51
|
Dorozhkin SV. Functionalized calcium orthophosphates (CaPO 4) and their biomedical applications. J Mater Chem B 2019; 7:7471-7489. [PMID: 31738354 DOI: 10.1039/c9tb01976f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Due to the chemical similarity to natural calcified tissues (bones and teeth) of mammals, calcium orthophosphates (abbreviated as CaPO4) appear to be good biomaterials for creation of artificial bone grafts. However, CaPO4 alone have some restrictions, which limit their biomedical applications. Various ways have been developed to improve the properties of CaPO4 and their functionalization is one of them. Namely, since surfaces always form the interfaces between implanted grafts and surrounding tissues, the state of CaPO4 surfaces plays a crucial role in the survival of bone grafts. Although the biomedically relevant CaPO4 possess the required biocompatible properties, some of their properties could be better. For example, functionalization of CaPO4 to enhance cell attachment and cell material interactions has been developed. In addition, to prepare stable formulations from nanodimensional CaPO4 particles and prevent them from agglomerating, the surfaces of CaPO4 particles are often functionalized by sorption of special chemicals. Furthermore, there are functionalizations in which CaPO4 are exposed to various types of physical treatments. This review summarizes the available knowledge on CaPO4 functionalizations and their biomedical applications.
Collapse
|
52
|
Deegan AJ, Hendrikson WJ, El Haj AJ, Rouwkema J, Yang Y. Regulation of endothelial cell arrangements within hMSC - HUVEC co-cultured aggregates. Biomed J 2019; 42:166-177. [PMID: 31466710 PMCID: PMC6717755 DOI: 10.1016/j.bj.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/25/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Micro-mass culturing or cellular aggregation is an effective method used to form mineralised bone tissue. Poor core cell viability, however, is often an impeding characteristic of large micro-mass cultures, and equally for large tissue-engineered bone grafts. Because of this, efforts are being made to enhance large graft perfusion, often through pre-vascularisation, which involves the co-culture of endothelial cells and bone cells or stem cells. Methods This study investigated the effects of different aggregation techniques and culture conditions on endothelial cell arrangements in mesenchymal stem cell and human umbilical vein endothelial cell co-cultured aggregates when endothelial cells constituted just 5%. Two different cellular aggregation techniques, i.e. suspension culture aggregation and pellet culture aggregation, were applied alongside two subsequent culturing techniques, i.e. hydrostatic loading and static culturing. Endothelial cell arrangements were assessed under such conditions to indicate potential pre-vascularisation. Results Our study found that the suspension culture aggregates cultured under hydrostatic loading offered the best environment for enhanced endothelial cell regional arrangements, closely followed by the pellet culture aggregates cultured under hydrostatic loading, the suspension culture aggregates cultured under static conditions, and the pellet culture aggregates cultured under static conditions. Conclusions The combination of particular aggregation techniques with dynamic culturing conditions appeared to have a synergistic effect on the cellular arrangements within the co-cultured aggregates.
Collapse
Affiliation(s)
- Anthony J Deegan
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Wim J Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, AE, the Netherlands
| | - Alicia J El Haj
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, the Netherlands
| | - Ying Yang
- Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
53
|
Ou L, Lan Y, Feng Z, Feng L, Yang J, Liu Y, Bian L, Tan J, Lai R, Guo R. Functionalization of SF/HAP Scaffold with GO-PEI-miRNA inhibitor Complexes to Enhance Bone Regeneration through Activating Transcription Factor 4. Am J Cancer Res 2019; 9:4525-4541. [PMID: 31285777 PMCID: PMC6599658 DOI: 10.7150/thno.34676] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Evidence indicates that microRNAs (miRNAs) play vital roles in regulating osteogenic differentiation and bone formation. Methods: Here, we show that a polyethyleneimine (PEI)-functionalized graphene oxide (GO) complex efficiently loaded with the miR-214 inhibitor is assembled into silk fibroin/hydroxyapatite (SF/HAP) scaffolds that spatially control the release of the miR-214 inhibitor. Results: SF/HAP/GO scaffolds with nanosized GO show high mechanical strength, and their hierarchical microporous structures promote cell adhesion and growth. The SF/HAP/GO-PEI scaffolds loaded with mir-214 inhibitor (SF/HAP/GPM) were tested for their ability to enhance osteogenic differentiation by inhibiting the expression of miR-214 while inversely increasing the expression of activating transcription factor 4 (ATF4) and activating the Akt and ERK1/2 signaling pathways in mouse osteoblastic cells (MC3T3-E1) in vitro. Similarly, the scaffolds activated the osteoblastic activity of endogenous osteoblast cells to repair critical-sized bone defects in rats without the need for loading osteoblast cells. Conclusion: This technology is used to increase osteogenic differentiation and mineralized bone formation in bone defects, which helps to achieve cell-free scaffold-based miRNA-inhibitor therapy for bone tissue engineering.
Collapse
|
54
|
Wu B, Li Y, Nie N, Xu J, An C, Liu Y, Wang Y, Chen Y, Gong L, Li Q, Giusto E, Bunpetch V, Zhang D, Ouyang H, Zou X. Nano genome altas (NGA) of body wide organ responses. Biomaterials 2019; 205:38-49. [DOI: 10.1016/j.biomaterials.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
55
|
Zhang Q, Ma L, Zheng S, Wang Y, Feng M, Shuai Y, Duan B, Fan X, Yang M, Mao C. Air-plasma treatment promotes bone-like nano-hydroxylapatite formation on protein films for enhanced in vivo osteogenesis. Biomater Sci 2019; 7:2326-2334. [PMID: 30907916 PMCID: PMC6555639 DOI: 10.1039/c9bm00020h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introducing hydroxylapatite (HAp) into biomolecular materials is a promising approach to improve their bone regenerative capability. Thus a facile method needs to be developed to achieve this goal. Here we show that a simple air-plasma treatment of silk fibroin (SF) films for 5 min induced the formation of bone-like plate-shaped nano-HAp (nHAp) on their surface and the resultant material efficiently enhanced in vivo osteogenesis. The air-plasma-treated SF films (termed A-SF) presented surface nano-pillars and enhanced hydrophilicity compared to the pristine SF films (termed SF), making the A-SF and SF films induce the formation of plate-shaped/more-crystalline and needle-like/less-crystalline nHAp, respectively. The mineralized A-SF and SF films (termed A-SF-nHAp and SF-nHAp, respectively) and their non-mineralized counterparts were seeded with rat mesenchymal stem cells and subcutaneously implanted into the rat models. The A-SF-nHAp and A-SF films exhibited more efficient bone formation than the SF-nHAp and SF films in 4 weeks due to their unique nanotopography, with the A-SF-nHAp films being more efficient than the A-SF films. This work shows that a combination of the air-plasma treatment and the subsequent nHAp mineralization most efficiently promotes bone formation. Our plasma-based method is an attractive approach to enhance the bone regenerative capacity of protein-based biomaterials.
Collapse
Affiliation(s)
- Qing Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019; 5:2054-2078. [PMID: 33405710 DOI: 10.1021/acsbiomaterials.8b01560] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Rocktotpal Konwarh
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa−16417, Ethiopia
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| |
Collapse
|
57
|
Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
58
|
Lan C, Xiang X, Gao X, Sun D, Pan Y, Li J. Cellular Compatibility Analysis of nHAp/PPC Membrane. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chuanjian Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling (School and Hospital of Stomatology, Jilin University)
| | - Xingchen Xiang
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University
| | - Xing Gao
- Department of Preventive Dentistry, School and Hospital of Stomatology, Jilin University
| | - Duo Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Yongsheng Pan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Jiang Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| |
Collapse
|
59
|
He W, Fan Y, Li X. [Recent research progress of bioactivity mechanism and application of bone repair materials]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1107-1115. [PMID: 30129343 DOI: 10.7507/1002-1892.201807039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Large bone defect repair is a difficult problem to be solved urgently in orthopaedic field, and the application of bone repair materials is a feasible method to solve this problem. Therefore, bone repair materials have been continuously developed, and have evolved from autogenous bone grafts, allograft bone grafts, and inert materials to highly active and multifunctional bone tissue engineering scaffold materials. In this paper, the related mechanism of bone repair materials, the application of bone repair materials, and the exploration of new bone repair materials are introduced to present the research status and advance of the bone repair materials, and the development direction is also prospected.
Collapse
Affiliation(s)
- Wei He
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P.R.China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| | - Xiaoming Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, P.R.China;Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083,
| |
Collapse
|
60
|
Ma D, Wang Y, Dai W. Silk fibroin-based biomaterials for musculoskeletal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:456-469. [DOI: 10.1016/j.msec.2018.04.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
|
61
|
Yang X, Li Y, Liu X, Zhang R, Feng Q. In Vitro Uptake of Hydroxyapatite Nanoparticles and Their Effect on Osteogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:2036176. [PMID: 30018644 PMCID: PMC6029469 DOI: 10.1155/2018/2036176] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
There have been many applications in biomedical fields based on hydroxyapatite nanoparticles (HA NPs) over the past decades. However, the biocompatibility of HANPs is affected by exposure dose, particle size, and the way of contact with cells. The objective of this study is to investigate the effect of HA NPs with different sizes on osteogenesis using human mesenchymal stem cells (hMSCs). Three different-sized HA NPs (~50, ~100, and ~150 nm, resp.) were synthesized to study the cytotoxicity, cellular uptake, and effect on osteogenic differentiation of hMSCs. The results clearly showed that each size of HA NPs had dose-dependent cytotoxicity on hMSCs. It was found that HA NPs could be uptaken into hMSCs. The osteogenic differentiation of hMSCs was evaluated through alkaline phosphatase (ALP) activity measurement, ALP staining, immunofluorescent staining for osteopontin (OPN), and real-time polymerase chain reaction (RT-PCR) examination. As expected, HA NPs of all sizes could promote the differentiation of hMSCs towards osteoblast lineage. Among the three sizes, smaller-sized HA NPs (~50 and ~100 nm) appeared to be more effective in stimulating osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
62
|
Li M, Zhang C, Mao Y, Zhong Y, Zhao J. A Cell-Engineered Small Intestinal Submucosa-Based Bone Mimetic Construct for Bone Regeneration. Tissue Eng Part A 2018; 24:1099-1111. [PMID: 29318958 DOI: 10.1089/ten.tea.2017.0407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Extracellular matrix (ECM)-ornamented biomaterials have attracted attention due to their high potential to improve the biofunctionality of original materials. It is thought that ECM with a bone mimetic microenvironment generated by the specific induction of osteoblasts would be more beneficial for bone regeneration than a regular ECM. In this study, we developed an osteogenic and mineralized ECM construct (Os/M-ECM-SIS) under the guidance of osteoblasts on a small intestinal submucosa (SIS) scaffold cotreated with icariin and calcium. The generated Os/M-ECM-SIS scaffolds exhibited similar morphology and inorganic components as natural bone and higher mechanical strength than ECM-SIS. Cell adhesion, proliferation, and differentiation of osteoblasts and fibroblasts were also enhanced in the cells cultured on the Os/M-ECM-SIS scaffolds. The Os/M-ECM-SIS scaffolds even promoted transdifferentiation of fibroblasts with an upregulation of osteogenic differentiation markers. In a calvarial defect model, new bone formation was greatly enhanced in defects implanted with the Os/M-ECM-SIS scaffolds compared with ECM-SIS scaffolds. Further study showed that the Os/M-ECM-SIS scaffolds promoted bone regeneration in vitro and in vivo via the Bmp/Smad-signaling pathway. Thus, this work proposes a valuable method for generating a mineralized bone mimetic scaffold with SIS as off-the-shelf bone graft substitute that provides an excellent osteogenic microenvironment, making it suitable for application in bone tissue engineering.
Collapse
Affiliation(s)
- Mei Li
- 1 Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University , Ningbo, People's Republic of China .,2 Ningbo Institute of Medical Sciences , Ningbo, People's Republic of China
| | - Chi Zhang
- 1 Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University , Ningbo, People's Republic of China
| | - Yuxing Mao
- 1 Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University , Ningbo, People's Republic of China
| | - Yi Zhong
- 1 Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University , Ningbo, People's Republic of China
| | - Jiyuan Zhao
- 1 Zhejiang Key Laboratory of Pathophysiology, Medical School, Ningbo University , Ningbo, People's Republic of China
| |
Collapse
|
63
|
Zhang Y, Zuo Y, Wen S, Hu Y, Min Y. Distinctive Stress-Stiffening Responses of Regenerated Silk Fibroin Protein Polymers under Nanoscale Gap Geometries: Effect of Shear on Silk Fibroin-Based Materials. Biomacromolecules 2018; 19:1223-1233. [PMID: 29481061 DOI: 10.1021/acs.biomac.8b00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interfacial dynamics, assembly processes, and changes in nanostructures and mechanical properties of Bombyx mori silk fibroin (SF) proteins under varying degrees of nanoconfinement without and with lateral shear are investigated. When only compressive confinement forces were applied, SF proteins adsorbed on the surfaces experienced conformational changes following the Alexander-de Gennes theory of polymer brushes. By contrast, when SF proteins were exposed to a simultaneous nanoconfinement and shear, remarkable changes in interaction forces were observed, displaying the second order phase transitions, which are attributed to the formation of SF micelles and globular superstructural aggregates via hierarchical assembly processes. The resultant nanostructured SF aggregates show several folds greater elastic moduli than those of SF films prepared by drop-casting and compression-only and even degummed SF fibers. Such a striking improvement in mechanical strength is ascribed to a directional organization of β-sheet nanocrystals, effectively driven by nanoconfinement and shear stress-induced stiffing and ordering mechanisms.
Collapse
Affiliation(s)
- Yuanzhong Zhang
- Department of Polymer Engineering , University of Akron , 250 South Forge Street , Akron , Ohio 44325 , United States
| | - Yuchen Zuo
- Department of Polymer Engineering , University of Akron , 250 South Forge Street , Akron , Ohio 44325 , United States
| | - Shihao Wen
- Department of Polymer Engineering , University of Akron , 250 South Forge Street , Akron , Ohio 44325 , United States
| | - Yupeng Hu
- Department of Polymer Engineering , University of Akron , 250 South Forge Street , Akron , Ohio 44325 , United States
| | - Younjin Min
- Department of Polymer Engineering , University of Akron , 250 South Forge Street , Akron , Ohio 44325 , United States
| |
Collapse
|
64
|
Yang X, Li Y, Huang Q, Liu X, Zhang R, Feng Q. The effect of hydroxyapatite nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 2018; 106:1822-1831. [DOI: 10.1002/jbm.a.36378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/26/2017] [Accepted: 02/15/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Yuanyuan Li
- Department of Stomatology; Shengli Oilfield Central Hospital; Dongying 257034 China
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Graduate School at Shenzhen, Tsinghua University; Shenzhen 518055 China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering; Tsinghua University; Beijing 100084 China
- Key Laboratory of Advanced Materials of Ministry of Education of China; School of Materials Science and Engineering, Tsinghua University; Beijing 100084 China
| |
Collapse
|
65
|
Tang Z, Li X, Tan Y, Fan H, Zhang X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater 2018; 5:43-59. [PMID: 29423267 PMCID: PMC5798025 DOI: 10.1093/rb/rbx024] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems.
Collapse
Affiliation(s)
- Zhurong Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
66
|
Ando K, Imagama S, Kobayashi K, Ito K, Tsushima M, Morozumi M, Tanaka S, Machino M, Ota K, Nishida K, Nishida Y, Ishiguro N. Effects of a self-assembling peptide as a scaffold on bone formation in a defect. PLoS One 2018; 13:e0190833. [PMID: 29304115 PMCID: PMC5755907 DOI: 10.1371/journal.pone.0190833] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/20/2017] [Indexed: 11/19/2022] Open
Abstract
Spinal fusion and bone defect after injuries, removal of bone tumors, and infections need to be repaired by implantation. In an aging society, recovery from these procedures is often difficult. In this study, we found that injection of SPG-178 leads to expression of several bone marker genes and mineralization in vitro, and revealed a significantly higher degree of newly formed bone matrix with use of SPG-178 in vivo. MC3T3-E1 cells were used to evaluate osteoblast differentiation promoted by SPG-178. To analyze gene expression, total RNA was isolated from MC3T3-E1 cells cultured for 7 and 14 days with control medium or SPG-178 medium. Among the several bone marker genes examined, SPG-178 significantly increased the mRNA levels for ALP, BMP-2 and Osteocalcin, OPN, BSP and for the Osterix. Ten-week-old female Wistar rats were used for all transplantation procedures. A PEEK cage was implanted into a bony defect (5 mm) within the left femoral mid-shaft, and stability was maintained by an external fixator. The PEEK cages were filled with either a SPG-178 hydrogel plus allogeneic bone chips (n = 4) or only allogeneic bone chips (n = 4). The rats were then kept for 56 days. Newly formed bone matrix was revealed inside the PEEK cage and there was an increased bone volume per total volume with the cage filled with SPG-178, compared to the control group. SPG-178 has potential in clinical applications because it has several benefits. These include its favorable bone conduction properties its ability to act as a support for various different cells and growth factors, its lack of infection risk compared with materials of animal origin such as ECM, and the ease with which it can be used to fill defects with complex shapes and combined with a wide range of other materials.
Collapse
Affiliation(s)
- Kei Ando
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
- * E-mail:
| | - Kazuyoshi Kobayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kenyu Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Mikito Tsushima
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masayoshi Morozumi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Satoshi Tanaka
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Kyotaro Ota
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Koji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
67
|
Waki T, Mochizuki C, Sato M, Sakurai T, Hayakawa T, Ohkubo C. Bone Response to Nano-apatite Paste Derived from Ca-amino Acid Complex. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Takuya Waki
- Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine
| | | | - Mitsunobu Sato
- Department of Applied Physics, School of Advanced Engineering, Kogakuin University
| | - Toshitsugu Sakurai
- Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine
| | - Tohru Hayakawa
- Department of Dental Engineering, Tsurumi University School of Dental Medicine
| | - Chikahiro Ohkubo
- Department of Removable Prosthodontics, Tsurumi University School of Dental Medicine
| |
Collapse
|
68
|
Oliveira I, Carvalho AL, Radhouani H, Gonçalves C, Oliveira JM, Reis RL. Promising Biomolecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:189-205. [PMID: 29736574 DOI: 10.1007/978-3-319-76735-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The osteochondral defect (OD) comprises the articular cartilage and its subchondral bone. The treatment of these lesions remains as one of the most problematic clinical issues, since these defects include different tissues, requiring distinct healing approaches. Among the growing applications of regenerative medicine, clinical articular cartilage repair has been used for two decades, and it is an effective example of translational medicine; one of the most used cell-based repair strategies includes implantation of autologous cells in degradable scaffolds such as alginate, agarose, collagen, chitosan, chondroitin sulfate, cellulose, silk fibroin, hyaluronic acid, and gelatin, among others. Concerning the repair of osteochondral defects, tissue engineering and regenerative medicine started to design single- or bi-phased scaffold constructs, often containing hydroxyapatite-collagen composites, usually used as a bone substitute. Biomolecules such as natural and synthetic have been explored to recreate the cartilage-bone interface through multilayered biomimetic scaffolds. In this chapter, a succinct description about the most relevant natural and synthetic biomolecules used on cartilage and bone repair, describing the procedures to obtain these biomolecules, their chemical structure, common modifications to improve its characteristics, and also their application in the biomedical fields, is given.
Collapse
Affiliation(s)
- Isabel Oliveira
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L Carvalho
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hajer Radhouani
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Cristiana Gonçalves
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomolecules, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco/Guimarães, Portugal
| |
Collapse
|
69
|
Silk fibroin/hydroxyapatite composites for bone tissue engineering. Biotechnol Adv 2018; 36:68-91. [DOI: 10.1016/j.biotechadv.2017.10.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/12/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
|
70
|
Guarino V, Benfenati V, Cruz-Maya I, Saracino E, Zamboni R, Ambrosio L. Instructive proteins for tissue regeneration. FUNCTIONAL 3D TISSUE ENGINEERING SCAFFOLDS 2018:23-49. [DOI: 10.1016/b978-0-08-100979-6.00002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
71
|
Mechanical reinforcement of bioceramics scaffolds via fracture energy dissipation induced by sliding action of MoS2 nanoplatelets. J Mech Behav Biomed Mater 2017; 75:423-433. [DOI: 10.1016/j.jmbbm.2017.07.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022]
|
72
|
Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci 2017; 249:321-330. [PMID: 28457501 DOI: 10.1016/j.cis.2017.04.007] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023]
Abstract
The current need for long lasting implants and bone substitutes characterized by biocompatibility, bioactivity and mechanical properties, without the immune rejection is a great challenge for scientists. These bone substitute structures should be prepared for individual patients with all details controlled on the micrometer level. Similarly, nontoxic, biocompatible targeted drug delivery systems which allow controlling the rate and time period of the drug delivery and simultaneously eliminating toxic and side effects on the healthy tissues, are of great interest. Extensive attempts have been made to develop a simple, efficient, and green method to form biofunctional scaffolds and implant coatings possessing the above mentioned significant biocompatibility, bioactivity and mechanical strength. Moreover, that could also serve as drug delivery systems. Hydroxyapatite (HA) which is a major mineral component of vertebrate bones and teeth is an excellent material for these purposes. In this literature review the biologically inspired scaffolds, bone substitutes, implants characterized by mechanical strength and biocompatibility, as well the drug delivery systems, based on hydroxyapatite are discussed.
Collapse
|
73
|
Zhang YG, Zhu YJ, Chen F, Lu BQ. Dopamine-modified highly porous hydroxyapatite microtube networks with efficient near-infrared photothermal effect, enhanced protein adsorption and mineralization performance. Colloids Surf B Biointerfaces 2017; 159:337-348. [DOI: 10.1016/j.colsurfb.2017.07.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/27/2017] [Accepted: 07/31/2017] [Indexed: 11/26/2022]
|
74
|
Wang Q, Zhang Y, Li B, Chen L. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin-nanohydroxyapatite scaffold for vascularized bone regeneration. J Mater Chem B 2017; 5:6963-6972. [PMID: 32264345 DOI: 10.1039/c7tb00949f] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The controlled co-release of osteoinductive and angiogenic factors is an efficient approach to promote vascularized bone regeneration, and a suitable controlled release system can largely reduce the usage of these factors to avoid cost and safety problems. In this study, a cell-free vascularized bone tissue engineering system based on a silk fibroin (SF)/nanohydroxyapatite (nHAp) scaffold was developed, in which very low doses of osteoinductive and angiogenic factors, bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF), were embedded and released in a controlled manner to facilitate bone formation and vascularization, respectively. BMP-2 and VEGF were adsorbed onto SF microspheres (diameter of 1.5 ± 0.3 μm) that were prepared using a co-flow capillary device, and these microspheres were subsequently incorporated within the SF/nHAp scaffolds to provide controlled release. BMP-2 and VEGF were incorporated into SF microspheres via chemical covalent bonding and physical adsorption, respectively, leading to their controlled and sustained release from the SF/nHAp scaffolds. The rapid initial release of VEGF mimicked its expression at the early bone healing stage and promoted angiogenesis, and the relatively slow and sustained release of BMP-2 facilitated osteogenic differentiation both in vitro and in vivo, and the bone completely bridged the rat calvarial defects after 12 weeks of implantation. Overall, our findings suggest that the controlled dual release of very low doses of BMP-2 (300 ng per scaffold) and VEGF (20 ng per scaffold) from SF/nHAp scaffolds results in a synergistic effect on vascularized bone regeneration; this controlled release system can largely reduce the usage of BMP-2 as compared to other systems.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P. R. China.
| | | | | | | |
Collapse
|
75
|
Lee JH, Bae YS, Kim SJ, Song DW, Park YH, Bae DG, Choi JH, Um IC. Preparation of new natural silk non-woven fabrics by using adhesion characteristics of sericin and their characterization. Int J Biol Macromol 2017; 106:39-47. [PMID: 28774806 DOI: 10.1016/j.ijbiomac.2017.07.179] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 12/20/2022]
Abstract
Electro-spun regenerated silk webs have been extensively studied for biomedical applications because of the simplicity of their fabrication methods However, the productivity of the electro-spinning process is low for web fabrication and the mechanical properties of the electro-spun silk web are not satisfactory, which restricts its commercialization. In this study, a new silk non-woven fabric was successfully fabricated by wetting and hot press treatments using the excellent binding characteristic of sericin. The effects of the press temperature and residual sericin content on the preparation, structure, and properties of the silk non-woven fabric were examined. A press temperature of 200°C was optimum for obtaining non-woven fabrics with best mechanical properties, without yellowing. The silk non-woven fabric could not be fabricated without sericin, and a minimum of 8% sericin was required to fabricate it. As the sericin content was increased, the strength and Young's modulus of the silk non-woven fabric increased, while the tensile elongation remained constant. Regardless of the press temperature and sericin content, all the silk non-woven fabrics showed good cell viability, comparable to that of the tissue culture plate (TCP) used as a control until 4days, which however decreased compared to that of TCP after 7days.
Collapse
Affiliation(s)
- Ji Hye Lee
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeon Su Bae
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Su Jin Kim
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dae Woong Song
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Park
- Department of Biosystems and Biomaterials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Do Gyu Bae
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin Hyun Choi
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Chul Um
- Department of Bio-fibers and Materials Science, Kyungpook National University, Daegu 41566, Republic of Korea; Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
76
|
Sun T, Zhou K, Liu M, Guo X, Qu Y, Cui W, Shao Z, Zhang X, Xu S. Loading of BMP-2-related peptide onto three-dimensional nano-hydroxyapatite scaffolds accelerates mineralization in critical-sized cranial bone defects. J Tissue Eng Regen Med 2017; 12:864-877. [PMID: 27885807 DOI: 10.1002/term.2371] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 07/14/2016] [Accepted: 11/09/2016] [Indexed: 01/08/2023]
Abstract
Extrusion free-forming, as a rapid prototyping technique, is extensively applied in fabricating ceramic material in bone tissue engineering. To improve the osteoinductivity of nano-hydroxyapatite (nHA) scaffold fabricated by extrusion free-forming, in this study, we incorporated a new peptide (P28) and optimized the superficial microstructure after shaping by controlling the sintering temperature. P28, a novel bone morphogenic protein 2 (BMP-2)-related peptide, was designed in this study. Analysis of the structure, physicochemical properties and release kinetics of P28 from nHA sintered at temperatures ranging from 1000 °C to 1400 °C revealed that nHA sintered at 1000 °C had higher porosity, preferable pore size and better capacity to control P28 release than that sintered at other temperatures. Moreover, the nHA scaffold sintered at 1000 °C with P28 showed improved adhesion, proliferation and osteogenic differentiation of MC3T3-E1 cells compared with scaffolds lacking P28 or BMP-2. In vivo, nHA scaffolds sintered at 1000 °C with P28 or BMP-2 induced greater bone regeneration in critical-sized rat cranial defects at 6 and 12 weeks post-implantation compared with scaffolds lacking P28 or BMP-2. Thus, nHA scaffolds sintered at 1000 °C and loaded with P28 may be excellent biomaterials for bone tissue engineering. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kui Zhou
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Man Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - ZengWu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianglin Zhang
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuyun Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
77
|
Zhong Z, Ma J. Fabrication, characterization, and in vitro study of zinc substituted hydroxyapatite/silk fibroin composite coatings on titanium for biomedical applications. J Biomater Appl 2017; 32:399-409. [PMID: 28747081 DOI: 10.1177/0885328217723501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc substituted hydroxyapatite/silk fibroin composite coatings were deposited on titanium substrates at room temperature by electrophoretic deposition. Microscopic characterization of the synthesized composite nanoparticles revealed that the particle size ranged 50-200 nm, which increased a little after zinc substitution. The obtained coatings maintained the phase of hydroxyapatite and they could induce fast apatite formation in simulated body fluid, indicating high bone activity. The cell culturing results showed that the biomimetic hydroxyapatite coatings could regulate adhesion, spreading, and proliferation of osteoblastic cells. Furthermore, the biological behavior of the zinc substituted hydroxyapatite coatings was found to be better than the bare titanium without coatings and hydroxyapatite coatings without zinc, increasing MC3T1-E1 cell differentiation in alkaline phosphatase expression.
Collapse
Affiliation(s)
- Zhenyu Zhong
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
78
|
Taktak F, Öğen Y. Preparation and characterization of novel silk fibroin/2-(N,N-dimethylamino)ethyl methacrylate based composite hydrogels with enhanced mechanical properties for controlled release of cefixime. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1320750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Fulya Taktak
- Department of Chemical Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
- Department of Polymer Science and Technology, Graduate School of Natural and Applied Sciences, Uşak University, Uşak, Turkey
| | - Yaşasın Öğen
- Department of Polymer Science and Technology, Graduate School of Natural and Applied Sciences, Uşak University, Uşak, Turkey
| |
Collapse
|
79
|
Sun Y, Wang C, Chen Q, Liu H, Deng C, Ling P, Cui FZ. Effects of the bilayer nano-hydroxyapatite/mineralized collagen-guided bone regeneration membrane on site preservation in dogs. J Biomater Appl 2017; 32:242-256. [DOI: 10.1177/0885328217715150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yi Sun
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Chengyue Wang
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Qixin Chen
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Hai Liu
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Chao Deng
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Peixue Ling
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| | - Fu-Zhai Cui
- School of Stomatology, Wannan Medical college, WuHu, Anhui, PR China
| |
Collapse
|
80
|
Ding Z, Han H, Fan Z, Lu H, Sang Y, Yao Y, Cheng Q, Lu Q, Kaplan DL. Nanoscale Silk-Hydroxyapatite Hydrogels for Injectable Bone Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16913-16921. [PMID: 28471165 DOI: 10.1021/acsami.7b03932] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Injectable hydrogel systems are important bone substitutes for regeneration because of their handling properties and the ability to fill irregular defects. Silk-hydroxyapatite composite materials with silk nanofibers in hydrogels were prepared and used as biomaterials for osteogenesis. These thixotropic silk nanofiber hydrogels and water-dispersible silk-HA nanoparticles were blended to form injectable nanoscale systems with a homogeneous distribution of a high HA content [60% (w/w)] to imitate bone niche. A modulus of ∼21 kPa was also achieved following the addition of HA in the systems, providing physical cues to induce osteodifferentiation. The composite hydrogels supported improved osteogenesis compared to that with silk nanofiber hydrogels. The newly formed bone tissue and bone defect healing were detected after implantation of the silk-HA composite hydrogels, suggesting utility for the regeneration of irregular bone defects.
Collapse
Affiliation(s)
- Zhaozhao Ding
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Hongyan Han
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Haijun Lu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Yonghuan Sang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Yuling Yao
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Qingqing Cheng
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Qiang Lu
- School of Biology and Basic Medical Sciences and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
81
|
Le TDH, Liaudanskaya V, Bonani W, Migliaresi C, Motta A. Enhancing bioactive properties of silk fibroin with diatom particles for bone tissue engineering applications. J Tissue Eng Regen Med 2017; 12:89-97. [DOI: 10.1002/term.2373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 10/01/2016] [Accepted: 11/26/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Thi Duy Hanh Le
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
| | - Volha Liaudanskaya
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - Walter Bonani
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Claudio Migliaresi
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| | - Antonella Motta
- BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Department of Industrial Engineering; University of Trento; Trento Italy
- INSTM, Trento Research Unit; Interuniversity Consortium for Science and Technology of Materials; Trento Italy
| |
Collapse
|
82
|
Sun TW, Yu WL, Zhu YJ, Yang RL, Shen YQ, Chen DY, He YH, Chen F. Hydroxyapatite Nanowire@Magnesium Silicate Core-Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16435-16447. [PMID: 28481082 DOI: 10.1021/acsami.7b03532] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multifunctional biomaterials that simultaneously combine high biocompatibility, biodegradability, and bioactivity are promising for applications in various biomedical fields such as bone defect repair and drug delivery. Herein, the synthesis of hydroxyapatite nanowire@magnesium silicate nanosheets (HANW@MS) core-shell porous hierarchical nanocomposites (nanobrushes) is reported. The morphology of the magnesium silicate (MS) shell can be controlled by simply varying the solvothermal temperature and the amount of Mg2+ ions. Compared with hydroxyapatite nanowires (HANWs), the HANW@MS core-shell porous hierarchical nanobrushes exhibit remarkably increased specific surface area and pore volume, endowing the HANW@MS core-shell porous hierarchical nanobrushes with high-performance drug loading and sustained release. Moreover, the porous scaffold of HANW@MS/chitosan (HANW@MS/CS) is prepared by incorporating the HANW@MS core-shell porous hierarchical nanobrushes into the chitosan (CS) matrix. The HANW@MS/CS porous scaffold not only promotes the attachment and growth of rat bone marrow derived mesenchymal stem cells (rBMSCs), but also induces the expression of osteogenic differentiation related genes and the vascular endothelial growth factor (VEGF) gene of rBMSCs. Furthermore, the HANW@MS/CS porous scaffold can obviously stimulate in vivo bone regeneration, owing to its high bioactive performance on the osteogenic differentiation of rBMSCs and in vivo angiogenesis. Since Ca, Mg, Si, and P elements are essential in human bone tissue, HANW@MS core-shell porous hierarchical nanobrushes with multifunctional properties are expected to be promising for various biomedical applications such as bone defect repair and drug delivery.
Collapse
Affiliation(s)
- Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Yue-Qin Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | | | | | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
83
|
Gu Z, Wang S, Weng W, Chen X, Cao L, Wei J, Shin JW, Su J. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:620-628. [PMID: 28415507 DOI: 10.1016/j.msec.2017.02.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/08/2016] [Accepted: 02/21/2017] [Indexed: 01/09/2023]
Abstract
In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH=7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration.
Collapse
Affiliation(s)
- Zhengrong Gu
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; The Department of Orthopaedics, Jing'an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing'An Branch), 200040, China
| | - Sicheng Wang
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China; Department of Orthopaedics, Zhongye Hospital, Shanghai 200941, China
| | - Weizong Weng
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiao Chen
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liehu Cao
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, 621749, Republic of Korea
| | - Jiacan Su
- Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
84
|
Li M, Gu Q, Chen M, Zhang C, Chen S, Zhao J. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:260-267. [DOI: 10.1016/j.msec.2016.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/26/2016] [Accepted: 10/13/2016] [Indexed: 02/07/2023]
|
85
|
Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:791-796. [PMID: 27987774 DOI: 10.1016/j.msec.2016.10.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/24/2016] [Indexed: 11/20/2022]
Abstract
In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.
Collapse
|
86
|
Fahami A, Nasiri-Tabrizi B, Beall GW, Basirun WJ. Structural insights of mechanically induced aluminum-doped hydroxyapatite nanoparticles by Rietveld refinement. Chin J Chem Eng 2017. [DOI: 10.1016/j.cjche.2016.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
87
|
Zhang YG, Zhu YJ, Chen F, Sun TW. A novel composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan: preparation and application in drug delivery. J Mater Chem B 2017; 5:3898-3906. [DOI: 10.1039/c6tb02576e] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composite scaffold comprising ultralong hydroxyapatite microtubes and chitosan with high drug loading capacity and sustained drug release properties has been successfully prepared.
Collapse
Affiliation(s)
- Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
88
|
Deng Y, Yang Y, Ma Y, Fan K, Yang W, Yin G. Nano-hydroxyapatite reinforced polyphenylene sulfide biocomposite with superior cytocompatibility and in vivo osteogenesis as a novel orthopedic implant. RSC Adv 2017. [DOI: 10.1039/c6ra25526d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The design of novel functional biomaterials that possess similar mechanical attributes as human bones, accompanied with admirable osteogenesis to replace conventional metallic implants would be an intriguing accomplishment.
Collapse
Affiliation(s)
- Yi Deng
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yuanyi Yang
- Department of Materials Engineering
- Sichuan College of Architectural Technology
- Deyang 618000
- China
| | - Yuan Ma
- Department of Neurosurgery
- Chengdu Military General Hospital
- Chengdu 610083
- China
| | - Kexia Fan
- Department of Neurosurgery
- Chengdu Military General Hospital
- Chengdu 610083
- China
| | - Weizhong Yang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Guangfu Yin
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
89
|
Tao C, Zhang Y, Li B, Chen L. Hierarchical micro/submicrometer-scale structured scaffolds preparedviacoaxial electrospinning for bone regeneration. J Mater Chem B 2017; 5:9219-9228. [PMID: 32264605 DOI: 10.1039/c7tb02044a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A tissue engineering scaffold based on hierarchical micro/submicrometer-scale structured core–sheath fibers is preparedviacoaxial electrospinning for bone regeneration.
Collapse
Affiliation(s)
- Chen Tao
- Department of Orthopaedic Surgery
- the First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital
- Soochow University
- Suzhou
- P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery
- the First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
- Orthopedic Institute
| | - Liang Chen
- Department of Orthopaedic Surgery
- the First Affiliated Hospital of Soochow University
- Suzhou
- P. R. China
| |
Collapse
|
90
|
Ding Z, Fan Z, Huang X, Lu Q, Xu W, Kaplan DL. Silk-Hydroxyapatite Nanoscale Scaffolds with Programmable Growth Factor Delivery for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24463-70. [PMID: 27579921 DOI: 10.1021/acsami.6b08180] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Osteoinductive biomaterials are attractive for repairing a variety of bone defects, and biomimetic strategies are useful toward developing bone scaffolds with such capacity. Here, a multiple biomimetic design was developed to improve the osteogenesis capacity of composite scaffolds consisting of hydroxyapatite nanoparticles (HA) and silk fibroin (SF). SF nanofibers and water-dispersible HA nanoparticles were blended to prepare the nanoscaled composite scaffolds with a uniform distribution of HA with a high HA content (40%), imitating the extracellular matrix (ECM) of bone. Bone morphogenetic protein-2 (BMP-2) was loaded in the SF scaffolds and HA to tune BMP-2 release. In vitro studies showed the preservation of BMP-2 bioactivity in the composite scaffolds, and programmable sustained release was achieved through adjusting the ratio of BMP-2 loaded on SF and HA. In vitro and in vivo osteogenesis studies demonstrated that the composite scaffolds showed improved osteogenesis capacity under suitable BMP-2 release conditions, significantly better than that of BMP-2 loaded SF-HA composite scaffolds reported previously. Therefore, these biomimetic SF-HA nanoscaled scaffolds with tunable BMP-2 delivery provide preferable microenvironments for bone regeneration.
Collapse
Affiliation(s)
- Zhaozhao Ding
- School of Biology and Basic Medical Sciences & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhihai Fan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University , Suzhou 215000, People's Republic of China
| | - Xiaowei Huang
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Qiang Lu
- School of Biology and Basic Medical Sciences & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University , Suzhou 215123, People's Republic of China
| | - Weian Xu
- School of Biology and Basic Medical Sciences & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University , Suzhou 215123, People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
91
|
Cross LM, Thakur A, Jalili NA, Detamore M, Gaharwar AK. Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces. Acta Biomater 2016; 42:2-17. [PMID: 27326917 DOI: 10.1016/j.actbio.2016.06.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED Orthopedic interface tissue engineering aims to mimic the structure and function of soft-to-hard tissue junctions, particularly bone-ligament, bone-tendon, and bone-cartilage interfaces. A range of engineering approaches has been proposed to mimic the gradient architecture, physical properties and chemical characteristics of interface tissues using conventional polymeric biomaterials. Recent developments in nanomaterials and nanofabrication technologies introduce a range of synthesis and fabrication tools to effectively engineer the structure and function of native tissue interfaces. In this review, we will focus on nanoengineered strategies used to replicate the structural and functional aspects of native biological tissues for engineering bone-cartilage, bone-ligament, and bone-tendon interfaces. This review will also highlight some of the emerging applications and future potential of nanomaterials and fabrication technologies in engineering tissue interfaces. STATEMENT OF SIGNIFICANCE A major challenge in engineering interfaces is to control the physical and structural characteristics of an artificial environment. The use of nanomaterials and nanoengineered strategies allow for greater control over the changes in structure and function at molecular and nanometer length scale. This review focuses on advanced nanomaterials and nanofabrication approaches developed to emulate bone-cartilage, bone-ligament, and bone-tendon interface regions. Some of the emerging nanoengineered biomaterials proposed to mimic tissue interfaces are also highlighted.
Collapse
Affiliation(s)
- Lauren M Cross
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77841, USA
| | - Ashish Thakur
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77841, USA
| | - Nima A Jalili
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77841, USA
| | - Michael Detamore
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77841, USA; Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77841, USA; Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
92
|
Chen X, Bai S, Li B, Liu H, Wu G, Liu S, Zhao Y. Fabrication of gelatin methacrylate/nanohydroxyapatite microgel arrays for periodontal tissue regeneration. Int J Nanomedicine 2016; 11:4707-4718. [PMID: 27695327 PMCID: PMC5028089 DOI: 10.2147/ijn.s111701] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Periodontitis is a chronic infectious disease and is the major cause of tooth loss and other oral health issues around the world. Periodontal tissue regeneration has therefore always been the ultimate goal of dentists and researchers. Existing fabrication methods mainly focused on a top-down tissue engineering strategy in which several drawbacks remain, including low throughput and limited diffusion properties resulting from a large sample size. Gelatin methacrylate (GelMA) is a kind of photocrosslinkable and biocompatible hydrogel, with the capacities of enabling cell encapsulation and regeneration of functional tissues. Here, we developed a novel method to fabricate GelMA/nanohydroxylapatite (nHA) microgel arrays using a photocrosslinkable strategy. The viability, proliferation, and osteogenic differentiation and in vivo osteogenesis of human periodontal ligament stem cells (hPDLSCs) encapsulated in microgels were evaluated. The results suggested that such microgels provide great potential for periodontal tissue repair and regeneration. METHODS Microgel arrays were fabricated by blending different weight ratios of GelMA and nHA. hPDLSCs were encapsulated in GelMA/nHA microgels of various ratios for a systematic evaluation of cell viability, proliferation, and osteogenic differentiation. In vivo osteogenesis in nude mice was also studied. RESULTS The GelMA/nHA microgels exhibited appropriate microarchitecture, mechanical strength, and surface roughness, thus enabling cell adhesion and proliferation. Additionally, the GelMA/nHA microgels (10%/2% w/v) enhanced the osteogenic differentiation of hPDLSCs by elevating the expression levels of osteogenic biomarker genes, such as ALP, BSP, OCN, and RUNX2. In vivo ectopic transplantation results showed that GelMA/nHA microgels (10%/2% w/v) increased mineralized tissue formation with abundant vascularization, compared with the 1%, 3%, and the pure GelMA group. CONCLUSION The GelMA/nHA microgels (10%/2% w/v) facilitated hPDLSCs viability, proliferation, and osteogenic differentiation in vitro and further promoted new bone formation in vivo, suggesting that the GelMA/nHA microgels (10%/2% w/v) provide great potential for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics
| | - Shizhu Bai
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics
| | - Bei Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology
| | - Huan Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics
| | - Guofeng Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics
| | - Sha Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, The Fourth Military Medical University, Shaanxi, People’s Republic of China
| | - Yimin Zhao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics
| |
Collapse
|
93
|
Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, Chen L. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials 2016; 106:205-16. [PMID: 27566869 DOI: 10.1016/j.biomaterials.2016.08.023] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 12/30/2022]
Abstract
In this study, a cell-free bone tissue engineering system based on a silk fibroin (SF)/nano-hydroxyapatite (nHAp) scaffold was developed, in which two bioactive molecules, stromal cell derived factor-1 (SDF-1) and bone morphogenetic protein-2 (BMP-2), were embedded and released in a sequential and controlled manner to facilitate cell recruitment and bone formation, respectively. BMP-2 was initially loaded into SF microspheres, and these BMP-2 containing microspheres were subsequently encapsulated into the SF/nHAp scaffolds, which were successively functionalized with SDF-1 via physical adsorption. The results indicated rapid initial release of SDF-1 during the first few days, followed by slow and sustained release of BMP-2 for as long as three weeks. The composite scaffold significantly promoted the recruitment of bone marrow mesenchymal stem cells (BMSCs) and osteogenic differentiation of them in vitro. Further, the in vivo studies using D-Luciferin-labeled BMSCs indicated that implantation of this composite scaffold markedly promoted the recruitment of BMSCs to the implanted sites. Enhanced bone regeneration was identified at 12 weeks' post-implantation. Taken together, our findings suggested that the sequential and sustained release of SDF-1 and BMP-2 from the SF/nHAp scaffolds resulted in a synergistic effect on bone regeneration. Such a composite system, therefore, shows promising potential for cell-free bone tissue engineering applications.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yanxia Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, 215007, PR China
| | - Yong Gu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yun Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Yong Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China; Orthopedic Institute, Soochow University, Suzhou, Jiangsu, 215007, PR China
| | - Liang Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
94
|
Liang D, Ren H, Qiu T, Shen G, Xie B, Wei Q, Yao Z, Tang J, Zhang Z, Jiang X. Extracts from plastrum testudinis reverse glucocorticoid-induced spinal osteoporosis of rats via targeting osteoblastic and osteoclastic markers. Biomed Pharmacother 2016; 82:151-60. [PMID: 27470350 DOI: 10.1016/j.biopha.2016.04.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 01/13/2023] Open
Abstract
Extracts from plastrum testudinis (PTE), an important traditional Chinese medicine, have been demonstrated promotion of osteoblastic function in vitro. This study aims to investigate the protective effect of PTE on glucocorticoid-induced osteoporosis(GIOP) in vivo and analyze therapeutic targets of PTE on GIOP. SD rats were randomly assigned to two experiments: preventive and therapeutic experiments, in which rats respectively received oral PTE at the same time of glucocorticoid injection or after glucocorticoid injection inducing osteoporosis. BMD, microarchitecture, biomechanics, bone metabolism markers and histomorphology were evaluated. mRNA and protein expression of OPG, Runx2, CTSK and MMP9 were examined.Results showed bone quality and bone quantity were significantly elevated by PTE. Histomorphometry showed thicker and denser bone trabecularsand more osteoblasts and less osteoclasts in group of PTE intervention. The mRNA expression of OPG was significantly upregulated whereas expression of CTSK was significantly downregulatedin different groups of PTE intervention. Stronger immunostaining for Runx2 and weaker immunostaining for CTSK were observed in groups of PTE intervention. This demonstrated that PTE may reverse GIOP in prevention and management via targeting OPG, Runx2 and CTSK in mRNA and protein levels.
Collapse
Affiliation(s)
- De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine,Guangzhou 510405, China.
| | - Hui Ren
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Ting Qiu
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gengyang Shen
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bo Xie
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qiushi Wei
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhensong Yao
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhida Zhang
- The First School of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine,Guangzhou 510405, China.
| |
Collapse
|
95
|
Gao Y, Lu Z, Chen C, Cui X, Liu Y, Zheng T, Jiang X, Zeng C, Quan D, Wang Q. Mesenchymal stem cells and endothelial progenitor cells accelerate intra-aneurysmal tissue organization after treatment with SDF-1α-coated coils. Neurol Res 2016; 38:333-41. [PMID: 27125512 DOI: 10.1080/01616412.2016.1164433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recurrences of aneurysms remain the major drawback of detachable coils for the endovascular treatment of intracranial aneurysms. The aim of the present study is to develop new modified coils, coating the surface of platinum coils with silk fibroin (SF) consisting of stromal cell-derived factor-1α (SDF-1α), and evaluate its acceleration of organization of cavities and reduction of lumen size in a rat aneurysm model. The morphological characteristics of SDF-1α-coated coils were examined using scanning electron microscopy (SEM). Fifty experimental aneurysms were created and randomly divided into five groups: three groups were embolized with SDF-1α-coated coils (8 mm) and two of these groups need transplantation of mesenchymal stem cells (MSCs) or endothelial progenitor cells (EPCs); one group was embolized with bare coils (8 mm) and another group severed as control. After coil implantation for 14 or 28 days, the coils were harvested and histological analysis was performed. SEM photographs showed that SF/SDF-1α-coated coils have uniform size and a thin film compared with bare coils. In the group treated with SDF-1α-coated coils, tissue organization was accelerated and the proliferation of α-smooth muscle actin positive cells was promoted in the aneurysmal sac. Compared with unmodified coils, on day 28, tissue organization was significantly greater in the group treated with SDF-1α-coated coils and MSC or EPC transplantation. These results suggest that SDF-1α-coated coils with MSC or EPC transplantation may be beneficial in the aneurysm healing and endothelialization at the orifice of embolized aneurysm.
Collapse
Affiliation(s)
- Yuyuan Gao
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China.,b Graduate School of Southern Medical University , Guangzhou , China.,c Department of Neurology , Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Neuroscience Institute , Guangzhou , China
| | - Ziming Lu
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China.,b Graduate School of Southern Medical University , Guangzhou , China
| | - Chengwei Chen
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China.,b Graduate School of Southern Medical University , Guangzhou , China
| | - Xubo Cui
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China.,b Graduate School of Southern Medical University , Guangzhou , China
| | - Yaqi Liu
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China.,b Graduate School of Southern Medical University , Guangzhou , China
| | - Tao Zheng
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China.,b Graduate School of Southern Medical University , Guangzhou , China
| | - Xiaodan Jiang
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China
| | - Chi Zeng
- d School of Chemistry and Chemical Engineering , Sun Yat-Sen University , Guangzhou , China
| | - Daping Quan
- d School of Chemistry and Chemical Engineering , Sun Yat-Sen University , Guangzhou , China
| | - Qiujing Wang
- a The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital , Southern Medical University , Guangzhou , China
| |
Collapse
|
96
|
Wang C, Wang Y, Meng H, Wang X, Zhu Y, Yu K, Yuan X, Wang A, Guo Q, Peng J, Lu S. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1149849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
97
|
Selvakumar M, Pawar HS, Francis NK, Das B, Dhara S, Chattopadhyay S. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:5941-5960. [PMID: 26889707 DOI: 10.1021/acsami.6b01014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Guided bone regeneration (GBR) scaffolds are unsuccessful in many clinical applications due to a high incidence of postoperative infection. The objective of this work is to fabricate GBR with an anti-infective electrospun scaffold by ornamenting segmented polyurethane (SPU) with two-dimensional Aloe vera wrapped mesoporous hydroxyapatite (Al-mHA) nanorods. The antimicrobial characteristic of the scaffold has been retrieved from the prepared Al-mHA frame with high aspect ratio (∼14.2) via biosynthesis route using Aloe vera (Aloe barbadensis miller) extract. The Al-mHA frame was introduced into an unprecedented SPU matrix (solution polymerized) based on combinatorial soft segments of poly(ε-caprolactone) (PCL), poly(ethylene carbonate) (PEC), and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, pristine mHA nanorods are also ornamented into it. An enzymatic ring-opening polymerization technique was adapted to synthesize soft segment of (PCL-PEC-b-PDMS). Structure elucidation of the synthesized polymers is established by nuclear magnetic resonance spectroscopy. Sparingly, Al-mHA ornamented scaffolds exhibit tremendous improvement (175%) in the mechanical properties with promising antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast-like MG63 cells (in vitro), the scaffolds were implanted in rabbits as an animal model by subcutaneous and intraosseous (tibial) sites. Improved in vivo biocompatibilities, biodegradation, osteoconductivity, and the ability to provide an adequate biomimetic environment for biomineralization for GBR of the scaffolds (SPU and ornamented SPUs) have been found from the various histological sections. Early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks were found in the defects filled with Al-mHA ornamented scaffold compared to pristine SPU scaffold. Organ toxicity studies further confirm the absence of appreciable tissue architecture abnormalities in the renal hepatic and cardiac tissue sections. The entire results of this study manifest the feasibility of fabricating a mechanically adequate tailored nanofibrous SPU scaffold based on combinatorial soft segments of PCL, PEC, and PDMS by a biomimetic approach and the advantages of an Aloe vera wrapped mHA frame in promoting osteoblast phenotype progression with microbial protection for potential GBR applications.
Collapse
Affiliation(s)
- M Selvakumar
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Harpreet Singh Pawar
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Nimmy K Francis
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Bodhisatwa Das
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Santanu Dhara
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| | - Santanu Chattopadhyay
- Rubber Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology , Kharagpur 721302, India
| |
Collapse
|
98
|
Pangon A, Saesoo S, Saengkrit N, Ruktanonchai U, Intasanta V. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydr Polym 2016; 144:419-27. [PMID: 27083834 DOI: 10.1016/j.carbpol.2016.02.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Biomimetic nanofibrous scaffolds derived from natural biopolymers for bone tissue engineering applications require good mechanical and biological performances including biomineralization. The present work proposes the utility of chitin whisker (CTWK) to enhance mechanical properties of chitosan/poly(vinyl alcohol) (CS/PVA) nanofibers and to offer osteoblast cell growth with hydroxyapatite (HA) mineralization. By using diacid as a solvent, electrospun CS/PVA nanofibrous membranes containing CTWK can be easily obtained. The dimension stability of nanofibrous CS/PVA/CTWK bionanocomposite is further controlled by exposing to glutaraldehyde vapor. The nanofibrous membranes obtained allow mineralization of HA in concentrated simulated body fluid resulting in an improvement of Young's modulus and tensile strength. The CTWK combined with HA in bionanocomposite is a key to promote osteoblast cell adhesion and proliferation. The present work, for the first time, demonstrates the use of CTWKs for bionanocomposite fibers of chitosan and its hydroxyapatite biomineralization with the function in osteoblast cell culture. These hydroxyapatite-hybridized CS/PVA/CTWK bionanocomposite fibers (CS/PVA/CTWK-HA) offer a great potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Autchara Pangon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand.
| | - Somsak Saesoo
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
| | - Uracha Ruktanonchai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
| | - Varol Intasanta
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathumthani 12120, Thailand
| |
Collapse
|
99
|
Liao J, Li Y, Zou Q, Duan X, Yang Z, Xie Y, Liu H. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:285-91. [PMID: 27040221 DOI: 10.1016/j.msec.2016.02.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/21/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
The combination of nano-hydroxyapatite (n-HA) and polypropylene carbonate (PPC) was used to make a composite materials by a coprecipitation method. The physical and chemical properties of the composite were tested. Scanning electron microscope (SEM) observation indicated that the biomimetic n-HA crystals were uniformly distributed in the polymer matrix. As the n-HA content increased in the composite, the fracture mechanism of the composites changes from gliding fracture to gliding and brittle fracture. Furthermore, the chemical interaction between inorganic n-HA and polypropylene carbonate was also investigated and discussed in detail. The hydrogen bonds might be formed between -OH/CO3(2-) of n-HA crystal and the ester group (-COO-) of PPC. The tensile strength of n-HA/PPC (40/60) was similar to that of the cancellous bone, and reached ca 58 MPa. The osteoblasts were cultured for up to 7 days, and then the adhesion and proliferation of osteoblasts were measured by Methyl thiazolyl tetrazolium (MTT) colorimetry assay and SEM. The cells proliferated, grew normally in fusiform shape and well attached. The in vitro test confirmed that the n-HA/PPC composites were biocompatible and showed undetectable negative effect on osteoblasts. In vivo implantation of the composite in New Zealand white rabbits was performed. It can stimulate the growth of a new bone, and at the same time the material begins to degrade. These results suggested that the composite may be suitable for the reparation or replacement of bone defects and possessed the potential for clinical applications.
Collapse
Affiliation(s)
- Jianguo Liao
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yanqun Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Qin Zou
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xingze Duan
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhengpeng Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Yufen Xie
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Haohuai Liu
- School of Chemistry and Chemical Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
100
|
Gao X, Song J, Ji P, Zhang X, Li X, Xu X, Wang M, Zhang S, Deng Y, Deng F, Wei S. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2016; 8:3499-515. [PMID: 26756224 DOI: 10.1021/acsami.5b12413] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanohydroxyapatite (HA) synthesized by biomimetic strategy is a promising nanomaterial as bone substitute due to its physicochemical features similar to those of natural nanocrystal in bone tissue. Inspired by mussel adhesive chemistry, a novel nano-HA was synthesized in our work by employing polydopamine (pDA) as template under weak alkaline condition. Subsequently, the as-prepared pDA-templated HA (tHA) was introduced into polycaprolactone (PCL) matrix via coelectrospinning, and a bioactive tHA/PCL composite nanofiber scaffold was developed targeted at bone regeneration application. Our research showed that tHA reinforced PCL composite nanofibers exhibited favorable cytocompatibility at given concentration of tHA (0-10 w.t%). Compared to pure PCL and traditional nano-HA enriched PCL (HA/PCL) composite nanofibers, enhanced cell adhesion, spreading and proliferation of human mesenchymal stem cells (hMSCs) were observed on tHA/PCL composite nanofibers on account of the contribution of pDA present in tHA. More importantly, tHA nanoparticles exposed on the surface of composite nanofibers could further promote osteogenesis of hMSCs in vitro even in the absence of osteogenesis soluble inducing factors when compared to traditional HA/PCL scaffolds, which was supported by in vivo test as well according to the histological analysis. Overall, our study demonstrated that the developed tHA/PCL composite nanofibers with enhanced cytocompatibility and osteogenic capacity hold great potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Xiang Gao
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Jinlin Song
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Ping Ji
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | - Xiaohong Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | | | | | | | - Siqi Zhang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Yi Deng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Feng Deng
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education , Chongqing 401147, China
| | | |
Collapse
|