51
|
Angelova A, Angelov B, Mutafchieva R, Lesieur S. Biocompatible Mesoporous and Soft Nanoarchitectures. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0143-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
52
|
Bye N, Hutt OE, Hinton TM, Acharya DP, Waddington LJ, Moffat BA, Wright DK, Wang HX, Mulet X, Muir BW. Nitroxide-loaded hexosomes provide MRI contrast in vivo. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8898-8906. [PMID: 24979524 DOI: 10.1021/la5007296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this work was to synthesize and screen, for their effectiveness to act as T1-enhancing magnetic resonance imaging (MRI) contrast agents, a small library of nitroxide lipids incorporated into cubic-phase lipid nanoparticles (cubosomes). The most effective nitroxide lipid was then formulated into lower-toxicity lipid nanoparticles (hexosomes), and effective MR contrast was observed in the aorta and spleen of live rats in vivo. This new class of lower-toxicity lipid nanoparticles allowed for higher relaxivities on the order of those of clinically used gadolinium complexes. The new hexosome formulation presented herein was significantly lower in toxicity and higher in relaxivity than cubosome formulations previously reported by us.
Collapse
Affiliation(s)
- Nicole Bye
- National Trauma Research Institute, Alfred Hospital and Department of Surgery, Monash University , Melbourne 3000, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hartnett TE, Ladewig K, O’Connor AJ, Hartley PG, McLean KM. Size and Phase Control of Cubic Lyotropic Liquid Crystal Nanoparticles. J Phys Chem B 2014; 118:7430-9. [DOI: 10.1021/jp502898a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Terence E. Hartnett
- Department
of Chemical and Biomolecular Engineering and Particulate Fluids Processing
Centre (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, VIC 3168, Australia
| | - Katharina Ladewig
- Department
of Chemical and Biomolecular Engineering and Particulate Fluids Processing
Centre (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrea J. O’Connor
- Department
of Chemical and Biomolecular Engineering and Particulate Fluids Processing
Centre (PFPC), The University of Melbourne, Parkville, VIC 3010, Australia
| | - Patrick G. Hartley
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, VIC 3168, Australia
| | - Keith M. McLean
- Commonwealth
Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering, Clayton, VIC 3168, Australia
| |
Collapse
|
54
|
Hinton TM, Grusche F, Acharya D, Shukla R, Bansal V, Waddington LJ, Monaghan P, Muir BW. Bicontinuous cubic phase nanoparticle lipid chemistry affects toxicity in cultured cells. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50075f] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
55
|
Targeted detection of phosphatidylserine in biomimetic membranes and in vitro cell systems using annexin V-containing cubosomes. Biomaterials 2013; 34:8361-9. [DOI: 10.1016/j.biomaterials.2013.07.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
|
56
|
Liu H, Chen S, Zhou Y, Che X, Bao Z, Li S, Xu J. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution. J Drug Target 2013; 21:846-54. [DOI: 10.3109/1061186x.2013.829075] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
57
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|
58
|
Chang DP, Jankunec M, Barauskas J, Tiberg F, Nylander T. Adsorption of lipid liquid crystalline nanoparticles: effects of particle composition, internal structure, and phase behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10688-10696. [PMID: 22725977 DOI: 10.1021/la301579g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Controlling the interfacial behavior and properties of lipid liquid crystalline nanoparticles (LCNPs) at surfaces is essential for their application for preparing functional surface coatings as well as understanding some aspects of their properties as drug delivery vehicles. Here we have studied a LCNP system formed by mixing soy phosphatidylcholine (SPC), forming liquid crystalline lamellar structures in excess water, and glycerol dioleate (GDO), forming reversed structures, dispersed into nanoparticle with the surfactant polysorbate 80 (P80) as stabilizer. LCNP particle properties were controlled by using different ratios of the lipid building blocks as well as different concentrations of the surfactant P80. The LCNP size, internal structure, morphology, and charge were characterized by dynamic light scattering (DLS), synchrotron small-ange X-ray scattering (SAXS), cryo-transmission electron microscopy (cryo-TEM), and zeta potential measurements, respectively. With increasing SPC to GDO ratio in the interval from 35:65 to 60:40, the bulk lipid phase structure goes from reversed cubic micellar phase with Fd3m space group to reversed hexagonal phase. Adding P80 results in a successive shift toward more disorganized lamellar type of structures. This is also seen from cryo-TEM images for the LCNPs, where higher P80 ratios results in more extended lamellar layers surrounding the inner, more dense, lipid-rich particle core with nonlamellar structure. When put in contact with a solid silica surface, the LCNPs adsorb to form multilayer structures with a surface excess and thickness values that increase strongly with the content of P80 and decreases with increasing SPC:GDO ratio. This is reflected in both the adsorption rate and steady-state values, indicating that the driving force for adsorption is largely governed by attractive interactions between poly(ethylene oxide) (PEO) units of the P80 stabilizer and the silica surface. On cationic surface, i.e., silica modified with 3-aminopropltriethoxysilane (APTES), the slightly negatively charged LCNPs give rise to a very significant adsorption, which is relatively independent of LCNP composition. Finally, the dynamic thickness measurements indicate that direct adsorption of intact particles occurred on the cationic surface, while a slow buildup of the layer thickness with time is seen for the weakly interacting systems.
Collapse
Affiliation(s)
- Debby P Chang
- Physical Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | | | | | | | | |
Collapse
|
59
|
Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, Gu G, Jiang M, Pang Z, Chen H, Chen J, Fang L. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption. Int J Nanomedicine 2012; 7:3703-18. [PMID: 22888230 PMCID: PMC3414211 DOI: 10.2147/ijn.s32599] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Lipid-based liquid crystalline nanoparticles (LCNPs) have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized. Methods In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a “ ball-like”/“hexagonal” morphology. Results Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and to fuse with the cell membrane. An in vivo pharmacokinetic study showed that the oral bioavailability of paclitaxel-loaded LCNPs (13.16%) was 2.1 times that of Taxol® (the commercial formulation of paclitaxel, 6.39%). Conclusion The findings of this study suggest that this LCNP delivery system may be a promising candidate for improving the oral bioavailability of poorly water-soluble agents.
Collapse
Affiliation(s)
- Ni Zeng
- Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Muir BW, Zhen G, Gunatillake P, Hartley PG. Salt Induced Lamellar to Bicontinuous Cubic Phase Transitions in Cationic Nanoparticles. J Phys Chem B 2012; 116:3551-6. [DOI: 10.1021/jp300239g] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benjamin W. Muir
- CSIRO Materials
Science and Engineering, Bayview Avenue,
Clayton, VIC 3168, Australia
| | - Guoliang Zhen
- CSIRO Materials
Science and Engineering, Bayview Avenue,
Clayton, VIC 3168, Australia
| | - Pathiraja Gunatillake
- CSIRO Materials
Science and Engineering, Bayview Avenue,
Clayton, VIC 3168, Australia
| | - Patrick G. Hartley
- CSIRO Materials
Science and Engineering, Bayview Avenue,
Clayton, VIC 3168, Australia
| |
Collapse
|
61
|
Angelova A, Angelov B, Garamus VM, Couvreur P, Lesieur S. Small-Angle X-ray Scattering Investigations of Biomolecular Confinement, Loading, and Release from Liquid-Crystalline Nanochannel Assemblies. J Phys Chem Lett 2012; 3:445-457. [PMID: 26285865 DOI: 10.1021/jz2014727] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This Perspective explores the recent progress made by means of small-angle scattering methods in structural studies of phase transitions in amphiphilic liquid-crystalline systems with nanochannel architectures and outlines some future directions in the area of hierarchically organized and stimuli-responsive nanochanneled assemblies involving biomolecules. Time-resolved small-angle X-ray scattering investigations using synchrotron radiation enable monitoring of the structural dynamics, the modulation of the nanochannel hydration, as well as the key changes in the soft matter liquid-crystalline organization upon stimuli-induced phase transitions. They permit establishing of the inner nanostructure transformation kinetics and determination of the precise sizes of the hydrophobic membraneous compartments and the aqueous channel diameters in self-assembled network architectures. Time-resolved structural studies accelerate novel biomedical, pharmaceutical, and nanotechnology applications of nanochannel soft materials by providing better control of DNA, peptide and protein nanoconfinement, and release from diverse stimuli-responsive nanocarrier systems.
Collapse
Affiliation(s)
- Angelina Angelova
- †CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud 11, Châtenay-Malabry, F-92296 France
| | - Borislav Angelov
- ‡Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16206 Prague, Czech Republic
| | - Vasil M Garamus
- §Helmholtz-Zentrum Geesthacht, Centre for Materials and Coastal Research, 21502 Geesthacht, Germany
| | - Patrick Couvreur
- †CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud 11, Châtenay-Malabry, F-92296 France
| | - Sylviane Lesieur
- †CNRS UMR8612 Physico-chimie-Pharmacotechnie-Biopharmacie, Univ Paris Sud 11, Châtenay-Malabry, F-92296 France
| |
Collapse
|
62
|
Muir BW, Acharya DP, Kennedy DF, Mulet X, Evans RA, Pereira SM, Wark KL, Boyd BJ, Nguyen TH, Hinton TM, Waddington LJ, Kirby N, Wright DK, Wang HX, Egan GF, Moffat BA. Metal-free and MRI visible theranostic lyotropic liquid crystal nitroxide-based nanoparticles. Biomaterials 2011; 33:2723-33. [PMID: 22209558 DOI: 10.1016/j.biomaterials.2011.12.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/06/2011] [Indexed: 02/05/2023]
Abstract
The development of improved, low toxicity, clinically viable nanomaterials that provide MRI contrast have tremendous potential to form the basis of translatable theranostic agents. Herein we describe a class of MRI visible materials based on lyotropic liquid crystal nanoparticles loaded with a paramagnetic nitroxide lipid. These readily synthesized nanoparticles achieved enhanced proton-relaxivities on the order of clinically used gadolinium complexes such as Omniscan™ without the use of heavy metal coordination complexes. Their low toxicity, high water solubility and colloidal stability in buffer resulted in them being well tolerated in vitro and in vivo. The nanoparticles were initially screened in vitro for cytotoxicity and subsequently a defined concentration range was tested in rats to determine the maximum tolerated dose. Pharmacokinetic profiles of the candidate nanoparticles were established in vivo on IV administration to rats. The lyotropic liquid crystal nanoparticles were proven to be effective liver MRI contrast agents. We have demonstrated the effective in vivo performance of a T1 enhancing, biocompatible, colloidally stable, amphiphilic MRI contrast agent that does not contain a metal.
Collapse
Affiliation(s)
- Benjamin W Muir
- CSIRO Materials Science and Engineering, Bayview Avenue, Clayton 3168, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Domenici F, Castellano C, Dell’Unto F, Albinati A, Congiu A. Silicon supported lipid–DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity. Colloids Surf B Biointerfaces 2011; 88:432-9. [DOI: 10.1016/j.colsurfb.2011.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/05/2011] [Accepted: 07/06/2011] [Indexed: 11/26/2022]
|