51
|
Evans JC, Malhotra M, Fitzgerald KA, Guo J, Cronin MF, Curtin CM, O’Brien FJ, Darcy R, O’Driscoll CM. Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Mol Pharm 2016; 14:42-52. [DOI: 10.1021/acs.molpharmaceut.6b00646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- James C. Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Michael F. Cronin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Caroline M. Curtin
- Tissue Engineering
Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering
Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland
- Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Dublin, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
52
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
53
|
Evans JC, Malhotra M, Guo J, O'Shea JP, Hanrahan K, O'Neill A, Landry WD, Griffin BT, Darcy R, Watson RW, O'Driscoll CM. Folate-targeted amphiphilic cyclodextrin.siRNA nanoparticles for prostate cancer therapy exhibit PSMA mediated uptake, therapeutic gene silencing in vitro and prolonged circulation in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2341-2351. [PMID: 27389146 DOI: 10.1016/j.nano.2016.06.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/15/2016] [Accepted: 06/19/2016] [Indexed: 12/27/2022]
Abstract
In this study, a folate targeted cyclodextrin (CD) nanoparticle was prepared by co-formulating CD.siRNA complexes with DSPE-PEG5000-folate to target the prostate specific membrane antigen (PSMA). Targeted formulations showed increased uptake, relative to untargeted controls, in two prostate cancer cell lines expressing PSMA (VCaP and LNCaP). Competitive uptake studies, using excess folate, significantly reduced uptake of targeted nanoparticles in PSMA positive cell lines (P<0.001). Relative to untreated controls, folate-targeted nanoparticles significantly reduced the levels of RelA mRNA in VCaP and LNCaP cells by 44% and 22% respectively (P<0.001). In contrast there was no significant reduction in RelA mRNA in these cell lines by untargeted complexes. Pharmacokinetic (PK) data indicated that the incorporation of PEG into the formulation increased the circulation time of siRNA 8-fold. This study highlights the ability of incorporating a folate ligand into CD.siRNA nanoparticles to allow for targeted delivery of siRNA to prostate cancer cells via the PSMA.
Collapse
Affiliation(s)
- James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Joseph P O'Shea
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Karen Hanrahan
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Amanda O'Neill
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - William D Landry
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Brendan T Griffin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - R William Watson
- UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
54
|
Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016; 509:16-27. [PMID: 27188645 DOI: 10.1016/j.ijpharm.2016.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
The chemistry of gold nanoparticles (AuNPs) facilitates surface modifications and thus these bioengineered NPs have been investigated as a means of delivering a variety of therapeutic cargos to treat cancer. In this study we have developed AuNPs conjugated with targeting ligands to enhance cell-specific uptake in prostate cancer cells, with a purpose of providing efficient non-viral gene delivery systems in the treatment of prostate cancer. As a consequence, two novel AuNPs were synthesised namely AuNPs-PEG-Tf (negatively charged AuNPs with the transferrin targeting ligands) and AuNPs-PEI-FA (positively charged AuNPs with the folate-receptor targeting ligands). Both bioconjugated AuNPs demonstrated low cytotoxicity in prostate cancer cells. The attachment of the targeting ligand Tf to AuNPs successfully achieved receptor-mediated cellular uptake in PC-3 cells, a prostate cancer cell line highly expressing Tf receptors. The AuNPs-PEI-FA effectively complexed small interfering RNA (siRNA) through electrostatic interaction. At the cellular level the AuNPs-PEI-FA specifically delivered siRNA into LNCaP cells, a prostate cancer cell line overexpressing prostate specific membrane antigen (PSMA, exhibits a hydrolase enzymic activity with a folate substrate). Following endolysosomal escape the AuNPs-PEI-FA.siRNA formulation produced enhanced endogenous gene silencing compared to the non-targeted formulation. Our results suggest both formulations have potential as non-viral gene delivery vectors in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | | | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon.
| |
Collapse
|
55
|
Conjugates of small targeting molecules to non-viral vectors for the mediation of siRNA. Acta Biomater 2016; 36:21-41. [PMID: 27045350 DOI: 10.1016/j.actbio.2016.03.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED To use siRNA (small interfering RNA) for gene therapy, a gene delivery system is often necessary to overcome several challenging requirements including rapid excretion, low stability in blood serum, non-specific accumulation in tissues, poor cellular uptake and inefficient intracellular release. Active and/or passive targeting should help the delivery system to reach the desired tissue or cell, to be internalized, and to deliver siRNA to the cytoplasm so that siRNA can inhibit protein synthesis. This review covers conjugates of small targeting molecules and non-viral delivery systems for the mediation of siRNA, with a focus on their transfection properties in order to help the development of new and efficient siRNA delivery systems, as the therapeutic solutions of tomorrow. STATEMENT OF SIGNIFICANCE The delivery of siRNA into cells or tissues remains to be a challenge for its applications, an alternative strategy for siRNA delivery systems is direct conjugation of non-viral vectors with targeting moieties for cellular delivery. In comparison to macromolecules, small targeting molecules have attracted great attention due to their many potential advantages including significant simplicity and ease of production, good repeatability and biodegradability. This review will focus on the most recent advances in the delivery of siRNA using conjugates of small targeting molecules and non-viral delivery systems. Based the editor's suggestions, we hope the revised manuscript could provide more profound understanding to the conjugates of targeting molecules to vectors for mediation of siRNA.
Collapse
|
56
|
Fitzgerald KA, Rahme K, Guo J, Holmes JD, O'Driscoll CM. Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer - synthesis, physicochemical characterisation and in vitro evaluation. J Mater Chem B 2016; 4:2242-2252. [PMID: 32263220 DOI: 10.1039/c6tb00082g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metastatic prostate cancer is a leading cause of cancer-related death in men and current chemotherapies are largely inadequate in terms of efficacy and toxicity. Hence improved treatments are required. The application of siRNA as a cancer therapeutic holds great promise. However, translation of siRNA into the clinic is dependent on the availability of an effective delivery system. Gold nanoparticles (AuNPs) are known to be effective and non-toxic siRNA delivery agents. In this study, a stable gold nanosphere coated with poly(ethylenimine) (PEI) was prepared to yield PEI capped AuNPs (Au-PEI). The PEI was further conjugated with the targeting ligand anisamide (AA, is known to bind to the sigma receptor overexpressed on the surface of prostate cancer cells) to produce an anisamide-targeted nanoparticle (Au-PEI-AA). The resulting untargeted and targeted nanoparticles (Au-PEI and Au-PEI-AA respectively) were positively charged and efficiently complexed siRNA. Au-PEI-AA mediated siRNA uptake into PC3 prostate cancer cells via binding to the sigma receptor. In addition, the Au-PEI-AA·siRNA complexes resulted in highly efficient knockdown of the RelA gene (∼70%) when cells were transfected in serum-free medium. In contrast, no knockdown was observed in the presence of serum, suggesting that adsorption of serum proteins inhibits the binding of the anisamide moiety to the sigma receptor. This study provides (for the first time) proof of principle that anisamide-labelled gold nanoparticles can target the sigma receptor. Further optimisation of the formulation to increase serum stability will enhance its potential to treat prostate cancer.
Collapse
|
57
|
Fitzgerald KA, Malhotra M, Gooding M, Sallas F, Evans JC, Darcy R, O'Driscoll CM. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. Int J Pharm 2016; 499:131-145. [PMID: 26721726 DOI: 10.1016/j.ijpharm.2015.12.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 02/08/2023]
Abstract
Prostate cancer is a leading cause of cancer-related death in men and RNA interference (RNAi) has emerged as a potential therapeutic option. However, the absence of a safe and specific delivery vector remains a major obstacle to the clinical application of RNAi. Cyclodextrin derivatives are known to be efficient delivery systems with low toxicity in a variety of cell types. In this study, a cationic cyclodextrin derivative was synthesized to complex siRNA. The nanoparticle was then further modified by exploiting the ability of the β-cyclodextrin cavity to form an inclusion complex with the hydrophobic molecule adamantane. PEGylated adamantane derivatives were synthesized with and without the anisamide-targeting ligand on the terminal end of the PEG chain. Anisamide is known to bind specifically to the sigma receptor which is overexpressed on the surface of prostate cancer cells. The resulting nanocomplexes were slightly cationic and less than 300 nm in size. They successfully protected siRNA from serum-induced nuclease degradation and were non-toxic to prostate cancer cells. In addition, the targeted nanoparticles mediated high levels of siRNA cellular uptake and corresponding PLK1 gene knockdown in prostate cancer cells in vitro. To our knowledge, this is the first time that the ability of cyclodextrins to form inclusion complexes with adamantane derivatives has been exploited for the targeted delivery of siRNA to prostate cancer cells via the sigma receptor.
Collapse
Affiliation(s)
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Matt Gooding
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
| | - Florence Sallas
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Raphael Darcy
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland; School of Chemistry, University College Dublin, Ireland
| | | |
Collapse
|
58
|
Dasargyri A, Hervella P, Christiansen A, Proulx ST, Detmar M, Leroux JC. Findings questioning the involvement of Sigma-1 receptor in the uptake of anisamide-decorated particles. J Control Release 2016; 224:229-238. [PMID: 26774218 DOI: 10.1016/j.jconrel.2016.01.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 11/22/2022]
Abstract
Anisamide is a small benzamide previously suggested as a tumor-targeting ligand for nanocarriers and it has been shown to enhance tumor uptake in vitro as well as in vivo when grafted on the nanoparticle surface. Anisamide has been hypothesized to interact with the Sigma-1 receptor, based on the binding of larger benzamides, which contain anisamide in their structure, to this receptor. However, the interaction between anisamide and Sigma-1 receptor has never been thoroughly studied. We developed fluorescent PEGylated particles decorated with anisamide, which were preferentially taken up in vitro by melanoma cells compared to macrophages. The anisamide-decorated particles were used to study their interaction with the Sigma-1 receptor. The absence of competition of Sigma-1 receptor ligands for the particle uptake was a first indication that the receptor might not be involved in the uptake process. In addition, the extent of particle uptake did not correlate with the levels of cellular expression of Sigma-1 receptor in the cell models tested. Immunostaining of the receptor on melanoma cells revealed intracellular localization, indirectly excluding the possibility of anisamide binding to the receptor when grafted on the particles. All these data question the previously suggested Sigma-1 receptor-mediated uptake of the anisamide-decorated particles, a finding which may have an impact on the use of anisamide as a targeting ligand.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Pablo Hervella
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Ailsa Christiansen
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Steven T Proulx
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Michael Detmar
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich 8093, Switzerland.
| |
Collapse
|
59
|
Patel PL, Rana NK, Patel MR, Kozuch SD, Sabatino D. Nucleic Acid Bioconjugates in Cancer Detection and Therapy. ChemMedChem 2015; 11:252-69. [PMID: 26663095 DOI: 10.1002/cmdc.201500502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Nucleoside- and nucleotide-based chemotherapeutics have been used to treat cancer for more than 50 years. However, their inherent cytotoxicities and the emergent resistance of tumors against treatment has inspired a new wave of compounds in which the overall pharmacological profile of the bioactive nucleic acid component is improved by conjugation with delivery vectors, small-molecule drugs, and/or imaging modalities. In this manner, nucleic acid bioconjugates have the potential for targeting and effecting multiple biological processes in tumors, leading to synergistic antitumor effects. Consequently, tumor resistance and recurrence is mitigated, leading to more effective forms of cancer therapy. Bioorthogonal chemistry has led to the development of new nucleoside bioconjugates, which have served to improve treatment efficacy en route towards FDA approval. Similarly, oligonucleotide bioconjugates have shown encouraging preclinical and clinical results. The modified oligonucleotides and their pharmaceutically active formulations have addressed many weaknesses of oligonucleotide-based drugs. They have also paved the way for important advancements in cancer diagnosis and treatment. Cancer-targeting ligands such as small-molecules, peptides, and monoclonal antibody fragments have all been successfully applied in oligonucleotide bioconjugation and have shown promising anticancer effects in vitro and in vivo. Thus, the application of bioorthogonal chemistry will, in all likelihood, continue to supply a promising pipeline of nucleic acid bioconjugates for applications in cancer detection and therapy.
Collapse
Affiliation(s)
- Pradeepkumar L Patel
- Sun Pharmaceutical Industries Inc., Analytical Research and Development, 270 Prospect Plains Road, Cranbury, NJ, 08512, USA
| | - Niki K Rana
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Mayurbhai R Patel
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - Stephen D Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, 400 South Orange Avenue, South Orange, NJ, 07079, USA.
| |
Collapse
|
60
|
van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RAJO. Potential applications for sigma receptor ligands in cancer diagnosis and therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2703-14. [PMID: 25173780 DOI: 10.1016/j.bbamem.2014.08.022] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Anna A Rybczynska
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nisha K Ramakrishnan
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kiichi Ishiwata
- Tokyo Metropolitan Institute of Gerontology, Research Team for Neuroimaging, 35-2 Sakae-Cho, Itabashi-Ku, Tokyo 173-0015, Japan
| | - Philip H Elsinga
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; University of Ghent, University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
61
|
Rahme K, Guo J, Holmes JD, O'Driscoll CM. Evaluation of the physicochemical properties and the biocompatibility of polyethylene glycol-conjugated gold nanoparticles: A formulation strategy for siRNA delivery. Colloids Surf B Biointerfaces 2015; 135:604-612. [PMID: 26322474 DOI: 10.1016/j.colsurfb.2015.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The potential of RNA interference (RNAi)-based therapeutics for cancer has received much attention; however, delivery of RNAi effectors, such as small interfering RNA (siRNA), remains an obstacle to clinical translation. Non-viral delivery vectors have been used extensively to enhance siRNA delivery. Recently, the potential of gold nanoparticles (AuNPs) for transporting drugs, proteins and genetic materials has been demonstrated. Previously, our laboratory synthesised positively charged, surfactant-free AuNPs in water by the reduction of gold (III) chloride (AuCl3) using hydroxylamine hydrochloride (NH2OH·HCl) in the presence of L-cysteine methyl ester hydrochloride (HSCH2CH(NH2)COOCH3·HCl) as a capping agent. These AuNPs, which achieve higher cell viability in comparison to cetyl trimethyl ammonium bromide (CTAB, a surfactant)-capped counterparts, have demonstrated potential for siRNA delivery. However, it is well known that systemic administration of cationic delivery systems without biological stablising moieties causes non-specific binding with negatively charged serum proteins, resulting in particle aggregation and opsonisation. Consequently, highly stable AuNPs capped with l-cysteine methyl ester hydrochloride conjugated to poly(ethylene glycol) (PEG) were synthesised in this study. PEGylation enhanced the biocompatibility of the AuNPs by reducing toxicity in a range of cell types, by inhibiting interaction with serum proteins thus avoiding aggregation, and, by providing protection against degradation by nucleases. Moreover, these PEGylated AuNPs formed nanoparticles (NPs) with siRNA (which was first compacted with protamine), and had a diameter within the nanoscale range (∼ 250 nm) and a near neutral surface charge (∼ 10 mV). In the future a bifunctional PEG chain on the AuNPs (i.e., SH-PEG-NH2, SH-PEG-COOH) will be used to facilitate conjugation of a targeting ligand to enhance cell specific uptake.
Collapse
Affiliation(s)
- Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; AMBER (Advanced Materials and Biological Engineering Research Centre), CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices), Trinity College Dublin, Dublin, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Lebanon
| | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; AMBER (Advanced Materials and Biological Engineering Research Centre), CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices), Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
62
|
Fitzgerald KA, Guo J, Tierney EG, Curtin CM, Malhotra M, Darcy R, O'Brien FJ, O'Driscoll CM. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Biomaterials 2015. [PMID: 26196533 DOI: 10.1016/j.biomaterials.2015.07.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prostate cancer bone metastases are a leading cause of cancer-related death in men with current treatments offering only marginally improved rates of survival. Advances in the understanding of the genetic basis of prostate cancer provide the opportunity to develop gene-based medicines capable of treating metastatic disease. The aim of this work was to establish a 3D cell culture model of prostate cancer bone metastasis using collagen-based scaffolds, to characterise this model, and to assess the potential of the model to evaluate delivery of gene therapeutics designed to target bone metastases. Two prostate cancer cell lines (PC3 and LNCaP) were cultured in 2D standard culture and compared to 3D cell growth on three different collagen-based scaffolds (collagen and composites of collagen containing either glycosaminoglycan or nanohydroxyapatite). The 3D model was characterised for cell proliferation, viability and for matrix metalloproteinase (MMP) enzyme and Prostate Specific Antigen (PSA) secretion. Chemosensitivity to docetaxel treatment was assessed in 2D in comparison to 3D. Nanoparticles (NPs) containing siRNA formulated using a modified cyclodextrin were delivered to the cells on the scaffolds and gene silencing was quantified. Both prostate cancer cell lines actively infiltrated and proliferated on the scaffolds. Cell culture in 3D resulted in reduced levels of MMP1 and MMP9 secretion in PC3 cells. In contrast, LNCaP cells grown in 3D secreted elevated levels of PSA, particularly on the scaffold composed of collagen and glycosaminoglycans. Both cell lines grown in 3D displayed increased resistance to docetaxel treatment. The cyclodextrin.siRNA nanoparticles achieved cellular uptake and knocked down the endogenous GAPDH gene in the 3D model. In conclusion, development of a novel 3D cell culture model of prostate cancer bone metastasis has been initiated resulting, for the first time, in the successful delivery of gene therapeutics in a 3D in vitro model. Further enhancement of this model will help elucidate the pathogenesis of prostate cancer and also accelerate the design of effective therapies which can penetrate into the bone microenvironment for prostate cancer therapy.
Collapse
Affiliation(s)
| | - Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Erica G Tierney
- Tissue Engineering Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Raphael Darcy
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Anatomy Department, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College, Dublin, Ireland; Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | | |
Collapse
|
63
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
64
|
Cyclodextrin mediated delivery of NF-κB and SRF siRNA reduces the invasion potential of prostate cancer cells in vitro. Gene Ther 2015; 22:802-10. [PMID: 26005860 DOI: 10.1038/gt.2015.50] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/08/2015] [Accepted: 05/12/2015] [Indexed: 02/01/2023]
Abstract
Prostate cancer is the most common cancer in men of the western world. To date, no effective treatment exists for metastatic prostate cancer and consequently, there is an urgent need to develop new and improved therapeutics. In recent years, the therapeutic potential of RNA interference (RNAi) has been extensively explored in a wide range of diseases including prostate cancer using numerous gene delivery vectors. The aims of this study were to investigate the ability of a non-viral modified cyclodextrin (CD) vector to deliver siRNA to the highly metastatic PC-3 prostate cancer cell line, to quantify the resulting knockdown of the two target genes (RelA and SRF) and to study the effects of the silencing on metastasis. Data from a Matrigel in vitro invasion assay indicated that the silencing of the target genes achieved by the CD vector resulted in significant reductions (P=0.0001) in the metastatic potential of these cells. As the silencing of these target genes was shown not to have a negative impact on cell viability, we hypothesise that the mechanism of invasion inhibition is due, in part, to the significant reduction observed (P⩽0.0001) in the level of pro-inflammatory cytokine, MMP9, which is known to be implicated in the metastasis of prostate cancer.
Collapse
|
65
|
Lu L, Zou Y, Yang W, Meng F, Deng C, Cheng R, Zhong Z. Anisamide-Decorated pH-Sensitive Degradable Chimaeric Polymersomes Mediate Potent and Targeted Protein Delivery to Lung Cancer Cells. Biomacromolecules 2015; 16:1726-35. [DOI: 10.1021/acs.biomac.5b00193] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ling Lu
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Yan Zou
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Weijing Yang
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Fenghua Meng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory,
and Jiangsu Key Laboratory of Advanced Functional Polymer Design and
Application, College of Chemistry, Chemical Engineering and Materials
Science, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
66
|
Yin JJ, Zhou ZW, Zhou SF. Cyclodextrin-based targeting strategies for tumor treatment. Drug Deliv Transl Res 2015; 3:364-74. [PMID: 25788282 DOI: 10.1007/s13346-013-0140-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The efficacy and applicability of anticancer drugs are greatly restricted by severe systemic toxicities and drug resistance. Targeting drug delivery strategies have been developed to prevent the shortcomings of chemotherapy. Among various approaches to specifically target drug-loaded carrier systems to the required pathological sites, ligand-attached cyclodextrin-based targeting complexes are a promising drug delivery system, which is achieved mainly through specific molecular interactions between the drugs and cell surface receptors. The principal targeting tactics include conjugation of cyclodextrin with targeting moieties or encapsulation drugs in cyclodextrins. The cyclodextrin-based supramolecules, polymers, or nanoparticles bearing bioactive substances such as folate, estrogens, carbohydrates, peptides, etc. have been reviewed.
Collapse
Affiliation(s)
- Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
67
|
Lakkakula JR, Maçedo Krause RW. A vision for cyclodextrin nanoparticles in drug delivery systems and pharmaceutical applications. Nanomedicine (Lond) 2015; 9:877-94. [PMID: 24981652 DOI: 10.2217/nnm.14.41] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyclodextrins (CDs) have brought a revolution in the pharmaceutical field over the last decade. Natural and modified CDs (α-CD and β-CD) have been studied and some have gained US FDA approval or achieved 'Generally Regarded as Safe' (GRAS) status. Another characteristic of CDs is the ease with which they can be induced to form supramolecular structures for its use in drug delivery. CDs, grafted or crosslinked with polymers, are now being developed into 'smart' systems for efficient targeted drug delivery, especially for hydrophobic drugs. Amphiphilic CDs have the ability to form nanospheres or nanocapsules via a simple nanoprecipitation technique. This review deals with different types of CDs, and their efficacy, physicochemical properties and transformation into nanoparticles with interesting in vitro and in vivo applications.
Collapse
Affiliation(s)
- Jaya Raju Lakkakula
- Department of Applied Chemistry, Center for Nanomaterials Science, University of Johannesburg, Doornfontein 2028, Gauteng, South Africa
| | | |
Collapse
|
68
|
Han L, Tang C, Yin C. Enhanced antitumor efficacies of multifunctional nanocomplexes through knocking down the barriers for siRNA delivery. Biomaterials 2015; 44:111-21. [PMID: 25617131 DOI: 10.1016/j.biomaterials.2014.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/10/2014] [Accepted: 12/20/2014] [Indexed: 02/07/2023]
Abstract
Multifunctional nanocomplexes (NCs) consisting of urocanic acid-modified galactosylated trimethyl chitosan (UA-GT) conjugates as polymeric vectors, poly(allylamine hydrochloride)-citraconic anhydride (PAH-Cit) as charge-reversible crosslinkers, and vascular endothelial growth factor (VEGF) siRNA as therapeutic genes, were rationally designed to simultaneously overcome the extracellular, cellular, and intracellular barriers for siRNA delivery. The strong physical stability of UA-GT/PAH-Cit/siRNA NCs (UA-GT NCs) at pH 7.4 and 6.5 endowed protection from massive dilution, competitive ions, and ubiquitous nucleases in the blood and tumorous microenvironment. Their internalization into hepato-carcinoma cells was facilitated through the recognition of galactose receptors, followed by effective escape from endosomes/lysosomes owing to the strong buffering capacity of imidazole residues. At the meantime, the endosomal/lysosomal acidity triggered the charge reversal of PAH-Cit in UA-GT NCs, thus evoking their structural disassembly and subsequently accelerated release of siRNA in the cytosol. As a result, robust in vivo performance in terms of both gene silencing and tumor inhibition was achieved by UA-GT NCs at a low siRNA dose. Moreover, neither histological nor hematological toxicity was detected following repeated intravenous administration. Therefore, UA-GT NCs potentially served as an efficient and safe candidate in the treatment of hepatocellular carcinoma through knocking down the overall barriers for siRNA delivery.
Collapse
Affiliation(s)
- Lu Han
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
69
|
Guilloteau N, Bienvenu C, Charrat C, Jiménez Blanco JL, Díaz-Moscoso A, Mellet CO, García Fernández JM, Vierling P, Di Giorgio C. Cell uptake mechanisms of glycosylated cationic pDNA–cyclodextrin nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra00964b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
β-Cyclodextrin-based glycoCDplexes are internalized through several redundant pathways whose relative prevalence depends on the coating sugar and on the cell line.
Collapse
Affiliation(s)
- Nicolas Guilloteau
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - Céline Bienvenu
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - Coralie Charrat
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - José L. Jiménez Blanco
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | - Alejandro Díaz-Moscoso
- Instituto de Investigaciones Químicas (IIQ)
- CSIC – Universidad de Sevilla
- E-41092 Sevilla
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- E-41012 Sevilla
- Spain
| | | | - Pierre Vierling
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| | - Christophe Di Giorgio
- Institut de Chimie de Nice
- UMR 7272
- Université de Nice Sophia Antipolis
- CNRS
- F-06108 Nice
| |
Collapse
|
70
|
Guo J, Armstrong MJ, O'Driscoll CM, Holmes JD, Rahme K. Positively charged, surfactant-free gold nanoparticles for nucleic acid delivery. RSC Adv 2015. [DOI: 10.1039/c4ra16294c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis of positively charged, surfactant-free, not cytotoxic 2–200 nm gold nanoparticles in water by seeding growth method; a powerful candidate for nucleic acid delivery application.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery group
- School of Pharmacy
- University College Cork
- Cork
- Ireland
| | - Mark J. Armstrong
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| | | | - Justin D. Holmes
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group
- Department of Chemistry and the Tyndall National Institute
- University College Cork
- Cork
- Ireland
| |
Collapse
|
71
|
Kapoor M, Burgess DJ. Targeted Delivery of Nucleic Acid Therapeutics via Nonviral Vectors. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
72
|
Duskey JT, Rice KG. Nanoparticle ligand presentation for targeting solid tumors. AAPS PharmSciTech 2014; 15:1345-54. [PMID: 24927668 PMCID: PMC4179653 DOI: 10.1208/s12249-014-0143-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Among the many scientific advances to come from the study of nanoscience, the development of ligand-targeted nanoparticles to eliminate solid tumors is predicted to have a major impact on human health. There are many reports describing novel designs and testing of targeted nanoparticles to treat cancer. While the principles of the technology are well demonstrated in controlled lab experiments, there are still many hurdles to overcome for the science to mature into truly efficacious targeted nanoparticles that join the arsenal of agents currently used to treat cancer in humans. One of these hurdles is overcoming unwanted biodistribution to the liver while maximizing delivery to the tumor. This almost certainly requires advances in both nanoparticle stealth technology and targeting. Currently, it continues to be a challenge to control the loading of ligands onto polyethylene glycol (PEG) to achieve maximal targeting. Nanoparticle cellular uptake and subcellular targeting of genes and siRNA also remain a challenge. This review examines the types of ligands that have been most often used to target nanoparticles to solid tumors. As the science matures over the coming decade, careful control over ligand presentation on nanoparticles of precise size, shape, and charge will likely play a major role in achieving success.
Collapse
Affiliation(s)
- Jason T. Duskey
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| | - Kevin G. Rice
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242 USA
| |
Collapse
|
73
|
Guo J, Cahill MR, McKenna SL, O'Driscoll CM. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia. Biotechnol Adv 2014; 32:1396-409. [PMID: 25218571 DOI: 10.1016/j.biotechadv.2014.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 12/13/2022]
Abstract
Leukaemia is a bone marrow cancer occurring in acute and chronic subtypes. Acute leukaemia is a rapidly fatal cancer potentially causing death within a few weeks, if untreated. Leukaemia arises as a result of disruption to haematopoietic precursors, caused either by acquired gene fusions, gene mutations or inappropriate expression of the relevant oncogenes. Current treatment options have made significant progress, but the 5 year survival for acute leukaemia remains under 10% in elderly patients, and less than 50% for some types of acute leukaemia in younger adults. For chronic leukaemias longer survival is generally expected and for chronic myeloid leukaemia patients on tyrosine kinase inhibitors the median survival is not yet reached and is expected to exceed 10 years. Chemotherapy and haematopoietic stem cell transplantation (HSCT) for acute leukaemia provide the mainstay of therapy for patients under 65 and both carry significant morbidity and mortality. Alternative and superior therapeutic strategies for acute leukaemias are urgently required. Recent molecular-based knowledge of recurring chromosome rearrangements, in particular translocations and inversions, has resulted in significant advances in understanding the molecular pathogenesis of leukaemia. Identification of a number of unique fusion genes has facilitated the development of highly specific small interfering RNAs (siRNA). Although delivery of siRNA using multifunctional nanoparticles has been investigated to treat solid cancers, the application of this approach to blood cancers is at an early stage. This review describes current treatments for leukaemia and highlights the potential of leukaemic fusion genes as therapeutic targets for RNA interference (RNAi). In addition, the design of biomimetic nanoparticles which are capable of responding to the physiological environment of leukaemia and their potential to advance RNAi therapeutics to the clinic will be critically evaluated.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - Mary R Cahill
- Department of Haematology, Cork University Hospital, Ireland
| | | | | |
Collapse
|
74
|
Ballarín-González B, Ebbesen MF, Howard KA. Polycation-based nanoparticles for RNAi-mediated cancer treatment. Cancer Lett 2014; 352:66-80. [DOI: 10.1016/j.canlet.2013.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/19/2022]
|
75
|
Zerkoune L, Angelova A, Lesieur S. Nano-Assemblies of Modified Cyclodextrins and Their Complexes with Guest Molecules: Incorporation in Nanostructured Membranes and Amphiphile Nanoarchitectonics Design. NANOMATERIALS 2014; 4:741-765. [PMID: 28344245 PMCID: PMC5304703 DOI: 10.3390/nano4030741] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023]
Abstract
A variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, β-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic modifications of their macrocycles using phospholipidyl, peptidolipidyl, cholesteryl, and oligo(ethylene oxide) anchors as well as variable numbers of grafted hydrophobic hydrocarbon or fluorinated chains. These novel compounds may self-assemble in an aqueous medium into different types of supramolecular nanoassemblies (vesicles, micelles, nanorods, nanospheres, and other kinds of nanoparticles and liquid crystalline structures). This review discusses the supramolecular nanoarchitectures, which can be formed by amphiphilic cyclodextrin derivatives in mixtures with other molecules (phospholipids, surfactants, and olygonucleotides). Biomedical applications are foreseen for nanoencapsulation of drug molecules in the hydrophobic interchain volumes and nanocavities of the amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), anticancer phototherapy, gene delivery, as well as for protection of instable active ingredients through inclusion complexation in nanostructured media.
Collapse
Affiliation(s)
- Leïla Zerkoune
- CNRS UMR 8612 Institut Galien Paris-Sud, Paris-Sud 11 University, 92290 Châtenay-Malabry, France.
| | - Angelina Angelova
- CNRS UMR 8612 Institut Galien Paris-Sud, Paris-Sud 11 University, 92290 Châtenay-Malabry, France.
| | - Sylviane Lesieur
- CNRS UMR 8612 Institut Galien Paris-Sud, Paris-Sud 11 University, 92290 Châtenay-Malabry, France.
| |
Collapse
|
76
|
Godinho BMDC, Ogier JR, Quinlan A, Darcy R, Griffin BT, Cryan JF, O'Driscoll CM. PEGylated cyclodextrins as novel siRNA nanosystems: correlations between polyethylene glycol length and nanoparticle stability. Int J Pharm 2014; 473:105-12. [PMID: 24992319 DOI: 10.1016/j.ijpharm.2014.06.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
Silencing disease-related genes in the central nervous system (CNS) using short interfering RNA (siRNA) holds great promise for treating neurological disorders. Yet, delivery of RNAi therapeutics to the brain poses major challenges to non-viral systems, especially when considering systemic administration. Cationic nanoparticles have been widely investigated for siRNA delivery, but the tendency of these to aggregate in physiological environments limits their intravenous application. Thus, strategies to increase the stability of nanoparticles have been developed. Here, we investigated the ability of modified cationic amphiphilic or PEGylated amphiphilic cyclodextrins (CD) to formulate stable CD.siRNA nanoparticles. To this end, we describe a simple method for post-modification of pre-formed cationic CD.siRNA nanoparticles at their surface using PEGylated CDs of different PEG lengths. PEGylated CD.siRNA nanoparticles presented reduced surface charges and increased stability in physiological salt conditions. Stability of PEGylated CD.siRNA nanoparticles in vitro increased with both PEG length and PEG density at the surface. Furthermore, in a comparative pharmacokinetic study, increased systemic exposure and reduced clearance were achieved with CD-formulations when compared to naked siRNAs. However, no significant differences were observed among non-PEGylated and PEGylated CD.siRNAs suggesting that longer PEG lengths might be required for improving stability in vivo.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland; Department Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Julien R Ogier
- Centre for synthesis and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Aoife Quinlan
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Centre for synthesis and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Brendan T Griffin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - John F Cryan
- Department Anatomy and Neuroscience, University College Cork, Cork, Ireland; Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Cork, Ireland
| | | |
Collapse
|
77
|
O'Mahony AM, Cronin MF, Mcmahon A, Evans JC, Daly K, Darcy R, O'Driscoll CM. Biophysical and Structural Characterisation of Nucleic Acid Complexes with Modified Cyclodextrins Using Circular Dichroism. J Pharm Sci 2014; 103:1346-55. [DOI: 10.1002/jps.23922] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/22/2022]
|
78
|
Fitzgerald KA, Evans JC, McCarthy J, Guo J, Prencipe M, Kearney M, Watson WR, O'Driscoll CM. The role of transcription factors in prostate cancer and potential for future RNA interference therapy. Expert Opin Ther Targets 2014; 18:633-49. [DOI: 10.1517/14728222.2014.896904] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
79
|
Chen L, Wang H, Zhang Y, Wang Y, Hu Q, Ji J. Bioinspired phosphorylcholine-modified polyplexes as an effective strategy for selective uptake and transfection of cancer cells. Colloids Surf B Biointerfaces 2013; 111:297-305. [DOI: 10.1016/j.colsurfb.2013.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|
80
|
Gastrointestinal gene delivery by cyclodextrins – In vitro quantification of extracellular barriers. Int J Pharm 2013; 456:390-9. [DOI: 10.1016/j.ijpharm.2013.08.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 11/22/2022]
|
81
|
Chuo TW, Wei TC, Chang Y, Liu YL. Electrically driven biofouling release of a poly(tetrafluoroethylene) membrane modified with an electrically induced reversibly cross-linked polymer. ACS APPLIED MATERIALS & INTERFACES 2013; 5:9918-9925. [PMID: 24047256 DOI: 10.1021/am4033982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Electrically induced reversible reactions between ferrocene (Fc) and β-cyclodextrin (β-CD) groups have been utilized for preparation of poly(tetrafluoroethylene) (PTFE) membranes exhibiting electrically driven biofouling release properties. PTFE membrane is surface-modified with polymer chains possessing Fc pendant groups. The surface layer is then cross-linked with a difunctional β-CD compound by means of the Fc/β-CD complexation reaction. The electrically induced reversibly cross-linking and de-cross-linking behaviors of the surface layer of the modified PTFE membrane have been characterized with Fourier transform Infrared, X-ray photoelectron spectroscopy, and scanning electron microscopy. The surface-modified PTFE membrane has been fouled with protein absorption. Electrical treatment of the fouled membrane results in a protein detachment from the membrane surface driven by the surface structure change accompanied with the electrically induced de-cross-linking reaction of the Fc/β-CD linkages. A smart membrane exhibiting a novel cleaning technology for membrane fouling has been developed.
Collapse
Affiliation(s)
- Tsai-Wei Chuo
- Department of Chemical Engineering, National Tsing Hua University , Hsinchu 30013, Taiwan
| | | | | | | |
Collapse
|
82
|
García Fernández JM, Benito JM, Ortiz Mellet C. Cyclodextrin-scaffolded glycotransporters for gene delivery. PURE APPL CHEM 2013. [DOI: 10.1351/pac-con-12-10-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Conventional drugs consist of a formulation of a bioactive species and a carrier, the former accounting for most of the sophistication of the design. In the case of biomolecular drugs, however, the role of the carrier becomes decisive in enabling the load to reach its target to carry out its designed therapeutic function. Thus, the clinical success of gene therapy, where the active principles are nucleic acids, critically depends on the use of efficient and safe delivery systems. Carbohydrates have proven particularly useful in this regard. Glycocoating, similarly to poly(ethylene)glycol (PEG)-coating (pegylation), can stabilize colloidal aggregates by improving solvation and preventing nonspecific interactions, for example, with serum proteins. Moreover, glycoconjugates can drive specific recognition and receptor-mediated internalization in target cells. Actually, the inherent flexibility of carbohydrate and glycoconjugate chemistry has greatly contributed to enlarging the range of functional materials that can be rationally conceived for gene delivery. Herein, this is illustrated with selected examples that focus on controlling the architectural parameters of the vectors to make them suitable for structure–activity relationship (SAR) and optimization studies. The members of the cyclomaltooligosaccharide (cyclodextrin, CD) family will be the central actors of the story.
Collapse
|
83
|
Crottès D, Guizouarn H, Martin P, Borgese F, Soriani O. The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Front Physiol 2013; 4:175. [PMID: 23882221 PMCID: PMC3712323 DOI: 10.3389/fphys.2013.00175] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/21/2013] [Indexed: 12/18/2022] Open
Abstract
Originally mistaken as an opioid receptor, the sigma-1 receptor (Sig1R) is a ubiquitous membrane protein that has been involved in many cellular processes. While the precise function of Sig1R has long remained mysterious, recent studies have shed light on its role and the molecular mechanisms triggered. Sig1R is in fact a stress-activated chaperone mainly associated with the ER-mitochondria interface that can regulate cell survival through the control of calcium homeostasis. Sig1R functionally regulates ion channels belonging to various molecular families and it has thus been involved in neuronal plasticity and central nervous system diseases. Interestingly, Sig1R is frequently expressed in tumors but its function in cancer has not been yet clarified. In this review, we discuss the current understanding of Sig1R. We suggest herein that Sig1R shapes cancer cell electrical signature upon environmental conditions. Thus, Sig1R may be used as a novel therapeutic target to specifically abrogate pro-invasive functions of ion channels in cancer tissue.
Collapse
Affiliation(s)
- David Crottès
- Université de Nice, UMR 7277 Nice, France ; Institut de Biologie de Valrose, CNRS UMR 7277, INSERM U1091, Université de Nice Nice, France
| | | | | | | | | |
Collapse
|
84
|
O’Mahony AM, Ogier J, Darcy R, Cryan JF, O’Driscoll CM. Cationic and PEGylated Amphiphilic Cyclodextrins: Co-Formulation Opportunities for Neuronal Sirna Delivery. PLoS One 2013; 8:e66413. [PMID: 23805220 PMCID: PMC3689829 DOI: 10.1371/journal.pone.0066413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/06/2013] [Indexed: 12/16/2022] Open
Abstract
Optimising non-viral vectors for neuronal siRNA delivery presents a significant challenge. Here, we investigate a co-formulation, consisting of two amphiphilic cyclodextrins (CDs), one cationic and the other PEGylated, which were blended together for siRNA delivery to a neuronal cell culture model. Co-formulated CD-siRNA complexes were characterised in terms of size, charge and morphology. Stability in salt and serum was also examined. Uptake was determined by flow cytometry and toxicity was measured by MTT assay. Knockdown of a luciferase reporter gene was used as a measure of gene silencing efficiency. Incorporation of a PEGylated CD in the formulation had significant effects on the physical and biological properties of CD.siRNA complexes. Co-formulated complexes exhibited a lower surface charge and greater stability in a high salt environment. However, the inclusion of the PEGylated CD also dramatically reduced gene silencing efficiency due to its effects on neuronal uptake. The co-formulation strategy for cationic and PEGylated CDs improved the stability of the CD.siRNA delivery systems, although knockdown efficiency was impaired. Future work will focus on the addition of targeting ligands to the co-formulated complexes to restore transfection capabilities.
Collapse
Affiliation(s)
- Aoife M. O’Mahony
- Pharmacodelivery group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Julien Ogier
- School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Raphael Darcy
- School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - John F. Cryan
- Dept. of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
85
|
Guo J, Evans JC, O’Driscoll CM. Delivering RNAi therapeutics with non-viral technology: a promising strategy for prostate cancer? Trends Mol Med 2013; 19:250-61. [DOI: 10.1016/j.molmed.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 02/07/2023]
|
86
|
Amphiphilic polyallylamine based polymeric micelles for siRNA delivery to the gastrointestinal tract: In vitro investigations. Int J Pharm 2013; 447:150-7. [DOI: 10.1016/j.ijpharm.2013.02.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/22/2013] [Accepted: 02/24/2013] [Indexed: 01/12/2023]
|
87
|
McCarthy J, O'Neill MJ, Bourre L, Walsh D, Quinlan A, Hurley G, Ogier J, Shanahan F, Melgar S, Darcy R, O'Driscoll CM. Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system. J Control Release 2013; 168:28-34. [PMID: 23500058 DOI: 10.1016/j.jconrel.2013.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammation of the gastrointestinal tract. The cytokine TNF-alpha (TNF-α) plays a pivotal role in mediating this inflammatory response. RNA interference (RNAi) holds great promise for the specific and selective silencing of aberrantly expressed genes, such as TNF-α in IBD. The aim of this study was to investigate the efficacy of an amphiphilic cationic cyclodextrin (CD) vector for effective TNF-α siRNA delivery to macrophage cells and to mice with induced acute-colitis. The stability of CD.siRNA was examined by gel electrophoresis in biorelevant media reflecting colonic fluids. RAW264.7 cells were transfected with CD.TNF-α siRNA, stimulated with lipopolysaccharide (LPS) and TNF-α and IL-6 responses were measured by PCR and ELISA. Female C57BL/6 mice were exposed to dextran sodium sulphate (DSS) and treated by intrarectal administration with either CD.siRNA TNF-α or a control solution. In vitro, siRNA in CD nanocomplexes remained intact and stable in both fed and fasted simulated colonic fluids. RAW264.7 cells transfected with CD.TNF-α siRNA and stimulated with LPS displayed a significant reduction in both gene and protein levels of TNF-α and IL-6. CD.TNF-α siRNA-treated mice revealed a mild amelioration in clinical signs of colitis, but significant reductions in total colon weight and colonic mRNA expression of TNF-α and IL-6 compared to DSS-control mice were detected. This data indicates the clinical potential of a local CD-based TNF-α siRNA delivery system for the treatment of IBD.
Collapse
Affiliation(s)
- J McCarthy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Hu Y, Zhu Y, Yang WT, Xu FJ. New star-shaped carriers composed of β-cyclodextrin cores and disulfide-linked poly(glycidyl methacrylate) derivative arms with plentiful flanking secondary amine and hydroxyl groups for highly efficient gene delivery. ACS APPLIED MATERIALS & INTERFACES 2013; 5:703-712. [PMID: 23270523 DOI: 10.1021/am302249x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The biocleavable star-shaped vectors (CD-SS-PGEAs) consisting of nonionic β-cyclodextrin (β-CD) cores and disulfide-linked low-molecular-weight poly(glycidyl methacrylate) (PGMA) derivative arms with plentiful flanking secondary amine and hydroxyl groups were successfully proposed for highly efficient gene delivery. A simple two-step method was first adopted to introduce reduction-sensitive disulfide-linked initiation sites of atom transfer radical polymerization (ATRP) onto β-CD cores. The disulfide-linked PGMA arms prepared subsequently via ATRP were functionalized via the ring-opening reaction with ethanolamine (EA) to produce the cationic EA-functionalized PGMA (PGEA) arms with plentiful secondary amine and nonionic hydroxyl units. The cationic PGEA arms can be readily cleavable from the β-CD cores under reducible conditions. Such biocleavable star-shaped CD-SS-PGEA vectors possessed the good pDNA condensation ability, low cytotoxicity, and efficient gene delivery ability.
Collapse
Affiliation(s)
- Y Hu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, College of Materials Science & Engineering, Beijing University of Chemical Technology, Beijing 100029 China
| | | | | | | |
Collapse
|
89
|
Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Self-assembling Modified β-Cyclodextrin Nanoparticles as Neuronal siRNA Delivery Vectors: Focus on Huntington’s Disease. Mol Pharm 2013; 10:640-9. [DOI: 10.1021/mp3003946] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bruno M. D. C. Godinho
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Cork,
Ireland
- Department of Anatomy
and Neuroscience, University College Cork, Cork, Ireland
| | - Julien R. Ogier
- Centre for
Synthesis and Chemical
Biology, University College Dublin, Dublin,
Ireland
| | - Raphael Darcy
- Centre for
Synthesis and Chemical
Biology, University College Dublin, Dublin,
Ireland
| | | | - John F. Cryan
- Department of Anatomy
and Neuroscience, University College Cork, Cork, Ireland
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
90
|
O’Mahony AM, Desgranges S, Ogier J, Quinlan A, Devocelle M, Darcy R, Cryan JF, O’Driscoll CM. In Vitro Investigations of the Efficacy of Cyclodextrin-siRNA Complexes Modified with Lipid-PEG-Octaarginine: Towards a Formulation Strategy for Non-viral Neuronal siRNA Delivery. Pharm Res 2012. [DOI: 10.1007/s11095-012-0945-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|