51
|
Yuba E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J Mater Chem B 2020; 8:1093-1107. [PMID: 31960007 DOI: 10.1039/c9tb02470k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Liposomes are a promising nanocarrier for drug delivery because of their biocompatibility and the encapsulation capacity of drugs. Liposomes can be functionalized easily by introduction of functional materials such as stimulus-responsive materials. Temperature-responsive liposomes and pH-responsive liposomes are representative stimulus-responsive liposomes that can deliver drugs to locally heated target tissues and intracellular organelles. Here, temperature-responsive liposomes for the selective release of cargo and pH-responsive liposomes for the induction of antigen-specific immunity are overviewed. Temperature-responsive polymer-modified liposomes immediately released drugs in response to heating, which achieved selective drug release at a tumour after topical heating of tumour-bearing mice. Introduction of MR-detectable molecules enabled the tracing of liposome accumulation into target sites to optimize the heating timing. These liposomes can also be combined with magnetic nanoparticles or carbon nanomaterials to attain magnetic field-responsive, electric field-responsive and light-responsive properties to support on-demand drug release or control of biological reactions using these external stimuli. pH-Responsive liposomes were produced by modification of poly(carboxylic acid) derivatives or by pH-responsive amphiphiles. These liposomes delivered antigenic proteins into the cytosol of antigen presenting cells, which induced cross-presentation and antigen-specific cellular immunity. Adjuvant molecules or bioactive polysaccharide-based pH-responsive polymers improved their immunity-inducing effect further, leading to tumour regression in tumour-bearing mice. Precise design and control of the structures of stimulus-responsive materials and combination with functional materials are expected to create novel methodologies to control biological functions and to produce highly potent liposomal drugs that can achieve selective release of bioactive molecules.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
52
|
Abstract
Mucosal surfaces represent important routes of entry into the human body for the majority of pathogens, and they constitute unique sites for targeted vaccine delivery. Nanoparticle-based drug delivery systems are emerging technologies for delivering and improving the efficacy of mucosal vaccines. Recent studies have provided new insights into formulation and delivery aspects of importance for the design of safe and efficacious mucosal subunit vaccines based on nanoparticles. These include novel nanomaterials, their physicochemical properties and formulation approaches, nanoparticle interaction with immune cells in the mucosa, and mucosal immunization and delivery strategies. Here, we present recent progress in the application of nanoparticle-based approaches for mucosal vaccine delivery and discuss future research challenges and opportunities in the field.
Collapse
|
53
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
54
|
Miyazaki M, Yuba E, Hayashi H, Harada A, Kono K. Development of pH-Responsive Hyaluronic Acid-Based Antigen Carriers for Induction of Antigen-Specific Cellular Immune Responses. ACS Biomater Sci Eng 2019; 5:5790-5797. [DOI: 10.1021/acsbiomaterials.9b01278] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maiko Miyazaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroshi Hayashi
- Sciencelin, 1-1-35, Nishiawaji, Higashiyodogawa-ku, Osaka, Osaka 533-0031, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
55
|
Bai J, Zuo X, Feng X, Sun Y, Ge Q, Wang X, Gao C. Dynamic Titania Nanotube Surface Achieves UV-Triggered Charge Reversal and Enhances Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36939-36948. [PMID: 31513367 DOI: 10.1021/acsami.9b11536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stimuli-responsive biomaterials supply a promising solution to adapt to the complex physiological environment for different biomedical applications. In this study, a dynamic UV-triggered pH-responsive biosurface was constructed on titania nanotubes (TNTs) by loading photoacid generators, diphenyliodonium chloride, into the nanotubes, and grafting 2,3-dimethyl maleic anhydride (DMMA)-modified hyperbranched poly(l-lysine) (HBPLL) onto the surface. The local acidity was dramatically enhanced by UV irradiation for only 30 s, leading to the dissociation of DMMA and thereby the transformation of surface chemistry from negatively charged caboxyl groups to positively charged amino groups. The TNTs-HBPLL-DMMA substrate could better promote proliferation and spreading of rat bone mesenchymal stem cells (rBMSCs) after UV irradiation. The osteogenic differentiation of rBMSCs was enhanced because of the charge reversal in combination with the titania-based substrates.
Collapse
Affiliation(s)
- Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xingang Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yunfeng Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Qunzi Ge
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xuemei Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
56
|
Li Y, Ayala-Orozco C, Rauta PR, Krishnan S. The application of nanotechnology in enhancing immunotherapy for cancer treatment: current effects and perspective. NANOSCALE 2019; 11:17157-17178. [PMID: 31531445 PMCID: PMC6778734 DOI: 10.1039/c9nr05371a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cancer immunotherapy is emerging as a promising treatment modality that suppresses and eliminates tumors by re-activating and maintaining the tumor-immune cycle, and further enhancing the body's anti-tumor immune response. Despite the impressive therapeutic potential of immunotherapy approaches such as immune checkpoint inhibitors and tumor vaccines in pre-clinical and clinical applications, the effective response is limited by insufficient accumulation in tumor tissues and severe side-effects. Recent years have witnessed the rise of nanotechnology as a solution to improve these technical weaknesses due to its inherent biophysical properties and multifunctional modifying potential. In this review, we summarized and discussed the current status of nanoparticle-enhanced cancer immunotherapy strategies, including intensified delivery of tumor vaccines and immune adjuvants, immune checkpoint inhibitor vehicles, targeting capacity to tumor-draining lymph nodes and immune cells, triggered releasing and regulating specific tumor microenvironments, and adoptive cell therapy enhancement effects.
Collapse
Affiliation(s)
- Yongjiang Li
- Department of Medical Oncology, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. and Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Ciceron Ayala-Orozco
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Pradipta Ranjan Rauta
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | - Sunil Krishnan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. and Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
57
|
Patel RB, Ye M, Carlson PM, Jaquish A, Zangl L, Ma B, Wang Y, Arthur I, Xie R, Brown RJ, Wang X, Sriramaneni R, Kim K, Gong S, Morris ZS. Development of an In Situ Cancer Vaccine via Combinational Radiation and Bacterial-Membrane-Coated Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902626. [PMID: 31523868 PMCID: PMC6810793 DOI: 10.1002/adma.201902626] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/03/2019] [Indexed: 05/08/2023]
Abstract
Neoantigens induced by random mutations and specific to an individual's cancer are the most important tumor antigens recognized by T cells. Among immunologically "cold" tumors, limited recognition of tumor neoantigens results in the absence of a de novo antitumor immune response. These "cold" tumors present a clinical challenge as they are poorly responsive to most immunotherapies, including immune checkpoint inhibitors (ICIs). Radiation therapy (RT) can enhance immune recognition of "cold" tumors, resulting in a more diversified antitumor T-cell response, yet RT alone rarely results in a systemic antitumor immune response. Therefore, a multifunctional bacterial membrane-coated nanoparticle (BNP) composed of an immune activating PC7A/CpG polyplex core coated with bacterial membrane and imide groups to enhance antigen retrieval is developed. This BNP can capture cancer neoantigens following RT, enhance their uptake in dendritic cells (DCs), and facilitate their cross presentation to stimulate an antitumor T-cell response. In mice bearing syngeneic melanoma or neuroblastoma, treatment with BNP+RT results in activation of DCs and effector T cells, marked tumor regression, and tumor-specific antitumor immune memory. This BNP facilitates in situ immune recognition of a radiated tumor, enabling a novel personalized approach to cancer immunotherapy using off-the-shelf therapeutics.
Collapse
Affiliation(s)
- Ravi B Patel
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Mingzhou Ye
- Department of Biomedical Engineering, University of Wisconsin, 330 N Orchard St. B1162, Madison, WI, 53715, USA
| | - Peter M Carlson
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Abigail Jaquish
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Luke Zangl
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Ben Ma
- Department of Biomedical Engineering, University of Wisconsin, 330 N Orchard St. B1162, Madison, WI, 53715, USA
| | - Yuyuan Wang
- Department of Biomedical Engineering, University of Wisconsin, 330 N Orchard St. B1162, Madison, WI, 53715, USA
| | - Ian Arthur
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Ruosen Xie
- Department of Biomedical Engineering, University of Wisconsin, 330 N Orchard St. B1162, Madison, WI, 53715, USA
| | - Ryan J Brown
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| | - Xing Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin, WARF Office Bldg, 610 Walnut St, 2nd Fl., Madison, WI, 53726, USA
| | - Raghava Sriramaneni
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin, WARF Office Bldg, 610 Walnut St, 2nd Fl., Madison, WI, 53726, USA
| | - Shaoqin Gong
- Department of Biomedical Engineering, University of Wisconsin, 330 N Orchard St. B1162, Madison, WI, 53715, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin, WIMR-I, Room 3131, 1111 Highland Ave, Madison, WI, 53705, USA
| |
Collapse
|
58
|
A multifunctional lipid that forms contrast-agent liposomes with dual-control release capabilities for precise MRI-guided drug delivery. Biomaterials 2019; 221:119412. [PMID: 31419656 DOI: 10.1016/j.biomaterials.2019.119412] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 01/04/2023]
Abstract
Monitoring of nanoparticle-based therapy in vivo and controlled drug release are urgently needed for the precise treatment of disease. We have synthesized a multifunctional Gd-DTPA-ONB (GDO) lipid by introducing the Gd-DTPA contrast agent moiety into an o-nitro-benzyl ester lipid. By design, liposomes formed from the GDO lipid combine MRI tracking ability and dual-trigger release capabilities with maximum sensitivity (because all lipids bear the cleavable moiety) without reducing the drug encapsulation rate. We first confirmed that both photo-treatment and pH-triggered hydrolysis are able to cleave the GDO lipid and lyse GDO liposomes. We then investigated the efficiency of drug release via the combined release processes for GDO liposomes loaded with doxorubicin (DOX). Relative to neutral pH, the release efficiency in acidic environment increased by 10.4% (at pH = 6.5) and 13.3% (at pH = 4.2). This pH-dependent release response is conducive to distinguishing pathological tissue such as tumors and endolysosomal compartments. The photo-induced release efficiency increases with illumination time as well as with distance of the pH from neutral. Photolysis increased the release efficiency by 13.8% at pH = 4.2, which is remarkable considering the already increased amount of drug release in the acidic environment. In addition, the relaxation time of GDO liposomes was 4.1 times that of clinical Gd-DTPA, with brighter T1-weighted imaging in vitro and in vivo. Real-time MRI imaging and in vivo fluorescence experiments demonstrated tumor targeting and MRI guided release. Furthermore, significant tumor growth inhibition in a treatment experiment using DOX-loaded GDO liposomes clearly demonstrated the benefit of photo-treatment for efficacy: the tumor size in the photo-treatment group was 3.7 times smaller than in the control group. The present study thus highlights the benefit of the design idea of combining efficient imaging/guiding, targeting, and triggerable release functions in one lipid molecule for drug delivery applications.
Collapse
|
59
|
Liu J, Zhang R, Xu ZP. Nanoparticle-Based Nanomedicines to Promote Cancer Immunotherapy: Recent Advances and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900262. [PMID: 30908864 DOI: 10.1002/smll.201900262] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Indexed: 05/27/2023]
Abstract
Cancer immunotherapy is a promising cancer terminator by directing the patient's own immune system in the fight against this challenging disorder. Despite the monumental therapeutic potential of several immunotherapy strategies in clinical applications, the efficacious responses of a wide range of immunotherapeutic agents are limited in virtue of their inadequate accumulation in the tumor tissue and fatal side effects. In the last decades, increasing evidences disclose that nanotechnology acts as an appealing solution to address these technical barriers via conferring rational physicochemical properties to nanomaterials. In this Review, an imperative emphasis will be drawn from the current understanding of the effect of a nanosystem's structure characteristics (e.g., size, shape, surface charge, elasticity) and its chemical modification on its transport and biodistribution behavior. Subsequently, rapid-moving advances of nanoparticle-based cancer immunotherapies are summarized from traditional vaccine strategies to recent novel approaches, including delivery of immunotherapeutics (such as whole cancer cell vaccines, immune checkpoint blockade, and immunogenic cell death) and engineered immune cells, to regulate tumor microenvironment and activate cellular immunity. The future prospects may involve in the rational combination of a few immunotherapies for more efficient cancer inhibition and elimination.
Collapse
Affiliation(s)
- Jianping Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
60
|
Won JE, Byeon Y, Wi TI, Lee JM, Kang TH, Lee JW, Shin BC, Han HD, Park YM. Enhanced Antitumor Immunity Using a Tumor Cell Lysate-Encapsulated CO2-Generating Liposomal Carrier System and Photothermal Irradiation. ACS APPLIED BIO MATERIALS 2019; 2:2481-2489. [DOI: 10.1021/acsabm.9b00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ji Eun Won
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungju-Si, Chungcheongbuk-Do 380-701, South Korea
| | - Yeongseon Byeon
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungju-Si, Chungcheongbuk-Do 380-701, South Korea
| | - Tae In Wi
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungju-Si, Chungcheongbuk-Do 380-701, South Korea
| | - Jae Myeong Lee
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungju-Si, Chungcheongbuk-Do 380-701, South Korea
| | - Tae Heung Kang
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungju-Si, Chungcheongbuk-Do 380-701, South Korea
| | - Jeong Won Lee
- Department of Obstertrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | - Byung Cheol Shin
- Bio/Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, South Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungju-Si, Chungcheongbuk-Do 380-701, South Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, 268 Chungwondaero, Chungju-Si, Chungcheongbuk-Do 380-701, South Korea
| |
Collapse
|
61
|
Okubo M, Miyazaki M, Yuba E, Harada A. Chondroitin Sulfate-Based pH-Sensitive Polymer-Modified Liposomes for Intracellular Antigen Delivery and Induction of Cancer Immunity. Bioconjug Chem 2019; 30:1518-1529. [DOI: 10.1021/acs.bioconjchem.9b00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Minori Okubo
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Maiko Miyazaki
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Eiji Yuba
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
62
|
|
63
|
Sharma R, Vyas SP. Mannose functionalized plain and endosomolytic nanocomposite(s)-based approach for the induction of effective antitumor immune response in C57BL/6 mice melanoma model. Drug Dev Ind Pharm 2019; 45:1089-1100. [PMID: 30913925 DOI: 10.1080/03639045.2019.1593442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of present study to assess the antigen specific immunopotentiation effect of mannose functionalized endosomolytic and conventional nanocomposite(s) based combination approach using C57BL/6 mice melanoma model. Endosomolytic and conventional nanocomposite(s) were prepared by double emulsification method. The optimized formulation was extensively characterized for average particle size, zeta potential and PDI of nanocomposite(s) which were measured in range of ≈200 nm, 0.111 ± 0.024, -23.4 ± 2.0 mV, respectively. pH-dependent morphological changes in the surface of MRPRPNs and PRPNs were analyzed by using surface electron microscopy at different time intervals. The cellular uptake assessment of developed formulations were followed by using RAW 264.7 macrophage cell lines. Results revealed that after immunizing B16F10 melanoma cells implanted C57BL/6 mice with combination [endosomolytic and conventional nanocomposite(s)] of nanocomposite(s), a significant increase in the interleukins level i.e. IL-2, IFN-ϒ, IL-12 and IL-6 and OVA Ag(s) specific antibody responses were recorded. Consequently, a strong immunological response was elicited with specific polarization contributing to humoral and activation of CD8+ to cellular responses. Finding of histological examination also support the potential of therapeutic outcome. The present approach based on mannose surface functionalization for targeting to antigen presenting cells and pH-dependent prompt endosomal release and escape can be a promising system for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Rajeev Sharma
- a Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences , Dr. H. S. Gour University (A Central University) , Sagar , India
| | - S P Vyas
- a Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences , Dr. H. S. Gour University (A Central University) , Sagar , India
| |
Collapse
|
64
|
Luo G, Yang Q, Yao B, Tian Y, Hou R, Shao A, Li M, Feng Z, Wang W. Slp-coated liposomes for drug delivery and biomedical applications: potential and challenges. Int J Nanomedicine 2019; 14:1359-1383. [PMID: 30863066 PMCID: PMC6388732 DOI: 10.2147/ijn.s189935] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Slp forms a crystalline array of proteins on the outermost envelope of bacteria and archaea with a molecular weight of 40-200 kDa. Slp can self-assemble on the surface of liposomes in a proper environment via electrostatic interactions, which could be employed to functionalize liposomes by forming Slp-coated liposomes for various applications. Among the molecular characteristics, the stability, adhesion, and immobilization of biomacromolecules are regarded as the most meaningful. Compared to plain liposomes, Slp-coated liposomes show excellent physicochemical and biological stabilities. Recently, Slp-coated liposomes were shown to specifically adhere to the gastrointestinal tract, which was attributed to the "ligand-receptor interaction" effect. Furthermore, Slp as a "bridge" can immobilize functional biomacromol-ecules on the surface of liposomes via protein fusion technology or intermolecular forces, endowing liposomes with beneficial functions. In view of these favorable features, Slp-coated liposomes are highly likely to be an ideal platform for drug delivery and biomedical uses. This review aims to provide a general framework for the structure and characteristics of Slp and the interactions between Slp and liposomes, to highlight the unique properties and drug delivery as well as the biomedical applications of the Slp-coated liposomes, and to discuss the ongoing challenges and perspectives.
Collapse
Affiliation(s)
- Gan Luo
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingliang Yang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Bingpeng Yao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Green Pharmaceutics, Jianxing Honors College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yangfan Tian
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruixia Hou
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Anna Shao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Mengting Li
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Zilin Feng
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Wenxi Wang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| |
Collapse
|
65
|
Sang W, Zhang Z, Dai Y, Chen X. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev 2019; 48:3771-3810. [DOI: 10.1039/c8cs00896e] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review aims to summarize various synergistic combination cancer immunotherapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Wei Sang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhan Zhang
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Yunlu Dai
- Cancer Centre
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine
- National Institute of Biomedical Imaging and Bioengineering
- National Institutes of Health
- Bethesda
- USA
| |
Collapse
|
66
|
Sharma R, Dubey S, Mody N, Sharma G, Kushwah V, Jain S, Katare OP, Vyas SP. Release promoter-based systematically designed nanocomposite(s): a novel approach for site-specific delivery of tumor-associated antigen(s) (TAAs). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:776-789. [DOI: 10.1080/21691401.2018.1469137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| | - Surabhi Dubey
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| | - Nishi Mody
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Varun Kushwah
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Mohali, Punjab, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Suresh P. Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| |
Collapse
|
67
|
Liposome-based immunity-inducing systems for cancer immunotherapy. Mol Immunol 2018; 98:8-12. [DOI: 10.1016/j.molimm.2017.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/21/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022]
|