51
|
Bardania H, Tarvirdipour S, Dorkoosh F. Liposome-targeted delivery for highly potent drugs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1478-1489. [DOI: 10.1080/21691401.2017.1290647] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Shabnam Tarvirdipour
- Biomedical Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
52
|
Liu JP, Wang TT, Wang DG, Dong AJ, Li YP, Yu HJ. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers. Acta Pharmacol Sin 2017; 38:1-8. [PMID: 27569390 DOI: 10.1038/aps.2016.84] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022] Open
Abstract
The therapeutic outcome of chemotherapy is severely limited by intrinsic or acquired drug resistance, the most common causes of chemotherapy failure. In the past few decades, advancements in nanotechnology have provided alternative strategies for combating tumor drug resistance. Drug-loaded nanoparticles (NPs) have several advantages over the free drug forms, including reduced cytotoxicity, prolonged circulation in the blood and increased accumulation in tumors. Currently, however, nanoparticulate drugs have only marginally improved the overall survival rate in clinical trials because of the various pathophysiological barriers that exist in the tumor microenvironment, such as intratumoral distribution, penetration and intracellular trafficking, etc. Smart NPs with stimulus-adaptable physico-chemical properties have been extensively developed to improve the therapeutic efficacy of nanomedicine. In this review, we summarize the recent advances of employing smart NPs to treat the drug-resistant tumors by overcoming the pathophysiological barriers in the tumor microenvironment.
Collapse
|
53
|
Abstract
This review focuses on summarizing the existing work about nanomaterial-based cancer immunotherapy in detail.
Collapse
Affiliation(s)
- Lijia Luo
- Key Laboratory of Magnetic Materials and Devices
- CAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Rui Shu
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- Key Laboratory of Marine Materials and Related Technology
- CAS & Ningbo Institute of Materials Technology and Engineering
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices
- CAS & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, & Division of Functional Materials and Nanodevices
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| |
Collapse
|
54
|
Li Y, Humphries B, Wang Z, Lang S, Huang X, Xiao H, Jiang Y, Yang C. Complex Coacervation-Integrated Hybrid Nanoparticles Increasing Plasmid DNA Delivery Efficiency in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30735-30746. [PMID: 27781434 PMCID: PMC6457453 DOI: 10.1021/acsami.6b10306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Many polycation-based gene delivery vehicles have limited in vivo transfection efficiency because of their excessive exterior positive charges and/or PEGylation, both of which could result in premature dissociation and poor cellular uptake and trafficking. Here, we reported novel hybrid PEGylated nanoparticles (HNPs) that are composed of (a) poly(ethylene glycol)-b-poly(aspartate)-adamantane (PEG-P(asp)-Ad) constituting the outer PEG layer to provide colloidal stability; (b) poly(ethylenimine)10K (PEI10K) forming complex coacervate with P(asp) as the cross-linked cage preventing premature dissociation; (c) cyclodextrin-decorated PEI10K (PEI10K-CD) forming the core with reporter plasmid DNA (pDNA). These HNPs exhibited an increased stability and higher in vitro transfection efficiency compared to traditional PEGylated nanoparticles (PEG-NP). Intratumoral injections further demonstrated that HNPs were able to successfully deliver pDNAs into tumors, while PEG-NP and PEI25K had only negligible delivery efficiencies. Moreover, HNPs' in vivo stability and pDNA delivery capability post intravenous injection were also confirmed by live animal bioluminescence and fluorescence image analysis. It is likely that the coacervation integration at the interface of PEI10K-CD/pDNA core and the PEG shell attributed to the significantly improved in vivo transfection efficiency of HNPs over PEG-NP and PEI25K. This study suggests that the HNP has the potential for in vivo gene delivery applications with significantly improved gene transfection efficiency.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Pharmaceutics, Institute of Medicinal Biotechnology, Peking Union Medical College, Beijing 100050, People’s Republic of China
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Brock Humphries
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Zhishan Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Shuyao Lang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Chengfeng Yang
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Toxicology and Cancer Biology and Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
- Cellular and Molecular Biology Graduate Program, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Corresponding Author Tel: +1-859-323-4641. Fax: +1-859-323-1059.
| |
Collapse
|
55
|
Majzoub RN, Ewert KK, Safinya CR. Cationic liposome-nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150129. [PMID: 27298431 PMCID: PMC4920278 DOI: 10.1098/rsta.2015.0129] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 05/29/2023]
Abstract
Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL-nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL-DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL-siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL-DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL-DNA and CL-siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivo. This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, USA Department of Physics, University of California, Santa Barbara, CA 93106, USA Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
56
|
Kim JS, Kang SJ, Jeong HY, Kim MW, Park SI, Lee YK, Kim HS, Kim KS, Park YS. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy. Int J Oncol 2016; 49:1130-8. [DOI: 10.3892/ijo.2016.3619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
|
57
|
Majzoub RN, Wonder E, Ewert KK, Kotamraju VR, Teesalu T, Safinya CR. Rab11 and Lysotracker Markers Reveal Correlation between Endosomal Pathways and Transfection Efficiency of Surface-Functionalized Cationic Liposome-DNA Nanoparticles. J Phys Chem B 2016; 120:6439-53. [PMID: 27203598 PMCID: PMC4936928 DOI: 10.1021/acs.jpcb.6b04441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cationic liposomes (CLs) are widely studied as carriers of DNA and short-interfering RNA for gene delivery and silencing, and related clinical trials are ongoing. Optimization of transfection efficiency (TE) requires understanding of CL-nucleic acid nanoparticle (NP) interactions with cells, NP endosomal pathways, endosomal escape, and events leading to release of active nucleic acid from the lipid carrier. Here, we studied endosomal pathways and TE of surface-functionalized CL-DNA NPs in PC-3 prostate cancer cells displaying overexpressed integrin and neuropilin-1 receptors. The NPs contained RGD-PEG-lipid or RPARPAR-PEG-lipid, targeting integrin, and neuropilin-1 receptors, respectively, or control PEG-lipid. Fluorescence colocalization using Rab11-GFP and Lysotracker enabled simultaneous colocalization of NPs with recycling endosome (Rab11) and late endosome/lysosome (Rab7/Lysotracker) pathways at increasing mole fractions of pentavalent MVL5 (+5 e) at low (10 mol %), high (50 mol %), and very high (70 mol %) membrane charge density (σM). For these cationic NPs (lipid/DNA molar charge ratio, ρchg = 5), the influence of membrane charge density on pathway selection and transfection efficiency is similar for both peptide-PEG NPs, although, quantitatively, the effect is larger for RGD-PEG compared to RPARPAR-PEG NPs. At low σM, peptide-PEG NPs show preference for the recycling endosome over the late endosome/lysosome pathway. Increases in σM, from low to high, lead to decreases in colocalization with recycling endosomes and simultaneous increases in colocalization with the late endosome/lysosome pathway. Combining colocalization and functional TE data at low and high σM shows that higher TE correlates with a larger fraction of NPs colocalized with the late endosome/lysosome pathway while lower TE correlates with a larger fraction of NPs colocalized with the Rab11 recycling pathway. The findings lead to a hypothesis that increases in σM, leading to enhanced late endosome/lysosome pathway selection and higher TE, result from increased nonspecific electrostatic attractions between NPs and endosome luminal membranes, and conversely, enhanced recycling pathway for NPs and lower TE are due to weaker attractions. Surprisingly, at very high σM, the inverse relation between the two pathways observed at low and high σM breaks down, pointing to a more complex NP pathway behavior.
Collapse
Affiliation(s)
- Ramsey N. Majzoub
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| | - Emily Wonder
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| | - Kai K. Ewert
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States of America
| | - Tambet Teesalu
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States of America
- Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, United States of America
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Cyrus R. Safinya
- Physics Department, Materials Department, and Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, California 93106, United States of America
| |
Collapse
|
58
|
Saha K, Rahimi M, Yazdani M, Kim ST, Moyano DF, Hou S, Das R, Mout R, Rezaee F, Mahmoudi M, Rotello VM. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS NANO 2016; 10:4421-30. [PMID: 27040442 PMCID: PMC5696791 DOI: 10.1021/acsnano.6b00053] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of chemical motifs on NP surface. The NPs were uptaken in macrophages in a corona-dependent manner, predominantly through recognition of specific complement proteins in the NP corona. Taken together, this study shows that surface functionality can be used to tune the protein corona formed on NP surface, dictating the interaction of NPs with macrophages.
Collapse
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Mehran Rahimi
- Department of Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen
| | - Mahdieh Yazdani
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Sung Tae Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Daniel F. Moyano
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Singyuk Hou
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Ridhha Das
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Farhad Rezaee
- University Medical Center Groningen (UMCG) University of Groningen, Groningen, The Netherlands
| | - Morteza Mahmoudi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford University, CA, USA
- Address correspondence to: (MM) ; (VMR)
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
- Address correspondence to: (MM) ; (VMR)
| |
Collapse
|
59
|
Ewert KK, Kotamraju VR, Majzoub RN, Steffes VM, Wonder EA, Teesalu T, Ruoslahti E, Safinya CR. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. Bioorg Med Chem Lett 2016. [PMID: 26874401 DOI: 10.1016/lbmcl.2016.0l079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.
Collapse
Affiliation(s)
- Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Victoria M Steffes
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Emily A Wonder
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Tambet Teesalu
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
60
|
Ewert KK, Kotamraju VR, Majzoub RN, Steffes VM, Wonder EA, Teesalu T, Ruoslahti E, Safinya CR. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. Bioorg Med Chem Lett 2016; 26:1618-1623. [PMID: 26874401 DOI: 10.1016/j.bmcl.2016.01.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 11/29/2022]
Abstract
Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles.
Collapse
Affiliation(s)
- Kai K Ewert
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| | - Venkata Ramana Kotamraju
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States
| | - Ramsey N Majzoub
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Victoria M Steffes
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Emily A Wonder
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Tambet Teesalu
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States; Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia
| | - Erkki Ruoslahti
- Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, United States; Center for Nanomedicine and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States
| | - Cyrus R Safinya
- Department of Materials, University of California, Santa Barbara, CA 93106, United States; Department of Physics, University of California, Santa Barbara, CA 93106, United States; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, United States.
| |
Collapse
|
61
|
Kooijmans S, Fliervoet L, van der Meel R, Fens M, Heijnen H, van Bergen en Henegouwen P, Vader P, Schiffelers R. PEGylated and targeted extracellular vesicles display enhanced cell specificity and circulation time. J Control Release 2016; 224:77-85. [DOI: 10.1016/j.jconrel.2016.01.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/30/2022]
|
62
|
Majzoub RN, Ewert KK, Safinya CR. Quantitative Intracellular Localization of Cationic Lipid-Nucleic Acid Nanoparticles with Fluorescence Microscopy. Methods Mol Biol 2016; 1445:77-108. [PMID: 27436314 PMCID: PMC4957706 DOI: 10.1007/978-1-4939-3718-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current activity in developing synthetic carriers of nucleic acids (NA) and small molecule drugs for therapeutic applications is unprecedented. One promising class of synthetic vectors for the delivery of therapeutic NA is PEGylated cationic liposome (CL)-NA nanoparticles (NPs). Chemically modified PEG-lipids can be used to surface-functionalize lipid-NA nanoparticles, allowing researchers to design active nanoparticles that can overcome the various intracellular and extracellular barriers to efficient delivery. Optimization of these functionalized vectors requires a comprehensive understanding of their intracellular pathways. In this chapter we present two distinct methods for investigating the intracellular activity of PEGylated CL-NA NPs using quantitative analysis with fluorescence microscopy.The first method, spatial localization, describes how to prepare fluorescently labeled CL-NA NPs, perform fluorescence microscopy and properly analyze the data to measure the intracellular distribution of nanoparticles and fluorescent signal. We provide software which allows data from multiple cells to be averaged together and yield statistically significant results. The second method, fluorescence colocalization, describes how to label endocytic organelles via Rab-GFPs and generate micrographs for software-assisted NP-endocytic marker colocalization measurements. These tools will allow researchers to study the endosomal trafficking of CL-NA NPs which can guide their design and improve their efficiency.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Physics Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Molecular, Cellular and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
| | - Kai K Ewert
- Physics Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
- Molecular, Cellular and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA
| | - Cyrus R Safinya
- Physics Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA.
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA.
- Molecular, Cellular and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93117, USA.
| |
Collapse
|
63
|
Rombouts K, Braeckmans K, Remaut K. Fluorescent Labeling of Plasmid DNA and mRNA: Gains and Losses of Current Labeling Strategies. Bioconjug Chem 2015; 27:280-97. [PMID: 26670733 DOI: 10.1021/acs.bioconjchem.5b00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Live-cell imaging has provided the life sciences with insights into the cell biology and dynamics. Fluorescent labeling of target molecules proves to be indispensable in this regard. In this Review, we focus on the current fluorescent labeling strategies for nucleic acids, and in particular mRNA (mRNA) and plasmid DNA (pDNA), which are of interest to a broad range of scientific fields. By giving a background of the available techniques and an evaluation of the pros and cons, we try to supply scientists with all the information needed to come to an informed choice of nucleic acid labeling strategy aimed at their particular needs.
Collapse
Affiliation(s)
- K Rombouts
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Braeckmans
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| | - K Remaut
- Laboratory of general biochemistry and physical pharmacy, Faculty of pharmacy and ‡Centre for Nano- and Biophotonics, Ghent University , Ghent 9000, Belgium
| |
Collapse
|
64
|
Abstract
RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems.
Collapse
Affiliation(s)
- Hojun Kim
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
65
|
DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1996-2001. [DOI: 10.1016/j.bbamem.2015.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/18/2015] [Accepted: 06/19/2015] [Indexed: 11/20/2022]
|
66
|
Majzoub RN, Ewert KK, Jacovetty EL, Carragher B, Potter CS, Li Y, Safinya CR. Patterned Threadlike Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome-DNA Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7073-7083. [PMID: 26048043 PMCID: PMC4554524 DOI: 10.1021/acs.langmuir.5b00993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electron microscopy (cryo-EM), optical light scattering, and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene glycol)) cationic liposome-DNA nanoparticles (CL-DNA NPs) as a function of DNA length, topology (linear and circular), and ρ(chg) (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied exhibited lamellar internal nanostructure, NPs formed with short (∼2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρ(chg) > 1, in the excess cationic lipid regime, threadlike micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes, and spherical micelles. At high concentrations these PEGylated threadlike micelles formed a well-ordered, patterned morphology with highly uniform intermicellar spacing. At ρ(chg) < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight into what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered threadlike micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multifunctional nanoparticle networks.
Collapse
Affiliation(s)
- Ramsey N. Majzoub
- Department of Physics, Department of Materials, and Molecular, Cellular and Developmental, Biology Department, University of California, Santa Barbara CA 93106, USA
| | - Kai K. Ewert
- Department of Physics, Department of Materials, and Molecular, Cellular and Developmental, Biology Department, University of California, Santa Barbara CA 93106, USA
| | - Erica L. Jacovetty
- National Resource for Automated Molecular Microscopy, Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La, Jolla, CA 92037, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La, Jolla, CA 92037, USA
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La, Jolla, CA 92037, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara CA 93106, USA
| | - Cyrus R. Safinya
- Department of Physics, Department of Materials, and Molecular, Cellular and Developmental, Biology Department, University of California, Santa Barbara CA 93106, USA
| |
Collapse
|
67
|
Pang C, Brunelli A, Zhu C, Hristozov D, Liu Y, Semenzin E, Wang W, Tao W, Liang J, Marcomini A, Chen C, Zhao B. Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Nanotoxicology 2015; 10:129-39. [DOI: 10.3109/17435390.2015.1024295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
68
|
Majzoub RN, Chan CL, Ewert KK, Silva BFB, Liang KS, Safinya CR. Fluorescence microscopy colocalization of lipid-nucleic acid nanoparticles with wildtype and mutant Rab5-GFP: A platform for investigating early endosomal events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1308-18. [PMID: 25753113 DOI: 10.1016/j.bbamem.2015.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 11/19/2022]
Abstract
Endosomal entrapment is known to be a major bottleneck to successful cytoplasmic delivery of nucleic acids (NAs) using cationic liposome-NA nanoparticles (NPs). Quantitative measurements of distributions of NPs within early endosomes (EEs) have proven difficult due to the sub-resolution size and short lifetime of wildtype EEs. In this study we used Rab5-GFP, a member of the large family of GTPases which cycles between the plasma membrane and early endosomes, to fluorescently label early endosomes. Using fluorescence microscopy and quantitative image analysis of cells expressing Rab5-GFP, we found that at early time points (t<1h), only a fraction (≈35%) of RGD-tagged NPs (which target cell surface integrins) colocalize with wildtype EEs, independent of the NP's membrane charge density. In comparison, a GTP-hydrolysis deficient mutant, Rab5-Q79L, which extends the size and lifetime of EEs yielding giant early endosomes (GEEs), enabled us to resolve and localize individual NPs found within the GEE lumen. Remarkably, nearly all intracellular NPs are found to be trapped within GEEs implying little or no escape at early time points. The observed small degree of colocalization of NPs and wildtype Rab5 is consistent with recycling of Rab5-GDP to the plasma membrane and not indicative of NP escape from EEs. Taken together, our results show that endosomal escape of PEGylated nanoparticles occurs downstream of EEs i.e., from late endosomes/lysosomes. Our studies also suggest that Rab5-Q79L could be used in a robust imaging assay which allows for direct visualization of NP interactions with the luminal membrane of early endosomes.
Collapse
Affiliation(s)
- Ramsey N Majzoub
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Chia-Ling Chan
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Institute of Physics, Academica Sinica, Taipei 11529, Taiwan; National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kai K Ewert
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Bruno F B Silva
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA; Division of Physical Chemistry, Centre for Chemistry and Chemical Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan; Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Cyrus R Safinya
- Department of Physics, University of California, Santa Barbara, CA 93106, USA; Department of Materials, University of California, Santa Barbara, CA 93106, USA; Molecular, Cellular and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
69
|
Tian B, Zhang X, Yu C, Zhou M, Zhang X. The aspect ratio effect of drug nanocrystals on cellular internalization efficiency, uptake mechanisms, and in vitro and in vivo anticancer efficiencies. NANOSCALE 2015; 7:3588-3593. [PMID: 25630950 DOI: 10.1039/c4nr06743f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, we investigated the aspect ratio (AR) effect of anticancer drug nanocrystals (NCs) on their cellular internalization efficiency, uptake mechanisms, biodistributions as well as in vitro and in vivo antitumor efficiencies. Both confocal imaging and flow cytometry show that shorter NCs with AR = 1.3 have a much faster cellular uptake rate and a much higher anticancer efficacy than longer NCs. All NCs with different ARs were found to enter the cells via an energy-dependent clathrin-mediated pathway. In vivo experiments indicate that NCs with higher ARs have a shorter half-life and are more easily captured by the liver, while the corresponding tumor uptake decreased. We also observed that NCs with the smallest AR have the highest therapeutic efficacy with appreciably less weight loss. These results would assist in the future design of drug NCs and may lead to the development of new drug nanostructures for biomedical applications.
Collapse
Affiliation(s)
- Baishun Tian
- Functional Nano & Soft Materials Laboratory (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | | | |
Collapse
|
70
|
Yao N, Yan P, Wang RF, Zhang CL, Ma C, Chen XQ, Zhao Q, Hao P. Detection of pulmonary metastases with the novel radiolabeled molecular probe, (99m)Tc-RRL. Int J Clin Exp Med 2015; 8:1726-36. [PMID: 25932101 PMCID: PMC4402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND To improve the detection of pulmonary metastases, experimental blood-borne pulmonary metastasis mouse models were established using three intravenously administered cell lines. In a previous study we demonstrated that (99m)Tc-radiolabeled arginine-arginine-leucine (RRL) could be used to non-invasively image malignant tumors. METHODS (99m)Tc-RRL was prepared and injected intravenously in mice with pulmonary metastases that arose from the intravenous injection of HepG2, B16, and Hela cells. The bio-distribution and imaging of (99m)Tc-RRL were determined in different pulmonary metastases mouse models and in normal mice. RESULTS (99m)Tc-RRL exhibited higher uptake values in the lungs of pulmonary metastatic mice compared to normal mice (P<0.05; 3.92±0.48% ID/g 2 h post-injection and 3.89±0.36% ID/g 4 h post-injection in metastatic hepatic carcinoma [HepG2]-bearing lungs; 5.49±0.84% ID/g 2 h post-injection and 5.11±0.75% ID/g 4 h post-injection in metastatic melanoma [B16]-bearing lungs; 3.72±0.52% ID/g 2 h post-injection and 3.51±0.35% ID/g 4 h post-injection in metastatic cervical carcinoma [Hela]-bearing lungs; 2.38±0.20% ID/g 2 h post-injection and 2.11±0.24% ID/g 4 h post-injection in normal lungs). The pulmonary metastatic lesions were clearly visualized using (99m)Tc-RRL. CONCLUSIONS (99m)Tc-RRL exhibited favorable metastatic tumor targeting and imaging properties, thus highlighting its potential as an effective imaging probe for detection of pulmonary metastases. (99m)Tc-RRL can be used as a reasonable supplement to (18)F-FDG imaging in the non-invasive imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Ning Yao
- Department of Nuclear Medicine, Peking University First HospitalWest District, Beijing 100034, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First HospitalWest District, Beijing 100034, China
| | - Rong-Fu Wang
- Department of Nuclear Medicine, Peking University First HospitalWest District, Beijing 100034, China
| | - Chun-Li Zhang
- Department of Nuclear Medicine, Peking University First HospitalWest District, Beijing 100034, China
| | - Chao Ma
- Department of Nuclear Medicine, Peking University First HospitalWest District, Beijing 100034, China
| | - Xue-Qi Chen
- Department of Nuclear Medicine, Peking University First HospitalWest District, Beijing 100034, China
| | - Qian Zhao
- Department of Nuclear Medicine, General Hospital of Ningxia Medical UniversityXingqing District, Yinchuan 750004, Ningxia, China
| | - Pan Hao
- Department of Nuclear Medicine, Peking University First HospitalWest District, Beijing 100034, China
| |
Collapse
|
71
|
Chan CL, Ewert KK, Majzoub RN, Hwu YK, Liang KS, Leal C, Safinya CR. Optimizing cationic and neutral lipids for efficient gene delivery at high serum content. J Gene Med 2015; 16:84-96. [PMID: 24753287 DOI: 10.1002/jgm.2762] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/14/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential application in gene therapy. A key challenge in creating CL-DNA complexes for application is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of a high serum content on TE, even though this may provide design guidelines for application in vivo. METHODS We prepared CL-DNA complexes in which we varied the neutral lipid [1,2-dioleoyl-sn-glycerophosphatidylcholine, glycerol-monooleate (GMO), cholesterol], the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). RESULTS In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, particularly at a high serum content. CONCLUSIONS Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We propose guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid.
Collapse
Affiliation(s)
- Chia-Ling Chan
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA.,Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Kai K Ewert
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| | - Ramsey N Majzoub
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| | - Yeu-Kuang Hwu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Keng S Liang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Department of Electrophysics, National Chiao-Tung University, Hsinchu 30010, Taiwan
| | - Cecília Leal
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Department of Materials, Department of Physics, and Molecular, Cellular & Developmental Biology Department, University of California at Santa Barbara, California 93106, USA
| |
Collapse
|
72
|
Safinya CR, Ewert KK, Majzoub RN, Leal C. Cationic liposome-nucleic acid complexes for gene delivery and gene silencing. NEW J CHEM 2014; 38:5164-5172. [PMID: 25587216 PMCID: PMC4288823 DOI: 10.1039/c4nj01314j] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cationic liposomes (CLs) are studied worldwide as carriers of DNA and short interfering RNA (siRNA) for gene delivery and gene silencing, and related clinical trials are ongoing. Optimization of transfection efficiency and silencing efficiency by cationic liposome carriers requires a comprehensive understanding of the structures of CL-nucleic acid complexes and the nature of their interactions with cell membranes as well as events leading to release of active nucleic acids within the cytoplasm. Synchrotron x-ray scattering has revealed that CL-nucleic acid complexes spontaneously assemble into distinct liquid crystalline phases including the lamellar, inverse hexagonal, hexagonal, and gyroid cubic phases, and fluorescence microscopy has revealed CL-DNA pathways and interactions with cells. The combining of custom synthesis with characterization techniques and gene expression and silencing assays has begun to unveil structure-function relations in vitro. As a recent example, this review will briefly describe experiments with surface-functionalized PEGylated CL-DNA nanoparticles. The functionalization, which is achieved through custom synthesis, is intended to address and overcome cell targeting and endosomal escape barriers to nucleic acid delivery faced by PEGylated nanoparticles designed for in vivo applications.
Collapse
Affiliation(s)
- Cyrus R Safinya
- Materials, Physics, and Molecular, Cellular, & Developmental Biology Departments, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Materials Science & Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ramsey N Majzoub
- Materials Science & Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Cecília Leal
- Materials Science & Engineering Department, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
73
|
Miao T, Rao KS, Spees JL, Oldinski RA. Osteogenic differentiation of human mesenchymal stem cells through alginate-graft-poly(ethylene glycol) microsphere-mediated intracellular growth factor delivery. J Control Release 2014; 192:57-66. [PMID: 24979209 DOI: 10.1016/j.jconrel.2014.06.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 01/18/2023]
Abstract
The intracellular delivery of growth factors increases opportunities for controlling cell behavior and maintaining tissue homeostasis. Recently, VEGFA was reported to enhance osteogenic differentiation of mesenchymal stem cells (MSCs) through an intracrine mechanism, suggesting a new strategy to promote bone tissue formation in osteoporotic patients. The goal of this study was to design and fabricate ligand-conjugated alginate-graft-poly(ethylene glycol) microspheres for intracellular delivery and release of VEGFA in primary human MSCs to enhance osteogenic differentiation as a potential therapeutic. Three types of microspheres were synthesized and characterized by scanning electron microscopy, in vitro drug release kinetics, MSC uptake and internalization: alginate alone (Alg), alginate-graft-poly(ethylene glycol) (Alg-g-PEG) and alginate-graft-poly(ethylene glycol)-S-S-arginine-glycine-aspartic acid (Alg-g-RGD). Each of the different microsphere formulations successfully transported bioactive VEGFA into primary human MSCs within 48h of culture, and significantly enhanced osteogenic differentiation compared to control treatments with empty microspheres (intracellular control) or non-encapsulated VEGFA (extracellular control). Adipogenic differentiation was not affected by the presence of VEGFA intracellularly or extracellularly. These results demonstrating the internalization of alginate-based microspheres and intracellular delivery of VEGFA support the efficacy of using this drug delivery and intracrine mechanism to control the fate of human MSCs and enhance osteogenic differentiation.
Collapse
Affiliation(s)
- Tianxin Miao
- Bioengineering Program, College of Engineering and Mathematical Sciences, College of Medicine, University of Vermont, Burlington VT 05405, USA.
| | - Krithika S Rao
- Cell and Molecular Biology Graduate Program, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | - Jeffrey L Spees
- Cell and Molecular Biology Graduate Program, College of Medicine, University of Vermont, Burlington, VT 05405, USA; Stem Cell Core, University of Vermont, Colchester, VT 05446, USA.
| | - Rachael A Oldinski
- Bioengineering Program, College of Engineering and Mathematical Sciences, College of Medicine, University of Vermont, Burlington VT 05405, USA; Mechanical Engineering Program, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT 05405, USA; Department of Orthopaedics and Rehabilitation, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
74
|
Abstract
Nonviral vectors which offer a safer and versatile alternative to viral vectors have been developed to overcome problems caused by viral carriers. However, their transfection efficacy or level of expression is substantially lower than viral vectors. Among various nonviral gene vectors, lipid nanoparticles are an ideal platform for the incorporation of safety and efficacy into a single delivery system. In this chapter, we highlight current lipidic vectors that have been developed for gene therapy of tumors and other diseases. The pharmacokinetic, toxic behaviors and clinic trials of some successful lipids particles are also presented.
Collapse
|