O Duedu
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,School of Basic & Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - N Cain
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - R Nagy
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J Krakowiak
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - C E French
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
66
|
Kumar V, Durgapal M, Sankaranarayanan M, Somasundar A, Rathnasingh C, Song H, Seung D, Park S. Effects of mutation of 2,3-butanediol formation pathway on glycerol metabolism and 1,3-propanediol production by Klebsiella pneumoniae J2B. BIORESOURCE TECHNOLOGY 2016; 214:432-440. [PMID: 27160953 DOI: 10.1016/j.biortech.2016.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 05/20/2023]
Abstract
The current study investigates the impact of mutation of 2,3-butanediol (BDO) formation pathway on glycerol metabolism and 1,3-propanediol (PDO) production by lactate dehydrogenase deficient mutant of Klebsiella pneumoniae J2B. To this end, BDO pathway genes, budA, budB, budC and budO (whole-bud operon), were deleted from K. pneumoniae J2B ΔldhA and the mutants were studied for glycerol metabolism and alcohols (PDO, BDO) production. ΔbudO-mutant-only could completely abolish BDO production, but with reductions in cell growth and PDO production. By modifying the culture medium, the ΔbudO mutant could recover its performance on the flask scale. However, in bioreactor experiments, the ΔbudO mutant accumulated a significant amount of pyruvate (>73mM) in the late phase and PDO production stopped concomitantly. Glycolytic intermediates of glycerol, especially glyceraldehyde-3-phosphate (G3P) was highly inhibitory to glycerol dehydratase (GDHt); its accumulation, followed by pyruvate accumulation, was assumed to be responsible for the ΔbudO mutant's low PDO production.
Collapse
Affiliation(s)
- Vinod Kumar
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea; Nottingham BBSRC/EPSRC Synthetic Biology Research Centre, Centre for Biomolecular Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Meetu Durgapal
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Mugesh Sankaranarayanan
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Ashok Somasundar
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Chelladurai Rathnasingh
- R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yusung-gu, Daejeon 305-380, Republic of Korea
| | - HyoHak Song
- R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yusung-gu, Daejeon 305-380, Republic of Korea
| | - Doyoung Seung
- R&D Center, GS Caltex Corporation, 104-4 Munji-dong, Yusung-gu, Daejeon 305-380, Republic of Korea
| | - Sunghoon Park
- School of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
67
|
Wischral D, Zhang J, Cheng C, Lin M, De Souza LMG, Pessoa FLP, Pereira N, Yang ST. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering. BIORESOURCE TECHNOLOGY 2016; 212:100-110. [PMID: 27085150 DOI: 10.1016/j.biortech.2016.04.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 05/23/2023]
Abstract
1,3-Propanediol (1,3-PDO) production from crude glycerol, a byproduct from biodiesel manufacturing, by Clostridium beijerinckii DSM 791 was studied with corn steep liquor as an inexpensive nitrogen source replacing yeast extract in the fermentation medium. A stable, long-term 1,3-PDO production from glycerol was demonstrated with cells immobilized in a fibrous bed bioreactor operated in a repeated batch mode, which partially circumvented the 1,3-PDO inhibition problem. The strain was then engineered to overexpress Escherichia coli gldA encoding glycerol dehydrogenase (GDH) and dhaKLM encoding dihydroxyacetone kinase (DHAK), which increased 1,3-PDO productivity by 26.8-37.5% compared to the wild type, because of greatly increased specific growth rate (0.25-0.40h(-1) vs. 0.13-0.20h(-1) for the wild type). The engineered strain gave a high 1,3-PDO titer (26.1g/L), yield (0.55g/g) and productivity (0.99g/L·h) in fed-batch fermentation. Overexpressing GDH and DHAK was thus effective in increasing 1,3-PDO production from glycerol.
Collapse
Affiliation(s)
- Daiana Wischral
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA; School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco E., Rio de Janeiro, RJ 21949-900, Brazil
| | - Jianzhi Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Chi Cheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Meng Lin
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Lucas Monteiro Galotti De Souza
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA
| | - Fernando L Pellegrini Pessoa
- School of Chemistry, Department of Chemical Engineering, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco E., Rio de Janeiro, RJ 21949-900, Brazil
| | - Nei Pereira
- School of Chemistry, Department of Biochemical Engineering, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco E., Rio de Janeiro, RJ 21949-900, Brazil
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
68
|
Rodriguez A, Wojtusik M, Ripoll V, Santos VE, Garcia-Ochoa F. 1,3-Propanediol production from glycerol with a novel biocatalyst Shimwellia blattae ATCC 33430: Operational conditions and kinetics in batch cultivations. BIORESOURCE TECHNOLOGY 2016; 200:830-7. [PMID: 26590757 DOI: 10.1016/j.biortech.2015.10.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/16/2015] [Accepted: 10/17/2015] [Indexed: 05/21/2023]
Abstract
Shimwellia blattae ATCC 33430 as biocatalyst in the conversion of 1,3-propanediol from glycerol is herein evaluated. Several operational conditions in batch cultivations, employing pure and raw glycerol as sole carbon source, were studied. Temperature was studied at shaken bottle scale, while pH control strategy, together with the influence of raw glycerol and its impurities during fermentation were studied employing a 2L STBR. Thereafter, fluid dynamic conditions were considered by changing the stirring speed and the gas supply (air or nitrogen) in the same scale-up experiments. The best results were obtained at a temperature of 37°C, an agitation rate of 200rpm, with free pH evolution from 6.9 and subsequent control at 6.5 and no gas supply during the fermentation, employing an initial concentration of 30g/L of raw glycerol. Under these conditions, the biocatalyst is competitive, leading to results in line with other previous works in the literature in batch conditions, reaching a final concentration of 1,3-propanediol of 13.84g/L, with a yield of 0.45g/g and a productivity of 1.19g/(Lh) from raw glycerol.
Collapse
Affiliation(s)
- Alberto Rodriguez
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| | - Mateusz Wojtusik
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| | - Vanessa Ripoll
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| | - Victoria E Santos
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain.
| | - F Garcia-Ochoa
- Department of Chemical Engineering, Faculty of Chemistry, University Complutense of Madrid, Spain
| |
Collapse
|
69
|
Chen Z, Liu D. Toward glycerol biorefinery: metabolic engineering for the production of biofuels and chemicals from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:205. [PMID: 27729943 PMCID: PMC5048440 DOI: 10.1186/s13068-016-0625-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/24/2016] [Indexed: 05/03/2023]
Abstract
As an inevitable by-product of the biofuel industry, glycerol is becoming an attractive feedstock for biorefinery due to its abundance, low price and high degree of reduction. Converting crude glycerol into value-added products is important to increase the economic viability of the biofuel industry. Metabolic engineering of industrial strains to improve its performance and to enlarge the product spectrum of glycerol biotransformation process is highly important toward glycerol biorefinery. This review focuses on recent metabolic engineering efforts as well as challenges involved in the utilization of glycerol as feedstock for the production of fuels and chemicals, especially for the production of diols, organic acids and biofuels.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| |
Collapse
|
70
|
Kaur G, Srivastava AK, Chand S. Debottlenecking product inhibition in 1,3-propanediol fermentation by In-Situ Product Recovery. BIORESOURCE TECHNOLOGY 2015; 197:451-457. [PMID: 26356117 DOI: 10.1016/j.biortech.2015.08.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
The present work describes the application of liquid-liquid extraction as an In-Situ product recovery (ISPR) technique to overcome the problem of product inhibition in 1,3-PD fermentation. As a part of initial screening experiments, six solvents were subjected to phase separation and biocompatibility tests to find the best extractant for in-situ removal of 1,3-PD from the bioreactor. These included tributylphosphate, ethyl acetate, butyl acetate, oleyl alcohol, oleic acid and hexanol. Of these, ethyl acetate was found to be the most suitable solvent for 1,3-PD extraction. Use of the selected extractant in continuous integrated fermentation-extraction was established by batch and fed-batch extractive fermentations which demonstrated a significantly improved 1,3-PD production of 35g/L and 74.5g/L, respectively. A steady state 1,3-PD concentration of 58g/L was obtained in continuous extractive system. Continuous cultivation with in-situ cell retention and in-situ 1,3-PD removal demonstrated a 5-fold enhancement in 1,3-PD productivity over non-extractive batch.
Collapse
Affiliation(s)
- Guneet Kaur
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - A K Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Subhash Chand
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
71
|
da Silva GP, de Lima CJB, Contiero J. Production and productivity of 1,3-propanediol from glycerol by Klebsiella pneumoniae GLC29. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
72
|
Inhibition and in situ removal of organic acids during glucose/glycerol co-fermentation by Lactobacillus reuteri. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
73
|
Draft genome sequences of clostridium strains native to Colombia with the potential to produce solvents. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00486-15. [PMID: 25999575 PMCID: PMC4440955 DOI: 10.1128/genomea.00486-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies.
Collapse
|
74
|
Wojtusik M, Rodríguez A, Ripoll V, Santos VE, García JL, García-Ochoa F. 1,3-Propanediol production by Klebsiella oxytoca NRRL-B199 from glycerol. Medium composition and operational conditions. ACTA ACUST UNITED AC 2015. [PMID: 28626702 PMCID: PMC5466260 DOI: 10.1016/j.btre.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
1,3-Propanediol is produced from glycerol using Klebsiella oxytoca NRRL-B199. The medium composition was optimized by an orthogonal experimental design. Scale-up form shaken bottles to STBR was studied. Operating conditions, agitation and temperature, were optimized. Under these conditions, 13.5 g/L of propanediol (selectivity = 86% with respect to glycerol) can be obtained.
Production of 1,3-propanediol from glycerol using Klebsiella oxytoca NRRL-B199 has been studied. Medium composition has been optimized by means of a statistical design based on the Taguchi method. Strong influences of glycerol and phosphate concentrations have been detected on biomass and product yields. Other factors, such as magnesium concentration and K:Na ratio, have shown a small influence on both responses, biomass and product concentrations. An optimized medium composition has been proposed, leading to a final 1,3-propanediol concentration of 12.4 g/L with a selectivity of 72% with respect to glycerol consumed at shaken bottle-scale. Once the medium composition had been optimized, the scale-up from shaken bottles to STBR was conducted. Several experiments in a 2 L STBR have been conducted in order to determine the best operating conditions concerning temperature and agitation. Under the best operating conditions, i.e., a programmed variable stirring rate ranging from 50 to 100 rpm and a temperature of 37 °C, a final concentration of 13.5 g/L of 1,3-propanediol with a selectivity of 86% with respect to the glycerol consumed was obtained.
Collapse
Affiliation(s)
- Mateusz Wojtusik
- Departamento de Ingeniería Química, Universidad Complutense, Madrid, Spain
| | - Alberto Rodríguez
- Departamento de Ingeniería Química, Universidad Complutense, Madrid, Spain
| | - Vanessa Ripoll
- Departamento de Ingeniería Química, Universidad Complutense, Madrid, Spain
| | - Victoria E Santos
- Departamento de Ingeniería Química, Universidad Complutense, Madrid, Spain
| | - José L García
- Departamento de Ingeniería Química, Universidad Complutense, Madrid, Spain
| | - Félix García-Ochoa
- Departamento de Ingeniería Química, Universidad Complutense, Madrid, Spain
| |
Collapse
|
75
|
Szymanowska-Powałowska D. The effect of high concentrations of glycerol on the growth, metabolism and adaptation capacity of Clostridium butyricum DSP1. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
76
|
Vieira P, Kilikian B, Bastos R, Perpetuo E, Nascimento C. Process strategies for enhanced production of 1,3-propanediol by Lactobacillus reuteri using glycerol as a co-substrate. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
77
|
Gungormusler-Yilmaz M, Cicek N, Levin DB, Azbar N. Cell immobilization for microbial production of 1,3-propanediol. Crit Rev Biotechnol 2015; 36:482-94. [PMID: 25600463 DOI: 10.3109/07388551.2014.992386] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell and enzyme immobilization are often used for industrial production of high-value products. In recent years, immobilization techniques have been applied to the production of value-added chemicals such as 1,3-Propanediol (1,3-PDO). Biotechnological fermentation is an attractive alternative to current 1,3-PDO production methods, which are primarily thermochemical processes, as it generates high volumetric yields of 1,3-PDO, is a much less energy intensive process, and generates lower amounts of environmental organic pollutants. Although several approaches including: batch, fed-batch, continuous-feed and two-step continuous-feed were tested in suspended systems, it has been well demonstrated that cell immobilization techniques can significantly enhance 1,3-PDO production and allow robust continuous production in smaller bioreactors. This review covers various immobilization methods and their application for 1,3-PDO production.
Collapse
Affiliation(s)
- Mine Gungormusler-Yilmaz
- a Department of Bioengineering, Faculty of Engineering , Ege University , Bornova , Izmir , Turkey and
| | - Nazim Cicek
- b Department of Biosystems Engineering , University of Manitoba , Winnipeg , MB , Canada
| | - David B Levin
- b Department of Biosystems Engineering , University of Manitoba , Winnipeg , MB , Canada
| | - Nuri Azbar
- a Department of Bioengineering, Faculty of Engineering , Ege University , Bornova , Izmir , Turkey and
| |
Collapse
|
78
|
Zhang Y, Luo J, Zhao X, Liu D. A novel strategy for 1,3-propanediol recovery from fermentation broth and control of product colority using scraped thin-film evaporation for desalination. RSC Adv 2015. [DOI: 10.1039/c5ra05949f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel strategy for 1,3-propanediol recovery from fermentation broth was developed to control the product colority by adjusting the pH of feeding stream before desalination using a scraped thin-film evaporation.
Collapse
Affiliation(s)
- Yuanman Zhang
- Institute of Applied Chemistry
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Ji'an Luo
- Institute of Applied Chemistry
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Xuebing Zhao
- Institute of Applied Chemistry
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Dehua Liu
- Institute of Applied Chemistry
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
79
|
|
80
|
Szymanowska-Powałowska D, Kubiak P. Effect of 1,3-propanediol, organic acids, and ethanol on growth and metabolism of Clostridium butyricum DSP1. Appl Microbiol Biotechnol 2014; 99:3179-89. [PMID: 25524700 DOI: 10.1007/s00253-014-6292-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 11/27/2014] [Accepted: 12/02/2014] [Indexed: 11/30/2022]
Abstract
Knowledge of tolerance of bacteria to toxic stress is important, especially for processes targeted at high final titers of product. Information on environmental limits and stress responses may help during selection of strains or design and control of processes. The influence of the main product and its co-products on the process of 1,3-propanediol (PD) synthesis was determined. Adaptation to toxic compounds was noticed as Clostridium butyricum DSP1 was less sensitive to the addition of these factors during its exponential growth on glycerol than when the factor was present in the medium before inoculation. It was also shown that the response of the tested strain to the toxicity of 1,3-propanediol (1,3-PD) has different proteomic profiles depending on the stage of culture when this substance is introduced. Relatively satisfactory activity of the analyzed strain was sustained up to a concentration of 1,3-PD of 40 g/L while 80 g/L of this metabolite was lethal to the bacterium. As for the by-products, acetic acid was determined to be the most toxic among the acids excreted during the process.
Collapse
Affiliation(s)
- Daria Szymanowska-Powałowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-527, Poznan, Poland,
| | | |
Collapse
|
81
|
Batch, design optimization, and DNA sequencing study for continuous 1,3-propanediol production from waste glycerol by a soil-based inoculum. Appl Microbiol Biotechnol 2014; 99:2105-17. [DOI: 10.1007/s00253-014-6259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/11/2014] [Accepted: 11/21/2014] [Indexed: 11/26/2022]
|
82
|
Szymanowska-Powałowska D. 1,3-Propanediol production from crude glycerol by Clostridium butyricum DSP1 in repeated batch. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2014.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
83
|
Lee YH, Lee WY, Kim KS, Hong YK. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids. KOREAN CHEMICAL ENGINEERING RESEARCH 2014. [DOI: 10.9713/kcer.2014.52.5.627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
84
|
Multiplicity of steady states in a bioreactor during the production of 1,3-propanediol by Clostridium butyricum. Bioprocess Biosyst Eng 2014; 38:229-35. [DOI: 10.1007/s00449-014-1262-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 07/26/2014] [Indexed: 11/25/2022]
|
85
|
Zhong Z, Liu L, Zhou J, Gao L, Xu J, Fu S, Gong H. Influences of 3-hydroxypropionaldehyde and lactate on the production of 1,3-propanediol by Klebsiella pneumoniae. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0002-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
1,3-Propanediol is the starting point of a new-generation polymer with superior properties which can be used in many industrial fields. 3-Hydroxypropionaldehyde and lactate have been identified as two important metabolites in the biological route of 1,3-propanediol bioconversion from glycerol. Here, influence of lactate on the inhibition caused by 3-hydroxypropionaldehyde of 1,3-propanediol fermentation by Klebsiella pneumoniae is reported.
Methods
The influences of 3-hydroxypropionaldehyde and lactate on 1,3-propanediol production were investigated in normal and lactate pathway deficient strains with different fermentation conditions.
Results
By using the strains KG1 and L-type lactate dehydrogenase-deficient mutant (KG1Δldh), the results indicated that an early accumulation of 3-hydroxypropionaldehyde directly inhibited the 1,3-propanediol production rather than through lactate accumulation during the late stage of fermentation. Then, the influence of extra addition of lactate on the late stage of fermentation was investigated, and the inhibitory effect of lactate did not appear. At last, it was found that by reducing 3-hydroxypropionaldehyde accumulation in the early stage of fermentation, the concentration and yield of 1,3-propanediol increased by 18% and 16%, respectively, over the initial experimental levels.
Conclusions
An early accumulation of 3-hydroxypropionaldehyde directly decreased the final 1,3-propanediol concentration rather than through lactate accumulation during the late stage of fermentation.
Collapse
|
86
|
Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s. Int J Mol Sci 2014; 15:7064-123. [PMID: 24776758 PMCID: PMC4057662 DOI: 10.3390/ijms15057064] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/22/2023] Open
Abstract
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.
Collapse
|
87
|
Szymanowska-Powałowska D, Leja K. An increasing of the efficiency of microbiological synthesis of 1,3-propanediol from crude glycerol by the concentration of biomass. ELECTRON J BIOTECHN 2014. [DOI: 10.1016/j.ejbt.2013.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
88
|
Transcriptional repressor role of PocR on the 1,3-propanediol biosynthetic pathway by Lactobacillus panis PM1. Biotechnol Lett 2014; 36:1263-9. [DOI: 10.1007/s10529-014-1477-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/23/2014] [Indexed: 01/25/2023]
|
89
|
Kang TS, Korber DR, Tanaka T. Bioconversion of glycerol to 1,3-propanediol in thin stillage-based media by engineered Lactobacillus panis PM1. J Ind Microbiol Biotechnol 2014; 41:629-35. [PMID: 24522935 DOI: 10.1007/s10295-014-1403-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/06/2014] [Indexed: 12/14/2022]
Abstract
Thin stillage (TS) is a waste residue that remains after bioethanol production, and its disposal reflects the high costs of bioethanol production. Thus, the development of cost-effective ways to process TS is a pending issue in bioethanol plants. The aim of this study was to evaluate the utilization of TS for the production of the valuable chemical, 1,3-propanediol (1,3-PDO), by Lactobacillus panis PM1. Different fermentation parameters, including temperature, pH and strains [wild-type and a recombinant strain expressing a NADPH-dependent aldehyde reductase (YqhD) gene] were tested in batch and fed-batch cultivations. The highest 1,3-PDO concentration (12.85 g/L) and yield (0.84 g/g) were achieved by batch fermentation at pH-4.5/30 °C by the YqhD recombinant strain. Furthermore, pH-controlled batch fermentation reduced the total fermentation period, resulting in the maximal 1,3-PDO concentration of 16.23 g/L and yield of 0.72 g/g in TS without an expensive nutrient or nitrogen (e.g., yeast extract, beef extract, and peptone) supplementation. The addition of two trace elements, Mg(2+) and Mn(2+), in TS increased 1,3-PDO yield (0.74 g/g) without 3-hydroxypropionaldehyde production, the only intermediate of 1,3-PDO biosynthetic pathway in L. panis PM1. Our results suggest that L. panis PM1 can offer a cost-effective process that utilizes the TS to produce a value-added chemical, 1,3-PDO.
Collapse
Affiliation(s)
- Tae Sun Kang
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | | | |
Collapse
|
90
|
Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables. J Biosci Bioeng 2014; 118:188-94. [PMID: 24525111 DOI: 10.1016/j.jbiosc.2014.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/04/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Chemical synthesis of 1,3-propanediol (1,3-PD) is environmentally unfriendly and hence its microbial production is preferred, especially for biomedical, cosmetic and textile applications. In this work, production of 1,3-PD by co-fermentation of glucose and glycerol by Lactobacillus reuteri was investigated under different cultivation conditions such as aeration, acetate concentration and different molar ratios of glucose/glycerol. The final concentration of 1,3-PD and yield attained under unaerated conditions was close to that obtained under anaerobic conditions. Addition of acetate in the initial medium at 5 g/l increased the productivity of 1,3-PD but above this concentration it was found to be inhibitory. Batch reactor experiments showed that the molar ratio of glucose and glycerol in the medium affected the fermentation pattern. The effect of molar ratios was further investigated in fed-batch fermentation and the optimum ratio was found to be 1.5. In repeated fed-batch fermentation with co-feeding of glucose and glycerol in the molar ratio of 1.5, 1,3-PD concentration reached up to 65.3 g/l, which is the highest 1,3-PD concentration reported so far for this strain. The yield (0.97 mol/mol) based on glycerol utilized also approached the theoretical value (1 mol/mol).
Collapse
|
91
|
Vilela C, Sousa AF, Fonseca AC, Serra AC, Coelho JFJ, Freire CSR, Silvestre AJD. The quest for sustainable polyesters – insights into the future. Polym Chem 2014. [DOI: 10.1039/c3py01213a] [Citation(s) in RCA: 367] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
92
|
Guo X, Fang H, Zhuge B, Zong H, Song J, Zhuge J, Du X. budCknockout inKlebsiella pneumoniaefor bioconversion from glycerol to 1,3-propanediol. Biotechnol Appl Biochem 2013; 60:557-63. [DOI: 10.1002/bab.1114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/30/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Xinkun Guo
- The Key Laboratory of Industrial Biotechnology; Ministry of Education and the Research Centre of Industrial Microbiology, Jiangnan University; Wuxi People's Republic of China
| | - Huiying Fang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education and the Research Centre of Industrial Microbiology, Jiangnan University; Wuxi People's Republic of China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology; Ministry of Education and the Research Centre of Industrial Microbiology, Jiangnan University; Wuxi People's Republic of China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology; Ministry of Education and the Research Centre of Industrial Microbiology, Jiangnan University; Wuxi People's Republic of China
| | - Jian Song
- School of Chemical and Material Engineering; Jiangnan University; Wuxi People's Republic of China
| | - Jian Zhuge
- The Key Laboratory of Industrial Biotechnology; Ministry of Education and the Research Centre of Industrial Microbiology, Jiangnan University; Wuxi People's Republic of China
| | - Xingxing Du
- The Key Laboratory of Industrial Biotechnology; Ministry of Education and the Research Centre of Industrial Microbiology, Jiangnan University; Wuxi People's Republic of China
| |
Collapse
|
93
|
Wiesen S, Tippkötter N, Muffler K, Suck K, Sohling U, Ruf N, Ulber R. Adsorptive Vorbehandlung von Rohglycerin für die 1,3-Propandiol Fermentation mitClostridium diolis. CHEM-ING-TECH 2013. [DOI: 10.1002/cite.201300080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
94
|
Li ZG, Sun YQ, Zheng WL, Teng H, Xiu ZL. A novel and environment-friendly bioprocess of 1,3-propanediol fermentation integrated with aqueous two-phase extraction by ethanol/sodium carbonate system. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
95
|
Microbial purification of postfermentation medium after 1,3-PD production from raw glycerol. BIOMED RESEARCH INTERNATIONAL 2013; 2013:949107. [PMID: 24199204 PMCID: PMC3807725 DOI: 10.1155/2013/949107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022]
Abstract
1,3-Propanediol (1,3-PD) is an important chemical product which can be used to produce polyesters, polyether, and polyurethanes. In the process of conversion of glycerol to 1,3-PD by Clostridium large number of byproducts (butyric, acetic and lactic acid) are generated in the fermentation medium. The aim of this work was to isolate bacteria strains capable of the utilization of these byproducts. Screening of 30 bacterial strains was performed using organic acids as carbon source. Selected isolates were taxonomically characterized and identified as Alcaligenes faecalis and Bacillus licheniformis. The most active strains, Alcaligenes faecalis JP1 and Bacillus licheniformis JP19, were able to utilize organic acids almost totally. Finally, it was find out that by the use of coculture (C. butyricum DSP1 and A. faecalis JP1) increased volumetric productivity of 1,3-PD production (1.07 g/L/h) and the yield equal to 0.53 g/g were obtained in bioreactor fermentation. Moreover, the only by-product present was butyric acid in a concentration below 1 g/L.
Collapse
|
96
|
Hong YK. Effect of Alcohols and Carboxylic Acids on Extraction Characteristics for 1,3-Propanediol by Aqueous Two Phases Systems. KOREAN CHEMICAL ENGINEERING RESEARCH 2013. [DOI: 10.9713/kcer.2013.51.5.575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
97
|
Nakayama A, Yamano N, Kawasaki N, Nakayama Y. Synthesis and biodegradation of poly(2-pyrrolidone-co-ε-caprolactone)s. Polym Degrad Stab 2013. [DOI: 10.1016/j.polymdegradstab.2013.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
98
|
Gungormusler M, Gonen C, Azbar N. Effect of cell immobilization on the production of 1,3-propanediol. N Biotechnol 2013; 30:623-8. [DOI: 10.1016/j.nbt.2013.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
|
99
|
Kaur G, Srivastava AK, Chand S. Bioconversion of glycerol to 1,3-propanediol: a mathematical model-based nutrient feeding approach for high production using Clostridium diolis. BIORESOURCE TECHNOLOGY 2013; 142:82-87. [PMID: 23743422 DOI: 10.1016/j.biortech.2013.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 05/28/2023]
Abstract
1,3-Propanediol (1,3-PD) is a bifunctional organic compound of particular importance in the polymer industry for the synthesis of polyesters, polyethers and polyurethanes. Its biotechnological production from glycerol features inherent problems of nutrient limitation and inhibition(s) by substrate and product. In the present study 1,3-PD batch mathematical model developed using average batch kinetics data and independently obtained inhibition data was used to identify fresh nutrient feeding strategies (off-line on the computer) for enhanced production of 1,3-PD. Experimental implementation of one such model-based fed-batch cultivation strategy involving pseudo-steady state of substrate featured a 1,3-PD concentration of 63.5 g/L with a 1,3-PD productivity of 1.35 g/L/h which were significantly higher than batch fermentation results. This demonstrated the potential application of developed model for the design of suitable nutrient feeding strategies for high production of 1,3-PD. The methodology can also be easily adopted for other cultivations.
Collapse
Affiliation(s)
- Guneet Kaur
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | | | | |
Collapse
|
100
|
Pflügl S, Marx H, Mattanovich D, Sauer M. Genetic engineering ofLactobacillus diolivorans. FEMS Microbiol Lett 2013; 344:152-8. [DOI: 10.1111/1574-6968.12168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/22/2013] [Accepted: 04/27/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Hans Marx
- Department of Biotechnology; BOKU - VIBT University of Natural Resources and Life Sciences; Vienna; Austria
| | | | | |
Collapse
|