51
|
Beringer DX, Kroon-Batenburg LMJ. The structure of the FnI-EGF-like tandem domain of coagulation factor XII solved using SIRAS. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:94-102. [PMID: 23385745 PMCID: PMC3564606 DOI: 10.1107/s1744309113000286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 11/10/2022]
Abstract
Coagulation factor XII (FXII) is a key protein in the intrinsic coagulation and kallikrein-kinin pathways. It has been found that negative surfaces and amyloids, such as Aβ fibrils, can activate FXII. Additionally, it has been suggested that FXII simulates cells and that it plays an important role in thrombosis. To date, no structural data on FXII have been deposited, which makes it difficult to support any hypothesis on the mechanism of FXII function. The crystal structure of the FnI-EGF-like tandem domain of FXII presented here was solved using experimental phases. To determine the phases, a SIRAS approach was used with a native and a holmium chloride-soaked data set. The holmium cluster was coordinated by the C-terminal tails of two symmetry-related molecules. Another observation was that the FnI domain was much more ordered than the EGF-like domain owing to crystal packing. Furthermore, the structure shows the same domain orientation as the homologous FnI-EGF-like tandem domain of tPA. The plausibility of several proposed interactions of these domains of FXII is discussed. Based on this FXII FnI-EGF-like structure, it could be possible that FXII binding to amyloid and negatively charged surfaces is mediated via this part of FXII.
Collapse
Affiliation(s)
- D. X. Beringer
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - L. M. J. Kroon-Batenburg
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
52
|
Yau JW, Stafford AR, Liao P, Fredenburgh JC, Roberts R, Brash JL, Weitz JI. Corn trypsin inhibitor coating attenuates the prothrombotic properties of catheters in vitro and in vivo. Acta Biomater 2012; 8:4092-100. [PMID: 22824529 DOI: 10.1016/j.actbio.2012.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/21/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022]
Abstract
Catheters initiate coagulation by activating factor (f) XII, which can lead to catheter thrombosis. Fondaparinux, which only targets activated fX (fXa), is associated with more catheter thrombosis than heparin, which targets fXa and thrombin. To render catheters less thrombogenic and fondaparinux more effective, we examined whether coating catheters with corn trypsin inhibitor (CTI), which blocks fXIIa, attenuates catheter-induced clotting and promotes fondaparinux activity. Compared with unmodified catheters, CTI-coated catheters demonstrated (a) decreased adsorption of fibrinogen and fXII, (b) greater inhibition of fXIIa generated by catheter-induced autoactivation, (c) attenuated fXIIa-mediated activation of fXI and (d) longer plasma clotting times in the absence or presence of fondaparinux. In an accelerated catheter thrombosis model in rabbits, (a) the time to catheter occlusion was longer with CTI-coated catheters than with unmodified catheters and (b) an intravenous dose of fondaparinux that had no effect on the time to occlusion of unmodified catheters extended the time to occlusion of CTI-coated catheters. These findings support the concept that the prothrombotic activity of catheters reflects their capacity to activate fXII and identify CTI immobilization as a novel approach for rendering catheters and other blood-contacting medical devices less thrombogenic.
Collapse
Affiliation(s)
- Jonathan W Yau
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
53
|
Golas A, Yeh CHJ, Pitakjakpipop H, Siedlecki CA, Vogler EA. A comparison of blood factor XII autoactivation in buffer, protein cocktail, serum, and plasma solutions. Biomaterials 2012; 34:607-20. [PMID: 23117212 DOI: 10.1016/j.biomaterials.2012.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/16/2012] [Indexed: 11/18/2022]
Abstract
Activation of blood plasma coagulation in vitro by contact with material surfaces is demonstrably dependent on plasma-volume-to-activator-surface-area ratio. The only plausible explanation consistent with current understanding of coagulation-cascade biochemistry is that procoagulant stimulus arising from the activation complex of the intrinsic pathway is dependent on activator surface area. And yet, it is herein shown that activation of the blood zymogen factor XII (Hageman factor, FXII) dissolved in buffer, protein cocktail, heat-denatured serum, and FXI deficient plasma does not exhibit activator surface-area dependence. Instead, a highly-variable burst of procoagulant-enzyme yield is measured that exhibits no measurable kinetics, sensitivity to mixing, or solution-temperature dependence. Thus, FXII activation in both buffer and protein-containing solutions does not exhibit characteristics of a biochemical reaction but rather appears to be a "mechanochemical" reaction induced by FXII molecule interactions with hydrophilic activator particles that do not formally adsorb blood proteins from solution. Results of this study strongly suggest that activator surface-area dependence observed in contact activation of plasma coagulation does not solely arise at the FXII activation step of the intrinsic pathway.
Collapse
Affiliation(s)
- Avantika Golas
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
54
|
Abstract
Recent experimental and theoretical work clarifying the physical chemistry of blood-protein adsorption from aqueous-buffer solution to various kinds of surfaces is reviewed and interpreted within the context of biomaterial applications, especially toward development of cardiovascular biomaterials. The importance of this subject in biomaterials surface science is emphasized by reducing the "protein-adsorption problem" to three core questions that require quantitative answer. An overview of the protein-adsorption literature identifies some of the sources of inconsistency among many investigators participating in more than five decades of focused research. A tutorial on the fundamental biophysical chemistry of protein adsorption sets the stage for a detailed discussion of the kinetics and thermodynamics of protein adsorption, including adsorption competition between two proteins for the same adsorbent immersed in a binary-protein mixture. Both kinetics and steady-state adsorption can be rationalized using a single interpretive paradigm asserting that protein molecules partition from solution into a three-dimensional (3D) interphase separating bulk solution from the physical-adsorbent surface. Adsorbed protein collects in one-or-more adsorbed layers, depending on protein size, solution concentration, and adsorbent surface energy (water wettability). The adsorption process begins with the hydration of an adsorbent surface brought into contact with an aqueous-protein solution. Surface hydration reactions instantaneously form a thin, pseudo-2D interface between the adsorbent and protein solution. Protein molecules rapidly diffuse into this newly formed interface, creating a truly 3D interphase that inflates with arriving proteins and fills to capacity within milliseconds at mg/mL bulk-solution concentrations C(B). This inflated interphase subsequently undergoes time-dependent (minutes-to-hours) decrease in volume V(I) by expulsion of either-or-both interphase water and initially adsorbed protein. Interphase protein concentration C(I) increases as V(I) decreases, resulting in slow reduction in interfacial energetics. Steady state is governed by a net partition coefficient P=(C(I)/C(B)). In the process of occupying space within the interphase, adsorbing protein molecules must displace an equivalent volume of interphase water. Interphase water is itself associated with surface-bound water through a network of transient hydrogen bonds. Displacement of interphase water thus requires an amount of energy that depends on the adsorbent surface chemistry/energy. This "adsorption-dehydration" step is the significant free energy cost of adsorption that controls the maximum amount of protein that can be adsorbed at steady state to a unit adsorbent surface area (the adsorbent capacity). As adsorbent hydrophilicity increases, adsorbent capacity monotonically decreases because the energetic cost of surface dehydration increases, ultimately leading to no protein adsorption near an adsorbent water wettability (surface energy) characterized by a water contact angle θ→65(°). Consequently, protein does not adsorb (accumulate at interphase concentrations greater than bulk solution) to more hydrophilic adsorbents exhibiting θ<65(°). For adsorbents bearing strong Lewis acid/base chemistry such as ion-exchange resins, protein/surface interactions can be highly favorable, causing protein to adsorb in multilayers in a relatively thick interphase. A straightforward, three-component free energy relationship captures salient features of protein adsorption to all surfaces predicting that the overall free energy of protein adsorption ΔG(ads)(o) is a relatively small multiple of thermal energy for any surface chemistry (except perhaps for bioengineered surfaces bearing specific ligands for adsorbing protein) because a surface chemistry that interacts chemically with proteins must also interact with water through hydrogen bonding. In this way, water moderates protein adsorption to any surface by competing with adsorbing protein molecules. This Leading Opinion ends by proposing several changes to the protein-adsorption paradigm that might advance answers to the three core questions that frame the "protein-adsorption problem" that is so fundamental to biomaterials surface science.
Collapse
Affiliation(s)
- Erwin A Vogler
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
55
|
He Q, Gong K, Ao Q, Ma T, Yan Y, Gong Y, Zhang X. Positive charge of chitosan retards blood coagulation on chitosan films. J Biomater Appl 2011; 27:1032-45. [PMID: 22207609 DOI: 10.1177/0885328211432487] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a series of chitosan films with different protonation degrees were prepared by deacidification with NaOH aqueous or ethanol solutions. The films were then used as a model to investigate the effects of the positive charge of chitosan on blood coagulation. The results showed that the positive charge of chitosan acted as a double-edged sword, in that it promoted erythrocyte adhesion, fibrinogen adsorption, and platelet adhesion and activation, but inhibited activation of the contact system. In contrast to prevailing views, we found that the positive charge of chitosan retarded thrombin generation and blood coagulation on these films. At least two reasons were responsible for this phenomenon. First, the positive charge inhibited the contact activation, and second, the positive charge could not significantly promote the activation of non-adherent platelets in the bulk phase during the early stage of coagulation. The present findings improve our understanding of the events leading to blood coagulation on chitosan films, which will be useful for the future development of novel chitosan-based hemostatic devices.
Collapse
Affiliation(s)
- Qing He
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
56
|
Mechanism of catheter thrombosis: comparison of the antithrombotic activities of fondaparinux, enoxaparin, and heparin in vitro and in vivo. Blood 2011; 118:6667-74. [DOI: 10.1182/blood-2011-07-364141] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In patients undergoing percutaneous coronary intervention, catheter thrombosis is more frequent with fondaparinux than heparin. This study was undertaken to identify the responsible mechanism and to develop strategies for its prevention. Percutaneous coronary intervention catheter segments shortened plasma clotting times from 971 ± 92 to 352 ± 22 seconds. This activity is factor XII (fXII) dependent because it was attenuated with corn trypsin inhibitor and was abolished in fXII-deficient plasma. Heparin and enoxaparin blocked catheter-induced clotting at 0.5 and 2 anti-Xa U/mL, respectively, whereas fondaparinux had no effect. Addition of fondaparinux to bivalirudin or low-dose heparin attenuated catheter-induced clotting more than either agent alone. In a rabbit model of catheter thrombosis, a 70 anti-Xa U/kg intravenous bolus of heparin or enoxaparin prolonged the time to catheter occlusion by 4.6- and 2.5-fold, respectively, compared with saline, whereas the same dose of fondaparinux had no effect. Although 15 anti-Xa U/kg heparin had no effect on its own, when given in conjunction with 70 anti-Xa U/kg fondaparinux, the time to catheter occlusion was prolonged 2.9-fold. These findings indicate that (1) catheters are prothrombotic because they trigger fXII activation, and (2) fondaparinux does not prevent catheter-induced clotting unless supplemented with low-dose heparin or bivalirudin.
Collapse
|
57
|
Alibeik S, Zhu S, Yau JW, Weitz JI, Brash JL. Surface modification with polyethylene glycol-corn trypsin inhibitor conjugate to inhibit the contact factor pathway on blood-contacting surfaces. Acta Biomater 2011; 7:4177-86. [PMID: 21827874 DOI: 10.1016/j.actbio.2011.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/25/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Blood contacting surfaces bind plasma proteins and trigger coagulation by activating factor XII (FXII). The objective of this work was to develop blood contacting surfaces having the dual properties of protein resistance and inhibition of coagulation. Gold was used as a model substrate because it is amenable to facile modification using gold-thiol chemistry and to detailed surface characterization. The gold was modified with both polyethylene glycol (PEG) and corn trypsin inhibitor (CTI), a potent and specific inhibitor of activated FXII (FXIIa). Two methods of surface modification were developed; sequential and direct. In the sequential method PEG was first chemisorbed on gold; CTI was then attached to the PEG. In the direct method a conjugate of PEG and CTI was first prepared; the conjugate was then immobilized on gold. The surfaces were characterized by water contact angle and XPS. Biointeractions with the modified surfaces were assessed by measuring fibrinogen adsorption from buffer and plasma and by immunoblot analysis of eluted proteins after plasma exposure. Inhibition of FXIIa, autoactivation of FXII, and clotting times of plasma in contact with the surfaces were also measured. Both the sequential and direct surfaces showed reduced protein adsorption, increased FXIIa inhibition and longer clotting times compared with controls. Although the CTI density was lower on surfaces prepared using the sequential method, surfaces so prepared exhibited greater CTI activity than those generated by the direct method. It is concluded that the activity of immobilized PEG-CTI depends on the method of attachment and that immobilized CTI may be useful in rendering biomaterials more blood compatible.
Collapse
|
58
|
Abstract
AbstractThe aim of this study was to develop a method of manufacturing versatile hydrophobic coatings for polymers. Authors present a simple technique of polyurethane (PU) surface modification with covalently attached silicones (PDMS) or fluorocarbons (PFC). Diisocyanates were applied as linker molecules. The obtained coatings were characterized using spectroscopic analysis (FTIR), scanning acoustic microscopy (SAM) and water contact angle measurements. FTIR analysis revealed high efficiency of grafting reaction. The results of contact angle measurement indicated significant increase of hydrophobicity — from 66° (unmodified PU) to 113° (PU grafted with PDMS) and 118° (PU grafted with PFC). Acoustic microscopy analysis confirmed satisfactory homogeneity and smoothness of the fabricated layers. In vitro cell tests revealed non-adherent properties of the surfaces. Both, MTT assay and fluorescence staining confirmed non-cytotoxicity of the coatings, which makes them potential candidates for use in biomedical applications.
Collapse
|
59
|
Josh Yeh CH, Dimachkie ZO, Golas A, Cheng A, Parhi P, Vogler EA. Contact activation of blood plasma and factor XII by ion-exchange resins. Biomaterials 2011; 33:9-19. [PMID: 21982294 DOI: 10.1016/j.biomaterials.2011.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
Abstract
Sepharose ion-exchange particles bearing strong Lewis acid/base functional groups (sulfopropyl, carboxymethyl, quaternary ammonium, dimethyl aminoethyl, and iminodiacetic acid) exhibiting high plasma protein adsorbent capacities are shown to be more efficient activators of blood factor XII in neat-buffer solution than either hydrophilic clean-glass particles or hydrophobic octyl sepharose particles (FXII (activator)→(surface) FXIIa; a.k.a autoactivation, where FXII is the zymogen and FXIIa is a procoagulant protease). In sharp contrast to the clean-glass standard of comparison, ion-exchange activators are shown to be inefficient activators of blood plasma coagulation. These contrasting activation properties are proposed to be due to the moderating effect of plasma-protein adsorption on plasma coagulation. Efficient adsorption of blood-plasma proteins unrelated to the coagulation cascade impedes FXII contacts with ion-exchange particles immersed in plasma, reducing autoactivation, and causing sluggish plasma coagulation. By contrast, plasma proteins do not adsorb to hydrophilic clean glass and efficient autoactivation leads directly to efficient activation of plasma coagulation. It is also shown that competitive-protein adsorption can displace FXIIa adsorbed to the surface of ion-exchange resins. As a consequence of highly-efficient autoactivation and FXIIa displacement by plasma proteins, ion-exchange particles are slightly more efficient activators of plasma coagulation than hydrophobic octyl sepharose particles that do not bear strong Lewis acid/base surface functionalities but to which plasma proteins adsorb efficiently. Plasma proteins thus play a dual role in moderating contact activation of the plasma coagulation cascade. The principal role is impeding FXII contact with activating surfaces, but this same effect can displace FXIIa from an activating surface into solution where the protease can potentiate subsequent steps of the plasma coagulation cascade.
Collapse
Affiliation(s)
- Chyi-Huey Josh Yeh
- Departments of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
60
|
Golas A, Yeh CHJ, Siedlecki CA, Vogler EA. Amidolytic, procoagulant, and activation-suppressing proteins produced by contact activation of blood factor XII in buffer solution. Biomaterials 2011; 32:9747-57. [PMID: 21955686 DOI: 10.1016/j.biomaterials.2011.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/07/2011] [Indexed: 11/27/2022]
Abstract
The relative proportions of enzymes with amidolytic or procoagulant activity produced by contact activation of the blood zymogen factor XII (FXII, Hageman factor) in buffer solution depends on activator surface chemistry/energy. As a consequence, chromogenic assay of amidolytic activity (cleavage of amino acid bonds in s-2302 chromogen) does not correlate with the traditional plasma coagulation time assay for procoagulant activity (protease activity inducing clotting of blood plasma). Amidolytic activity did not vary significantly with activator particle surface energy, herein measured as water adhesion tension τ(o)=γ(lv)(o)cosθ(a) ; where γ(lv)(o) is pure buffer interfacial tension and θ(a) is the advancing contact angle. By contrast, procoagulant activity varied as a parabolic-like function of τ(o), high at both hydrophobic and hydrophilic extremes of activator surface energy and falling through a broad minimum within a 20<τ(o)<40 mJ/m(2) (55°<θ(a) < 75°) range, corroborating and expanding previously-published work. It is inferred from these functional assays that an unknown number of protein fragments are produced by contact activation of FXII (a.k.a. autoactivation) rather than just αFXIIa and βFXIIa as popularly believed. Autoactivation products produced by activator particles within the 20<τ(o)<40 mJ/m(2) (55°<θ(a) < 75°) surface-energy range suppresses production of procoagulant enzymes by activators selected from the hydrophobic or hydrophilic surface-energy extremes through as-yet unknown biophysical chemistry. Suppression proteins may be responsible for the experimentally-observed autoinhibition of the autoactivation reaction.
Collapse
Affiliation(s)
- Avantika Golas
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
61
|
Kilinç E, Van Oerle R, Borissoff JI, Oschatz C, Gerlofs-Nijland ME, Janssen NA, Cassee FR, Sandström T, Renné T, Ten Cate H, Spronk HMH. Factor XII activation is essential to sustain the procoagulant effects of particulate matter. J Thromb Haemost 2011; 9:1359-67. [PMID: 21481175 DOI: 10.1111/j.1538-7836.2011.04280.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Particulate matter (PM) is a key component of ambient air pollution and has been associated with an increased risk of thrombotic events and mortality. The underlying mechanisms remain unclear. OBJECTIVES To study the mechanisms of PM-driven procoagulant activity in human plasma and to investigate mainly, the coagulation driven by ultrafine particles (UFPs; < 0.1 μm) in genetically modified mice. METHODS Thrombin generation in response to PM of different sizes was assessed in normal human platelet-poor plasma, as well as in plasmas deficient in the intrinsic pathway proteases factors XII (FXII) or XI (FXI). In addition, UFPs were intratracheally instilled in wild-type (WT) and FXII-deficient (FXII(-/-) ) mice and plasma thrombin generation was analyzed in plasma from treated mice at 4 and 20 h post-exposure. RESULTS In normal human plasma, thrombin generation was enhanced in the presence of PM, whereas PM-driven thrombin formation was completely abolished in FXII- and FXI-deficient plasma. UFPs induced a transient increase in tissue factor (TF)-driven thrombin formation at 4 h post-instillation in WT mice compared with saline instillation. Intratracheal instillation of UFPs resulted in a procoagulant response in WT mice plasma at 20 h, whereas it was entirely suppressed in FXII(-/-) mice. CONCLUSIONS Overall, the data suggest that PM promotes its early procoagulant actions mostly through the TF-driven extrinsic pathway of coagulation, whereas PM-driven long lasting thrombogenic effects are predominantly mediated via formation of activated FXII. Hence, FXII-driven thrombin formation may be relevant to an enhanced thrombotic susceptibility upon chronic exposure to PM in humans.
Collapse
Affiliation(s)
- E Kilinç
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011; 32:6692-709. [PMID: 21715002 DOI: 10.1016/j.biomaterials.2011.05.078] [Citation(s) in RCA: 903] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/26/2011] [Indexed: 12/11/2022]
Abstract
A key for long-term survival and function of biomaterials is that they do not elicit a detrimental immune response. As biomaterials can have profound impacts on the host immune response the concept emerged to design biomaterials that are able to trigger desired immunological outcomes and thus support the healing process. However, engineering such biomaterials requires an in-depth understanding of the host inflammatory and wound healing response to implanted materials. One focus of this review is to outline the up-to-date knowledge on immune responses to biomaterials. Understanding the complex interactions of host response and material implants reveals the need for and also the potential of "immunomodulating" biomaterials. Based on this knowledge, we discuss strategies of triggering appropriate immune responses by functional biomaterials and highlight recent approaches of biomaterials that mimic the physiological extracellular matrix and modify cellular immune responses.
Collapse
Affiliation(s)
- Sandra Franz
- Department of Dermatology, Venerology and Allergology, University Leipzig, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
63
|
Abstract
A minimum in the biological response to materials that is observed to occur within a narrow surface energy range is related to the properties of water at these biology-contacting surfaces. Wetting energetics are calculated using a published theory from which it is further estimated that water molecules bind to these special surfaces through a single hydrogen bond, leaving three other hydrogen bonds to interact with proximal water molecules. It is concluded that, at this Goldilocks Surface, the local chemical environment of surface-bound water is nearly identical to that experienced in bulk water; neither deprived of hydrogen bond opportunities, as it is in contact with a more hydrophobic surface, nor excessively hydrogen bonded to a more hydrophilic surface. A minimum in the biological response occurs because water vicinal (near) to the Goldilocks Surface is not chemically different than bulk water. A more precise definition of the relative terms hydrophobic and hydrophilic for use in biomaterials becomes evident from calculations: >1.3 kJ/mole-of-surface-sites is expended in wetting a hydrophilic surface whereas <1.3 kJ/mole-of-surface-sites is expended in wetting hydrophobic surfaces; hydrophilic surfaces wet with >1 hydrogen bond per water molecule whereas hydrophobic surfaces wet with <1 hydrogen bond per water molecule.
Collapse
Affiliation(s)
- Erwin A Vogler
- Departments of Materials Science and Engineering and Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
64
|
Chong MSK, Teoh SH, Teo EY, Zhang ZY, Lee CN, Koh S, Choolani M, Chan J. Beyond Cell Capture: Antibody Conjugation Improves Hemocompatibility for Vascular Tissue Engineering Applications. Tissue Eng Part A 2010; 16:2485-95. [DOI: 10.1089/ten.tea.2009.0680] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mark Seow Khoon Chong
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Mechanical Engineering, Centre for Biomedical Materials Applications and Technology (BIOMAT), National University of Singapore, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Swee-Hin Teoh
- Department of Mechanical Engineering, Centre for Biomedical Materials Applications and Technology (BIOMAT), National University of Singapore, Singapore, Singapore
| | - Erin Yiling Teo
- Department of Mechanical Engineering, Centre for Biomedical Materials Applications and Technology (BIOMAT), National University of Singapore, Singapore, Singapore
| | - Zhi-Yong Zhang
- Department of Mechanical Engineering, Centre for Biomedical Materials Applications and Technology (BIOMAT), National University of Singapore, Singapore, Singapore
| | - Chueng Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen Koh
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jerry Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
65
|
Faxälv L, Ekblad T, Liedberg B, Lindahl TL. Blood compatibility of photografted hydrogel coatings. Acta Biomater 2010; 6:2599-608. [PMID: 20045090 DOI: 10.1016/j.actbio.2009.12.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 10/20/2022]
Abstract
In this work, we have evaluated the haemocompatibility of different surface modifications, intended for biomaterials and bioanalytical applications. Polystyrene slides were coated with thin hydrogel films by self-initiated photografting and photopolymerization (SIPGP) of four different monomers. The hydrogel surface modifications were thoroughly characterized and tested for their protein resistance and ability to resist platelet adhesion and activation of the coagulation system. There was very little protein adsorption from human plasma on the hydrogels prepared from poly(ethylene glycol) methacrylate and 2-hydroxyethyl methacrylate. Platelet adhesion tests performed under both static and flow conditions showed that these coatings also demonstrated very high resistance towards platelet adhesion. A small amount of platelets were found to adhere to hydrogels formed from ethylene glycol methyl ether methacrylate and 2-carboxyethyl methacrylate. The polystyrene substrates themselves facilitated large amounts of platelet adhesion under both static and flow conditions. Utilizing a novel setup for imaging of coagulation, it was confirmed that none of the hydrogel surfaces activated the coagulation system to any great extent. We suggest that this simple fabrication method can be used to produce hydrogel coatings with unusually high blood compatibility, suitable for demanding biomaterials applications.
Collapse
|
66
|
Fischer M, Sperling C, Werner C. Synergistic effect of hydrophobic and anionic surface groups triggers blood coagulation in vitro. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:931-937. [PMID: 19851837 DOI: 10.1007/s10856-009-3912-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/09/2009] [Indexed: 05/28/2023]
Abstract
Biomaterial induced coagulation encompasses plasmatic and cellular processes. The functional loss of biomedical devices possibly resulting from these thrombotic reactions motivates the need for a better understanding of processes occurring at blood-biomaterial interfaces. Well defined model surfaces providing specific chemical-physical properties (self assembled monolayers (SAMs)) displaying hydrophobic or/and acidic terminal groups were used to uncover initial mechanisms of biomaterial induced coagulation. We investigated the influence of electrical charge and wettability on platelet- and contact activation, the two main actors of blood coagulation, which are often considered as separate mechanisms in biomaterials research. Our results show a dependence of contact activation on acidic surface groups and a correlation of platelet adhesion to surface hydrophobicity. Clot formation resulting from the interplay of blood platelets and contact activation was only found on surfaces combining both acidic and hydrophobic surface groups but not on monolayers displaying extreme hydrophobic/acidic properties.
Collapse
Affiliation(s)
- Marion Fischer
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden, Dresden, Germany.
| | | | | |
Collapse
|
67
|
Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 2010; 6:1125-30. [PMID: 19800035 DOI: 10.1016/j.actbio.2009.09.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/19/2009] [Accepted: 09/24/2009] [Indexed: 11/20/2022]
Abstract
The search for a functional, small diameter (<5mm) vascular graft has been ongoing for over 30 years, but yet there is no consistently reliable synthetic graft. The primary mechanisms of graft failure are intimal hyperplasia, poor blood flow and surface thrombogenicity. Bacterial cellulose (BC) became therefore a proposed new biosynthetic vascular graft material. Since conventional methods are not suited for coagulation measurements on BC, we have adapted the automated calibrated thrombin generation method for measurements of biomaterial-induced coagulation of BC as compared with clinically used graft materials i.e., expanded poly(tetrafluoroethylene) (ePTFE) and poly(ethyleneterephtalat) (PET). We have also visualized the coagulation propagation at the material surfaces. Thrombin generation experiments revealed dramatic differences between the materials tested. Both ePTFE and BC were found to generate longer lag times and ttpeak values than PET. Most importantly, BC was found to generate the lowest "peak", indicating a slower coagulation process at the surface. These results are also supported by the measurements of factor XIIa generation and analysis of surface coagulation times, which were detected in the following increasing order (mean + or - SD): PET (27 + or - 8 min)<BC (46 + or - 9 min)<ePTFE (61 + or - 21 min). Real-time measurement of coagulation seems to have the potential for becoming a powerful tool for evaluation of biomaterials for blood-contacting devices.
Collapse
|
68
|
Golas A, Parhi P, Dimachkie ZO, Siedlecki CA, Vogler EA. Surface-energy dependent contact activation of blood factor XII. Biomaterials 2009; 31:1068-79. [PMID: 19892397 DOI: 10.1016/j.biomaterials.2009.10.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/15/2009] [Indexed: 10/20/2022]
Abstract
Contact activation of blood factor XII (FXII, Hageman factor) in neat-buffer solution exhibits a parabolic profile when scaled as a function of silanized-glass-particle activator surface energy (measured as advancing water adhesion tension tau(a)(o)=gamma(lv)(o)cos theta in dyne/cm, where gamma(lv)(o) is water interfacial tension in dyne/cm and theta is the advancing contact angle). Nearly equal activation is observed at the extremes of activator water-wetting properties -36<tau(a)(o)<72 dyne/cm (0 degrees <or=theta<120 degrees), falling sharply through a broad minimum within the 20<tau(a)(o)<40 dyne/cm (55 degrees <theta<75 degrees) range over which activation yield (putatively FXIIa) rises just above detection limits. Activation is very rapid upon contact with all activators tested and did not significantly vary over 30 min of continuous FXII-procoagulant contact. Results suggest that materials falling within the 20<tau(a)(o)<40 dyne/cm surface-energy range should exhibit minimal activation of blood-plasma coagulation through the intrinsic pathway. Surface chemistries falling within this range are, however, a perplexingly difficult target for surface engineering because of the critical balance that must be struck between hydrophobicity and hydrophilicity. Results are interpreted within the context of blood plasma coagulation and the role of water and proteins at procoagulant surfaces.
Collapse
Affiliation(s)
- Avantika Golas
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
69
|
Barnthip N, Parhi P, Golas A, Vogler EA. Volumetric interpretation of protein adsorption: kinetics of protein-adsorption competition from binary solution. Biomaterials 2009; 30:6495-513. [PMID: 19751950 PMCID: PMC2762548 DOI: 10.1016/j.biomaterials.2009.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/06/2009] [Indexed: 11/24/2022]
Abstract
The standard solution-depletion method is implemented with SDS-gel electrophoresis as a multiplexing, separation-and-quantification tool to measure competition between two proteins (i and j) for adsorption to the same hydrophobic adsorbent particles (either octyl sepharose or silanized glass) immersed in binary-protein solutions. Adsorption kinetics reveals an unanticipated slow protein-size-dependent competition that controls steady-state adsorption selectivity. Two sequential pseudo-steady-state adsorption regimes (State 1 and State 2) are frequently observed depending on i, j solution concentrations. State 1 and State 2 are connected by a smooth transition, giving rise to sigmoidally-shaped adsorption-kinetic profiles with a downward inflection near 60 min of solution/adsorbent contact. Mass ratio of adsorbed i, j proteins (m(i)/m(j)) remains nearly constant between States 1 and 2, even though both m(i) and m(j) decrease in the transition between states. State 2 is shown to be stable for 24 h of continuous-adsorbent contact with stagnant solution whereas State 2 is eliminated by continuous mixing of adsorbent with solution. In sharp contrast to binary-competition results, adsorption to hydrophobic adsorbent particles from single-protein solutions (pure i or j) exhibits no detectable kinetics within the timeframe of experiment from either stagnant or continuously mixed solution, quickly achieving a single steady-state value in proportion to solution concentration. Comparison of binary competition between dissimilarly-sized protein pairs chosen to span a broad molecular-weight (MW) range demonstrates that selectivity between i and j scales with MW ratio that is proportional to protein-volume ratio (ubiquitin, Ub, MW=10.7 kDa; human serum albumin, HSA, MW=66.3 kDa; prothrombin, FII, 72 kDa; immunoglobulin G, IgG, MW=160 kDa; fibrinogen, Fib, MW=341 kDa). Results are interpreted in terms of a kinetic model of adsorption that has protein molecules rapidly diffusing into an inflating interphase that is spontaneously formed by bringing a protein solution into contact with a physical surface (State 1). State 2 follows by rearrangement of proteins within this interphase to achieve the maximum interphase concentration (dictated by energetics of interphase dehydration) within the thinnest (lowest volume) interphase possible by ejection of interphase water and initially-adsorbed proteins. Implications for understanding biocompatibility are discussed using a computational example relevant to the problem of blood-plasma coagulation.
Collapse
Affiliation(s)
- Naris Barnthip
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Purnendu Parhi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
| | - Avantika Golas
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802
| | - Erwin A. Vogler
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
70
|
Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials 2009; 30:4447-56. [DOI: 10.1016/j.biomaterials.2009.05.044] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/10/2009] [Indexed: 11/17/2022]
|
71
|
Chatterjee K, Guo Z, Vogler EA, Siedlecki CA. Contributions of contact activation pathways of coagulation factor XII in plasma. J Biomed Mater Res A 2009; 90:27-34. [PMID: 18481791 DOI: 10.1002/jbm.a.32076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation of human blood plasma coagulation by contact with hydrophilic or hydrophobic surfaces (procoagulants) is dominated by kallikrein (Kal)-mediated activation of the blood zymogen FXII (Hageman Factor). Mathematical modeling of prekallikrein (PK)-deficient platelet-poor plasma (d(PK)PPP) and PK-reconstituted d(PK)PPP (Rd(PK)PPP) coagulation shows that autoactivation of FXII (FXII-->[surface]FXII) produces no more than about 25% of the total FXIIa produced by the intrinsic pathway. Autoactivation and reciprocal-activation increase in the same proportion with procoagulant surface energy (water-wettability), whereas total amount of FXIIa produced per-unit-area procoagulant remains roughly constant for any particular procoagulant. These results suggest that procoagulant surfaces initiate the intrinsic cascade by producing a bolus of FXIIa in proportion to surface energy or surface area but play no additional role in subsequent molecular events in the cascade. Results further suggest that reciprocal-activation occurs in proportion to the amount of FXIIa produced by the initiating autoactivation step.
Collapse
Affiliation(s)
- Kaushik Chatterjee
- Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
72
|
Le Clair S, Nguyen K, Chen Z. Sum Frequency Generation Studies on Bioadhesion: Elucidating the Molecular Structure of Proteins at Interfaces. THE JOURNAL OF ADHESION 2009; 85:484-511. [PMID: 20625467 PMCID: PMC2898208 DOI: 10.1080/00218460902996374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The study of bioadhesion is significant to applications in a variety of scientific fields. Techniques that are surface sensitive need to be utilized to examine these kinds of systems because bioadhesion occurs at the interface between two surfaces. Recently, Sum Frequency Generation (SFG) has been applied to investigate different bioadhesive processes because of its intrinsic surface specificity, excellent sensitivity and its ability to perform experiments in situ. SFG studies on the bioadhesion of fibrinogen, factor XII and mefp-3 on various surfaces will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Zhan Chen
- Department of Chemistry, 930 North University Avenue, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
73
|
Chatterjee K, Thornton JL, Bauer JW, Vogler EA, Siedlecki CA. Moderation of prekallkrein-factor XII interactions in surface activation of coagulation by protein-adsorption competition. Biomaterials 2009; 30:4915-20. [PMID: 19552950 DOI: 10.1016/j.biomaterials.2009.05.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 05/30/2009] [Indexed: 10/20/2022]
Abstract
Traditional biochemistry of contact activation of blood coagulation suggesting that anionic hydrophilic surfaces are specific activators of the cascade is inconsistent with known trends in protein adsorption. To investigate contact activation reactions, a chromogenic assay was used to measure prekallkrein (PK) hydrolysis to kallikrein (Kal) by activated factor XII (FXIIa) at test hydrophilic (clean glass) and hydrophobic (silanized glass) surfaces in the presence of bovine serum albumin (BSA). Hydrolysis of PK by FXIIa is detected after contact of the zymogen FXII with a test hydrophobic surface only if putatively-adsorbed FXIIa is competitively displaced by BSA. By contrast, FXIIa activity is detected spontaneously following FXII activation by a hydrophilic surface and requires no adsorption displacement. These results (i) show that an anionic hydrophilic surface is not a necessary cofactor for FXIIa-mediated hydrolysis of PK, (ii) indicate that PK hydrolysis does not need to occur by an activation complex assembled directly on an anionic, activating surface, (iii) confirms that contact activation of FXII (autoactivation) is not specific to anionic hydrophilic surfaces, and (iv) demonstrates that protein-adsorption competition is an essential feature that must be included in any comprehensive mechanism of surface-induced blood coagulation.
Collapse
Affiliation(s)
- Kaushik Chatterjee
- Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
74
|
Vogler EA, Siedlecki CA. Contact activation of blood-plasma coagulation. Biomaterials 2009; 30:1857-69. [PMID: 19168215 DOI: 10.1016/j.biomaterials.2008.12.041] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 12/16/2008] [Indexed: 12/01/2022]
Abstract
This opinion identifies inconsistencies in the generally-accepted surface biophysics involved in contact activation of blood-plasma coagulation, reviews recent experimental work aimed at resolving inconsistencies, and concludes that this standard paradigm requires substantial revision to accommodate new experimental observations. Foremost among these new findings is that surface-catalyzed conversion of the blood zymogen factor XII (FXII, Hageman factor) to the enzyme FXIIa (FXII [surface] --> FXIIa, a.k.a. autoactivation) is not specific for anionic surfaces, as proposed by the standard paradigm. Furthermore, it is found that surface activation is moderated by the protein composition of the fluid phase in which FXII autoactivation occurs by what appears to be a protein-adsorption-competition effect. Both of these findings argue against the standard view that contact activation of plasma coagulation is potentiated by the assembly of activation-complex proteins (FXII, FXI, prekallikrein, and high-molecular weight kininogen) directly onto activating surfaces (procoagulants) through specific protein/surface interactions. These new findings supplement the observation that adsorption behavior of FXII and FXIIa is not remarkably different from a wide variety of other blood proteins surveyed. Similarity in adsorption properties further undermines the idea that FXII and/or FXIIa are distinguished from other blood proteins by unusual adsorption properties resulting in chemically-specific interactions with activating anionic surfaces. IMPACT STATEMENT: This review shows that the consensus biochemical mechanism of contact activation of blood-plasma coagulation that has long served as a rationale for poor hemocompatibility is an inadequate basis for surface engineering of advanced cardiovascular biomaterials.
Collapse
Affiliation(s)
- Erwin A Vogler
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
75
|
Baker SE, Sawvel AM, Fan J, Shi Q, Strandwitz N, Stucky GD. Blood clot initiation by mesocellular foams: dependence on nanopore size and enzyme immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:14254-14260. [PMID: 19053630 DOI: 10.1021/la802804z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Porous silica materials are attractive for hemorrhage control because of their blood clot promoting surface chemistry, the wide variety of surface topologies and porous structures that can be created, and the potential ability to achieve high loading of therapeutic proteins within the silica support. We show that silica cell-window size variation in the nanometers to tens of nanometers range greatly affects the rate at which blood clots are formed in human plasma, indicating that window sizes in this size range directly impact the accessibility and diffusion of clotting-promoting proteins to and from the interior surfaces and pore volume of mesocellular foams (MCFs). These studies point toward a critical window size at which the clotting speed is minimized and serve as a model for the design of more effective wound-dressing materials. We demonstrate that the clotting times of plasma exposed to MCF materials are dramatically reduced by immobilizing thrombin in the pores of the MCF, validating the utility of enzyme-immobilized mesoporous silicas in biomedical applications.
Collapse
Affiliation(s)
- Sarah E Baker
- Department of Chemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | |
Collapse
|
76
|
Barnthip N, Noh H, Leibner E, Vogler EA. Volumetric interpretation of protein adsorption: kinetic consequences of a slowly-concentrating interphase. Biomaterials 2008; 29:3062-74. [PMID: 18442850 DOI: 10.1016/j.biomaterials.2008.03.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 03/26/2008] [Indexed: 10/22/2022]
Abstract
Time-dependent energetics of blood-protein adsorption are interpreted in terms of a slowly-concentrating three-dimensional interphase volume initially formed by rapid diffusion of protein molecules into an interfacial region spontaneously formed by bringing a protein solution into contact with a physical surface. This modification of standard adsorption theory is motivated by the experimental observation that interfacial tensions of protein-containing solutions decrease slowly over the first hour to a steady-state value while, over this same period, the total adsorbed protein mass is constant (for lysozyme, 15 kDa; alpha-amylase, 51 KDa; albumin, 66 kDa; prothrombin, 72 kDa; IgG, 160 kDa; fibrinogen, 341 kDa studied in this work). These seemingly divergent observations are rationalized by the fact that interfacial energetics (tensions) are explicit functions of solute chemical potential (concentration), not adsorbed mass. Hence, rates of interfacial tension change parallel a slow interphase-concentration effect whereas solution depletion detects a constant interphase composition within the timeframe of experiment. A straightforward mathematical model approximating the perceived physical situation leads to an analytic formulation that is used to compute time-varying interphase volume and protein concentration from experimentally-measured interfacial tensions. Derivation from the fundamental thermodynamic adsorption equation verifies that protein adsorption from dilute solution is controlled by a partition coefficient at equilibrium, as is observed experimentally at steady state. Implications of the alternative interpretation of adsorption kinetics on biomaterials and biocompatibility are discussed.
Collapse
Affiliation(s)
- Naris Barnthip
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | |
Collapse
|
77
|
Faxälv L, Tengvall P, Lindahl TL. Imaging of blood plasma coagulation and its propagation at surfaces. J Biomed Mater Res A 2008; 85:1129-34. [PMID: 17907239 DOI: 10.1002/jbm.a.31529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new method utilizing image capture and processing was developed for the analysis of blood plasma coagulation at surfaces. The coagulation was detected in a cuvette by time-lapse image capture of light scattering from the developing fibrin network. By image processing and computer analysis of the captured image data, both early detection of coagulation at the surface and the propagation phase of coagulation could be measured in the same experiment. It is possible to use both platelet-rich plasma (PRP) and platelet-free plasma (PFP) with the method, and thereby study the platelet contribution to both surface coagulation and propagation of coagulation. Two well-known model surfaces, hydrophilic and hydrophobic glass, were used in combination with PRP and PFP to illustrate the method. Hydrophilic glass activated coagulation significantly faster (PRP: 7.0 +/- 1.7 min, PFP: 5.9 +/- 1.2 min, n= 16) than hydrophobic glass (PRP: 50 +/- 14 min, PFP: 65 +/- 32 min, n = 16) in both PRP and PFP. Hydrophilic surfaces showed a faster initial propagation of coagulation adjacent to the surface (mean velocity: 0.14 +/- 0.05 mm/ minute) compared with the propagation observed further out from the surface (mean velocity: 0.05 +/- 0.01 mm/min). The method is very flexible and can be suitable for screening hemocompatibility of biomaterials.
Collapse
Affiliation(s)
- Lars Faxälv
- Department of Clinical Chemistry, Laboratory Medicine, University Hospital, SE-581 85 Linköping, Sweden.
| | | | | |
Collapse
|
78
|
Zhuo R, Siedlecki CA, Vogler EA. Competitive-protein adsorption in contact activation of blood factor XII. Biomaterials 2007; 28:4355-69. [PMID: 17644174 PMCID: PMC2705829 DOI: 10.1016/j.biomaterials.2007.06.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Accepted: 06/18/2007] [Indexed: 11/16/2022]
Abstract
Contact activation of blood factor XII (FXII, Hageman factor) is moderated by the protein composition of the fluid phase in which FXII is dissolved. Solution yield of FXIIa arising from FXII contact with hydrophilic activating particles (fully water-wettable glass) suspended in a protein cocktail is shown to be significantly greater than that obtained under corresponding activation conditions in buffer solutions containing only FXII. By contrast, solution yield of FXIIa arising from FXII contact with hydrophobic particles (silanized glass) suspended in protein cocktail is sharply lower than that obtained in buffer. This confirms that contact activation is not specific to anionic hydrophilic surfaces as proposed by the accepted biochemistry of surface activation. Rather, contact activation in the presence of proteins unrelated to the plasma coagulation cascade leads to an apparent specificity for hydrophilic surfaces that is actually due to a relative diminution of activation at hydrophobic surfaces and an enhancement at hydrophilic surfaces. Furthermore, the rate of FXIIa accumulation in whole-plasma and buffer solution is found to decrease with time in the continuous presence of activating surfaces, leading to a steady-state FXIIa yield dependent on the initial FXII solution concentration for both hydrophilic and hydrophobic procoagulant particles suspended in either plasma, protein cocktail, or buffer. These results strongly suggest that activation competes with an autoinhibition reaction in which FXIIa itself inhibits FXII-->FXIIa. Experimental results are modeled using a reaction scheme invoking FXII activation and autoinhibition linked to protein adsorption to procoagulant surfaces, where FXII activation is presumed to proceed by either autoactivation (FXII-->surface-->FXIIa) and autohydrolysis (FXII-->FXIIa-->2FXIIa) in buffer solution or autoactivation and reciprocal activation (kallikrein-mediated hydrolysis) in plasma. FXII adsorption competition with other proteins in the fluid phase is proposed to affect the balance of activation and autoinhibition, leading to the observed moderation of FXIIa yield.
Collapse
Affiliation(s)
- Rui Zhuo
- Department of Bioengineering, University Park, PA 16802
| | - Christopher A. Siedlecki
- Department of Bioengineering, University Park, PA 16802
- Department of Surgery, Pennsylvania State University College of Medicine, Biomedical Engineering Institute, Hershey, PA 17033
| | - Erwin A. Vogler
- Department of Bioengineering, University Park, PA 16802
- Department of Materials Science and Engineering, University Park, PA 16802
- Author to whom correspondence should be addressed:
| |
Collapse
|
79
|
Chatterjee K, Vogler EA, Siedlecki CA. Procoagulant activity of surface-immobilized Hageman factor. Biomaterials 2006; 27:5643-50. [PMID: 16905185 DOI: 10.1016/j.biomaterials.2006.07.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 07/24/2006] [Indexed: 11/30/2022]
Abstract
Procoagulant activity of surface-immobilized coagulation factor XIIa (activated Hageman factor) is reported. Activity of FXIIa immobilized onto the surfaces of three silanized-glass procoagulants spanning a wide range of wettability was assayed in normal and FXII-deficient plasmas. Previously published mathematical models were used to characterize the procoagulant activity of protein-immobilized materials and soluble enzymes. Results show that FXIIa activity is unrelated to underlying procoagulant surface chemistry and is similar to soluble FXIIa activity. The uninfluential role of the surface on FXIIa suggests that the solid surface activates FXII in biomaterial-induced blood coagulation but is not otherwise involved in FXIIa activity as described by the classical mechanism.
Collapse
Affiliation(s)
- Kaushik Chatterjee
- Department of Bioengineering, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
80
|
Zhuo R, Vogler EA. Practical application of a chromogenic FXIIa assay. Biomaterials 2006; 27:4840-5. [PMID: 16765435 DOI: 10.1016/j.biomaterials.2006.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/10/2006] [Indexed: 11/17/2022]
Abstract
Autohydrolysis of blood factor XII (FXII+FXIIa-->2FXIIa) is found to be a facile reaction in neat-buffer buffer solutions of FXII but an insignificant reaction in the presence of plasma proteins. Autohydrolysis causes a chromogenic assay for FXIIa in buffer solution to strongly deviate from the traditional plasma-coagulation assay. Autohydrolysis can be accommodated by performing chromogenic detection of FXIIa as a rate assay in swamping concentrations of FXII. Rate-assay results performed in this way are shown to be in analytical agreement with the plasma-coagulation assay. Autohydrolysis can be used as a means of amplifying FXIIa produced by contacting neat-buffer solutions of FXII with biomaterials, suggesting a route to highly sensitive measurement of biomaterial hemocompatibility.
Collapse
Affiliation(s)
- Rui Zhuo
- Department of Bioengineering, University Park, PA 16802, USA
| | | |
Collapse
|