51
|
Rapid assessment of drug response in cancer cells using microwell array and molecular imaging. Anal Bioanal Chem 2014; 406:4195-206. [PMID: 24760393 DOI: 10.1007/s00216-014-7759-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/03/2014] [Accepted: 03/10/2014] [Indexed: 02/04/2023]
Abstract
Selection of personalized chemotherapy regimen for individual patients has significant potential to improve chemotherapy efficacy and to reduce the deleterious effects of ineffective chemotherapy drugs. In this study, a rapid and high-throughput in vitro drug response assay was developed using a combination of microwell array and molecular imaging. The microwell array provided high-throughput analysis of drug response, which was quantified based on the reduction in intracellular uptake (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose) (2-NBDG). Using this synergistic approach, the drug response measurement was completed within 4 h, and only a couple thousand cells were needed for quantification. The broader application of this microwell molecular imaging approach was demonstrated by evaluating the drug response of two cancer cell lines, cervical (HeLa) and bladder (5637) cancer cells, to two distinct classes of chemotherapy drugs (cisplatin and paclitaxel). This approach did not require an extended cell culturing period, and the quantification of cellular drug response was 4-16 times faster compared with other cell-microarray drug response studies. Moreover, this molecular imaging approach had comparable sensitivity to traditional cell viability assays, i.e., the MTT assay and propidium iodide labeling of cellular nuclei;and similar throughput results as flow cytometry using only 1,000-2,000 cells. Given the simplicity and robustness of this microwell molecular imaging approach, it is anticipated that the assay can be adapted to quantify drug responses in a wide range of cancer cells and drugs and translated to clinical settings for a rapid in vitro drug response using clinically isolated samples.
Collapse
|
52
|
Meli L, Barbosa HSC, Hickey AM, Gasimli L, Nierode G, Diogo MM, Linhardt RJ, Cabral JMS, Dordick JS. Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res 2014; 13:36-47. [PMID: 24816401 DOI: 10.1016/j.scr.2014.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/18/2014] [Accepted: 04/08/2014] [Indexed: 01/10/2023] Open
Abstract
We developed a three-dimensional (3D) cellular microarray platform for the high-throughput (HT) analysis of human neural stem cell (hNSC) growth and differentiation. The growth of an immortalized hNSC line, ReNcell VM, was evaluated on a miniaturized cell culture chip consisting of 60nl spots of cells encapsulated in alginate, and compared to standard 2D well plate culture conditions. Using a live/dead cell viability assay, we demonstrated that the hNSCs are able to expand on-chip, albeit with lower proliferation rates and viabilities than in conventional 2D culture platforms. Using an in-cell, on-chip immunofluorescence assay, which provides quantitative information on cellular levels of proteins involved in neural fate, we demonstrated that ReNcell VM can preserve its multipotent state during on-chip expansion. Moreover, differentiation of the hNSCs into glial progeny was achieved both off- and on-chip six days after growth factor removal, accompanied by a decrease in the neural progenitor markers. The versatility of the platform was further demonstrated by complementing the cell culture chip with a chamber system that allowed us to screen for differential toxicity of small molecules to hNSCs. Using this approach, we showed differential toxicity when evaluating three neurotoxic compounds and one antiproliferative compound, and the null effect of a non-toxic compound at relevant concentrations. Thus, our 3D high-throughput microarray platform may help predict, in vitro, which compounds pose an increased threat to neural development and should therefore be prioritized for further screening and evaluation.
Collapse
Affiliation(s)
- Luciana Meli
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Hélder S C Barbosa
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal
| | - Anne Marie Hickey
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Gregory Nierode
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Maria Margarida Diogo
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Joaquim M S Cabral
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Materials Science and Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
53
|
Ranga A, Gjorevski N, Lutolf MP. Drug discovery through stem cell-based organoid models. Adv Drug Deliv Rev 2014; 69-70:19-28. [PMID: 24582599 DOI: 10.1016/j.addr.2014.02.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/10/2014] [Accepted: 02/18/2014] [Indexed: 12/21/2022]
Abstract
The development of new drugs is currently a long and costly process in large part due to the failure of promising drug candidates identified in initial in vitro screens to perform as intended in vivo. New approaches to drug screening are being developed which focus on providing more biomimetic platforms. This review surveys this new generation of drug screening technologies, and provides an overview of recent developments in organoid culture systems which could afford previously unmatched fidelity for testing bioactivity and toxicity. The challenges inherent in such approaches will also be discussed, with a view towards bridging the gap between proof-of-concept studies and a wider implementation within the drug development community.
Collapse
|
54
|
Dunne LW, Huang Z, Meng W, Fan X, Zhang N, Zhang Q, An Z. Human decellularized adipose tissue scaffold as a model for breast cancer cell growth and drug treatments. Biomaterials 2014; 35:4940-9. [PMID: 24661550 DOI: 10.1016/j.biomaterials.2014.03.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/03/2014] [Indexed: 12/23/2022]
Abstract
Human adipose tissue extracellular matrix, derived through decellularization processing, has been shown to provide a biomimetic microenvironment for adipose tissue regeneration. This study reports the use of human adipose tissue-derived extracellular matrix (hDAM) scaffolds as a three-dimensional cell culturing system for the investigation of breast cancer growth and drug treatments. The hDAM scaffolds have similar extracellular matrix composition to the microenvironment of breast tissues. Breast cancer cells were cultured in hDAM scaffolds, and cell proliferation, migration, morphology, and drug responses were investigated. The growth profiles of multiple breast cancer cell lines cultured in hDAM scaffolds differed from the growth of those cultured on two-dimensional surfaces and more closely resembled the growth of xenografts. hDAM-cultured breast cancer cells also differed from those cultured on two-dimensional surfaces in terms of cell morphology, migration, expression of adhesion molecules, and sensitivity to drug treatment. Our results demonstrated that the hDAM system provides breast cancer cells with a biomimetic microenvironment in vitro that more closely mimics the in vivo microenvironment than existing two-dimensional and Matrigel three-dimensional cultures do, and thus can provide vital information for the characterization of cancer cells and screening of cancer therapeutics.
Collapse
Affiliation(s)
- Lina W Dunne
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Zhao Huang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX 77030, USA
| | - Weixu Meng
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX 77030, USA
| | - Xuejun Fan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX 77030, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX 77030, USA
| | - Qixu Zhang
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Zhiqiang An
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX 77030, USA.
| |
Collapse
|
55
|
Kavaliauskiene S, Nymark CM, Bergan J, Simm R, Sylvänne T, Simolin H, Ekroos K, Skotland T, Sandvig K. Cell density-induced changes in lipid composition and intracellular trafficking. Cell Mol Life Sci 2014; 71:1097-116. [PMID: 23921715 PMCID: PMC11113877 DOI: 10.1007/s00018-013-1441-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/11/2022]
Abstract
Cell density is one of the extrinsic factors to which cells adapt their physiology when grown in culture. However, little is known about the molecular changes which occur during cell growth and how cellular responses are then modulated. In many cases, inhibitors, drugs or growth factors used for in vitro studies change the rate of cell proliferation, resulting in different cell densities in control and treated samples. Therefore, for a comprehensive data analysis, it is essential to understand the implications of cell density on the molecular level. In this study, we have investigated how lipid composition changes during cell growth, and the consequences it has for transport of Shiga toxin. By quantifying 308 individual lipid species from 17 different lipid classes, we have found that the levels and species distribution of several lipids change during cell growth, with the major changes observed for diacylglycerols, phosphatidic acids, cholesterol esters, and lysophosphatidylethanolamines. In addition, there is a reduced binding and retrograde transport of Shiga toxin in high density cells which lead to reduced intoxication by the toxin. In conclusion, our data provide novel information on how lipid composition changes during cell growth in culture, and how these changes can modulate intracellular trafficking.
Collapse
Affiliation(s)
- Simona Kavaliauskiene
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carl-Martin Nymark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
| | - Jonas Bergan
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Roger Simm
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Tore Skotland
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
| | - Kirsten Sandvig
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Montebello, 0379 Oslo, Norway
- Center for Cancer Biomedicine, Oslo University Hospital, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
56
|
Sterner E, Masuko S, Li G, Li L, Green DE, Otto NJ, Xu Y, DeAngelis PL, Liu J, Dordick JS, Linhardt RJ. Fibroblast growth factor-based signaling through synthetic heparan sulfate blocks copolymers studied using high cell density three-dimensional cell printing. J Biol Chem 2014; 289:9754-65. [PMID: 24563485 DOI: 10.1074/jbc.m113.546937] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ~40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.
Collapse
Affiliation(s)
- Eric Sterner
- From the Department of Chemical and Biological Engineering
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Datta P, Meli L, Li L, Migliore N, Schaefer E, Sharfstein ST, Dordick JS, Linhardt RJ. Microarray platform affords improved product analysis in mammalian cell growth studies. Biotechnol J 2013; 9:386-395. [PMID: 24227746 DOI: 10.1002/biot.201300288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/06/2013] [Accepted: 11/12/2013] [Indexed: 01/06/2023]
Abstract
High throughput (HT) platforms serve as a cost-efficient and rapid screening method for evaluating the effect of cell-culture conditions and screening of chemicals. We report the development of a HT cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/methionine sulphoximine (MSX) CHO cell line, which produces a therapeutic monoclonal antibody, was examined using a microarray system in conjunction with a conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60-nL spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production, and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base medium results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the HT microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as cell growth, metabolism, and productivity.
Collapse
Affiliation(s)
- Payel Datta
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Luciana Meli
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Lingyun Li
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | | | | | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, University at Albany, Albany, NY
| | - Jonathan S Dordick
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Materials Science and Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Robert J Linhardt
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY.,Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|
58
|
Chang TT, Hughes-Fulford M. Molecular mechanisms underlying the enhanced functions of three-dimensional hepatocyte aggregates. Biomaterials 2013; 35:2162-71. [PMID: 24332390 DOI: 10.1016/j.biomaterials.2013.11.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) culture of hepatocytes leads to improved and prolonged synthetic and metabolic functions, but the underlying molecular mechanisms are unknown. In order to investigate the role of 3D cell-cell interactions in maintaining hepatocyte differentiated functions ex vivo, primary mouse hepatocytes were cultured either as monolayers on tissue culture dishes (TCD) or as 3D aggregates in rotating wall vessel (RWV) bioreactors. Global gene expression analyses revealed that genes upregulated in 3D culture were distinct from those upregulated during liver development and liver regeneration. Instead, they represented a diverse array of hepatocyte-specific functional genes with significant over-representation of hepatocyte nuclear factor 4α (Hnf4a) binding sites in their promoters. Expression of Hnf4a and many of its downstream target genes were significantly increased in RWV cultures as compared to TCD. Conversely, there was concomitant suppression of mesenchymal and cytoskeletal genes in RWV cultures that were induced in TCDs. These findings illustrate the importance of 3D cell-cell interactions in maintaining fundamental molecular pathways of hepatocyte function and serve as a basis for rational design of biomaterials that aim to optimize hepatocyte functions ex vivo for biomedical applications.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, CA 94143, USA; Liver Center, University of California, San Francisco, CA 94143, USA.
| | - Millie Hughes-Fulford
- Department of Medicine, University of California, San Francisco, CA 94143, USA; Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| |
Collapse
|
59
|
Handa K, Matsubara K, Fukumitsu K, Guzman-Lepe J, Watson A, Soto-Gutierrez A. Assembly of human organs from stem cells to study liver disease. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:348-57. [PMID: 24333262 DOI: 10.1016/j.ajpath.2013.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/04/2013] [Accepted: 11/18/2013] [Indexed: 01/01/2023]
Abstract
Recently, significant developments in the field of liver tissue engineering have raised new possibilities for the study of complex physiological and pathophysiological processes in vitro, as well as the potential to assemble entire organs for transplantation. Human-induced pluripotent stem cells have been differentiated into relatively functional populations of hepatic cells, and novel techniques to generate whole organ acellular three-dimensional scaffolds have been developed. In this review, we highlight the most recent advances in organ assembly regarding the development of liver tissue in vitro. We emphasize applications that involve multiple types of cells with a biomimetic spatial organization for which three-dimensional configurations could be used for drug development or to explain mechanisms of disease. We also discuss applications of liver organotypic surrogates and the challenges of translating the highly promising new field of tissue engineering into a proven platform for predicting drug metabolism and toxicity.
Collapse
Affiliation(s)
- Kan Handa
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Transplantation Section, Children's Hospital of Pittsburgh, Thomas E. Starzl Transplantation Institute and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kentaro Matsubara
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Transplantation Section, Children's Hospital of Pittsburgh, Thomas E. Starzl Transplantation Institute and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ken Fukumitsu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jorge Guzman-Lepe
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Transplantation Section, Children's Hospital of Pittsburgh, Thomas E. Starzl Transplantation Institute and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alicia Watson
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Transplantation Section, Children's Hospital of Pittsburgh, Thomas E. Starzl Transplantation Institute and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
60
|
Costa A, Sarmento B, Seabra V. An evaluation of the latestin vitrotools for drug metabolism studies. Expert Opin Drug Metab Toxicol 2013; 10:103-19. [DOI: 10.1517/17425255.2014.857402] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Srinivasan A, Gupta CM, Agrawal CM, Leung KP, Lopez-Ribot JL, Ramasubramanian AK. Drug susceptibility of matrix-encapsulated Candida albicans nano-biofilms. Biotechnol Bioeng 2013; 111:418-24. [PMID: 24114441 DOI: 10.1002/bit.25120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 01/31/2023]
Abstract
The rise in the use of biomedical devices and implants has seen a concomitant surge in the advent of device-related nosocomial (hospital-acquired) infections of bacterial and fungal origins. The most common nosocomial fungal infection is candidiasis caused mainly by Candida albicans biofilms. Candidiasis is associated with an unacceptably high mortality rate, and there is an urgent need for the discovery of new antifungal drugs that prevent or control biofilm formation. To this end, we recently developed an ultra-high-throughput microarray platform consisting of nano-scale biofilms of C. albicans encapsulated in collagen or alginate hydrogel matrices for antifungal drug screening. Here, we report that the choice of matrix influences the apparent susceptibility of C. albicans to the common antifungal drugs, amphotericin B, and caspofungin. While amphotericin B is equally effective against biofilms grown in collagen and alginate matrices, caspofungin is effective only against biofilms grown only in alginate, but not in collagen. We demonstrate differences in the distribution of the drugs in the two matrices may contribute to the susceptibility of C. albicans nano-biofilms. In a larger context, our results highlight the importance of the choice of matrix as a parameter in 3D cell encapsulation, and suggest a screening strategy to predict drug performance in vivo.
Collapse
Affiliation(s)
- Anand Srinivasan
- Department of Biomedical Engineering, The University of Texas at San Antonio, San Antonio, Texas, 78249
| | | | | | | | | | | |
Collapse
|
62
|
Haider C, Grubinger M, Řezníčková E, Weiss TS, Rotheneder H, Miklos W, Berger W, Jorda R, Zatloukal M, Gucky T, Strnad M, Kryštof V, Mikulits W. Novel inhibitors of cyclin-dependent kinases combat hepatocellular carcinoma without inducing chemoresistance. Mol Cancer Ther 2013; 12:1947-57. [PMID: 23939380 DOI: 10.1158/1535-7163.mct-13-0263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treatment options for hepatocellular carcinoma using chemotherapeutics at intermediate and advanced stages of disease are limited as patients most rapidly escape from therapy and succumb to disease progression. Mechanisms of the hepatic xenobiotic metabolism are mostly involved in providing chemoresistance to therapeutic compounds. Given the fact that the aberrant activation of cyclin-dependent kinases (CDK) is frequently observed in hepatocellular carcinomas, we focused on the efficacy of the novel compounds BA-12 and BP-14 that antagonize CDK1/2/5/7 and CDK9. Inhibition of those CDKs in human hepatocellular carcinoma cell lines reduced the clonogenicity by arresting cells in S-G2 and G2-M phase of the cell cycle and inducing apoptosis. In contrast, primary human hepatocytes failed to show cytotoxicity and apoptosis. No loss of chemosensitivity was observed in hepatocellular carcinoma cells after long-term exposure to inhibitors. In vivo, treatment of xenografted human hepatocellular carcinomas with BA-12 or BP-14 effectively repressed tumor formation. Moreover, BA-12 or BP-14 significantly diminished diethylnitrosamine (DEN)-induced hepatoma development in mice. These data show that BA-12 or BP-14 exhibit strong antitumorigenic effects in the absence of chemoresistance, resulting in a superior efficacy compared with currently used chemotherapeutics in hepatocellular carcinomas.
Collapse
Affiliation(s)
- Christine Haider
- Corresponding Author: Wolfgang Mikulits, Medical University Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Alginate-Based Biomaterials for Regenerative Medicine Applications. MATERIALS 2013; 6:1285-1309. [PMID: 28809210 PMCID: PMC5452316 DOI: 10.3390/ma6041285] [Citation(s) in RCA: 711] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/19/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023]
Abstract
Alginate is a natural polysaccharide exhibiting excellent biocompatibility and biodegradability, having many different applications in the field of biomedicine. Alginate is readily processable for applicable three-dimensional scaffolding materials such as hydrogels, microspheres, microcapsules, sponges, foams and fibers. Alginate-based biomaterials can be utilized as drug delivery systems and cell carriers for tissue engineering. Alginate can be easily modified via chemical and physical reactions to obtain derivatives having various structures, properties, functions and applications. Tuning the structure and properties such as biodegradability, mechanical strength, gelation property and cell affinity can be achieved through combination with other biomaterials, immobilization of specific ligands such as peptide and sugar molecules, and physical or chemical crosslinking. This review focuses on recent advances in the use of alginate and its derivatives in the field of biomedical applications, including wound healing, cartilage repair, bone regeneration and drug delivery, which have potential in tissue regeneration applications.
Collapse
|
64
|
Loessner D, Little JP, Pettet GJ, Hutmacher DW. A multiscale road map of cancer spheroids – incorporating experimental and mathematical modelling to understand cancer progression. J Cell Sci 2013; 126:2761-71. [DOI: 10.1242/jcs.123836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Computational models represent a highly suitable framework, not only for testing biological hypotheses and generating new ones but also for optimising experimental strategies. As one surveys the literature devoted to cancer modelling, it is obvious that immense progress has been made in applying simulation techniques to the study of cancer biology, although the full impact has yet to be realised. For example, there are excellent models to describe cancer incidence rates or factors for early disease detection, but these predictions are unable to explain the functional and molecular changes that are associated with tumour progression. In addition, it is crucial that interactions between mechanical effects, and intracellular and intercellular signalling are incorporated in order to understand cancer growth, its interaction with the extracellular microenvironment and invasion of secondary sites. There is a compelling need to tailor new, physiologically relevant in silico models that are specialised for particular types of cancer, such as ovarian cancer owing to its unique route of metastasis, which are capable of investigating anti-cancer therapies, and generating both qualitative and quantitative predictions. This Commentary will focus on how computational simulation approaches can advance our understanding of ovarian cancer progression and treatment, in particular, with the help of multicellular cancer spheroids, and thus, can inform biological hypothesis and experimental design.
Collapse
|