51
|
Fang J, Liu H, Qiao W, Xu T, Yang Y, Xie H, Lam CH, Yeung KWK, Zhao X. Biomimicking Leaf-Vein Engraved Soft and Elastic Membrane Promotes Vascular Reconstruction. Adv Healthc Mater 2023; 12:e2201220. [PMID: 36330558 DOI: 10.1002/adhm.202201220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Hierarchical vasculature reconstruction is fundamental for tissue regeneration. The regeneration of functional vascular network requires a proper directional guidance, especially in case of large-size defects. To provide the "running track" for vasculature, a leaf-vein mimetic membrane using soft and elastic poly(lactide-co-propylene glycol-co-lactide) dimethacrylate is developed. Engraved with an interconnected and perfusable leaf-vein micropattern, the membrane can guide human umbilical vein endothelial cells (HUVECs) to form vasculature in vitro. In particular, the "running track" upregulates the angiogenesis-related gene expression and promotes the HUVECs to differentiate into tip cells and stalk cells via tuning vascular endothelial growth factor receptor 2 signaling transduction. As a proof of concept, its revascularization capability using a rat calvarial defect model in vivo is evaluated. The in vivo results demonstrate that the leaf-vein engraved membrane accelerates the formation and maturation of vasculature, leading to a hierarchical blood vessel network. With the superior pro-vasculature property, it is believed that the leaf-vein engraved membrane is not only an ideal candidate for the reconstruction of calvarial vasculature but also a promising solution for more complicated vasculature reconstruction, such as muscle, skin, and heart.
Collapse
Affiliation(s)
- Jinghan Fang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Tianpeng Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Huizhi Xie
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Hei Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
52
|
Li C, Li C, Ma Z, Chen H, Ruan H, Deng L, Wang J, Cui W. Regulated macrophage immune microenvironment in 3D printed scaffolds for bone tumor postoperative treatment. Bioact Mater 2023; 19:474-485. [PMID: 35574049 PMCID: PMC9079115 DOI: 10.1016/j.bioactmat.2022.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
The 3D printing technique is suitable for patient-specific implant preparation for bone repair after bone tumor resection. However, improving the survival rate due to tumor recurrence remains a challenge for implants. The macrophage polarization induction to M2-type tumor-associated macrophages (TAMs) by the tumor microenvironment is a key factor of immunosuppression and tumor recurrence. In this study, a regenerative scaffold regulating the macrophage immune microenvironment and promoting bone regeneration in a dual-stage process for the postoperative treatment of bone tumors was constructed by binding a colony-stimulating factor 1 receptor (CSF-1R) inhibitor GW2580 onto in situ cosslinked hydroxybutylchitosan (HBC)/oxidized chondroitin sulfate (OCS) hydrogel layer covering a 3D printed calcium phosphate scaffold based on electrostatic interaction. The hydrogel layer on scaffold surface not only supplied abundant sulfonic acid groups for stable loading of the inhibitor, but also acted as the cover mask protecting the bone repair part from exposure to unhealthy growth factors in the microenvironment at the early treatment stage. With local prolonged release of inhibitor being realized via the functional material design, CSF-1R, the main pathway that induces polarization of TAMs, can be efficiently blocked, thus regulating the immunosuppressive microenvironment and inhibiting tumor development at a low therapeutic dose. At the later stage of treatment, calcium phosphate component of the scaffold can facilitate the repair of bone defects caused by tumor excision. In conclusion, the difunctional 3D printed bone repair scaffold regulating immune microenvironment in stages proposed a novel approach for bone tumor postoperative treatment.
Collapse
Affiliation(s)
- Cuidi Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Changwei Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Zhenjiang Ma
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Hongfang Chen
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Huitong Ruan
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| |
Collapse
|
53
|
Tao J, Zhu S, Liao X, Wang Y, Zhou N, Li Z, Wan H, Tang Y, Yang S, Du T, Yang Y, Song J, Liu R. DLP-based bioprinting of void-forming hydrogels for enhanced stem-cell-mediated bone regeneration. Mater Today Bio 2022; 17:100487. [PMID: 36388461 PMCID: PMC9649380 DOI: 10.1016/j.mtbio.2022.100487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
The integration of 3D bioprinting and stem cells is of great promise in facilitating the reconstruction of cranial defects. However, the effectiveness of the scaffolds has been hampered by the limited cell behavior and functions. Herein, a therapeutic cell-laden hydrogel for bone regeneration is therefore developed through the design of a void-forming hydrogel. This hydrogel is prepared by digital light processing (DLP)-based bioprinting of the bone marrow stem cells (BMSCs) mixed with gelatin methacrylate (GelMA)/dextran emulsion. The 3D-bioprinted hydrogel can not only promote the proliferation, migration, and spreading of the encapsulated BMSCs, but also stimulate the YAP signal pathway, thus leading to the enhanced osteogenic differentiation of BMSCs. In addition, the in vivo therapeutic assessments reveal that the void-forming hydrogel shows great potential for BMSCs delivery and can significantly promote bone regeneration. These findings suggest that the unique 3D-bioprinted void-forming hydrogels are promising candidates for applications in bone regeneration.
Collapse
Affiliation(s)
- Jie Tao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Shunyao Zhu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Xueyuan Liao
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yu Wang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Nazi Zhou
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Haoyuan Wan
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Yaping Tang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Sen Yang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Ting Du
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Army Medical University (The Third Military Medical University), Chongqing, 400042, China
| |
Collapse
|
54
|
Cross-Linked Gamma Polyglutamic Acid/Human Hair Keratin Electrospun Nanofibrous Scaffolds with Excellent Biocompatibility and Biodegradability. Polymers (Basel) 2022; 14:polym14245505. [PMID: 36559871 PMCID: PMC9781754 DOI: 10.3390/polym14245505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Recently, human hair keratin has been widely studied and applied in clinical fields due to its good histocompatibility, biocompatibility, and biodegradability. However, the regenerated keratin from human hair cannot be electrospun alone because of its low molecular weight. Herein, gamma polyglutamic acid (γ-PGA) was first selected to fabricate smooth and uniform γ-PGA/keratin composite scaffolds with excellent biocompatibility and biodegradability by electrospinning technology and a chemical cross-linking method in this study. The effect of electrospinning parameters on the structure and morphology, the mechanism of chemical cross-linking, biocompatibility in vitro cell culture experiments, and biodegradability in phosphate-buffered saline buffer solution and trypsin solution of the γ-PGA/keratin electrospun nanofibrous scaffolds (ENS) was studied. The results show that the cross-linked γ-PGA/keratin ENSs had excellent water stability and biodegradability. The γ-PGA/keratin ENSs showed better biocompatibility in promoting cell adhesion and cell growth compared with the γ-PGA ENSs. It is expected that γ-PGA/keratin ENSs will be easily and significantly used in tissue engineering to repair or regenerate materials.
Collapse
|
55
|
Toita R, Kang JH, Tsuchiya A. Phosphatidylserine liposome multilayers mediate the M1-to-M2 macrophage polarization to enhance bone tissue regeneration. Acta Biomater 2022; 154:583-596. [PMID: 36273800 DOI: 10.1016/j.actbio.2022.10.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
An appropriate immune microenvironment, governed by macrophages, is essential for rapid tissue regeneration after biomaterial implantation. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. In this study, a new strategy to promote tissue repair and tissue-to-biomaterial integration by M1-to-M2 macrophage transition using artificial apoptotic cell mimetics (phosphatidylserine liposomes; PSLs) was developed using bone as a model tissue. Titanium was also selected as a model substrate material because it is widely used for dental and orthopedic implants. Titanium implants were functionalized with multilayers via layer-by-layer assembly of cationic protamine and negatively charged PSLs that were chemically stabilized to prevent disruption of lipid bilayers. Samples carrying PSL multilayers could drive M1-type macrophages into M2-biased phenotypes, resulting in a dramatic change in macrophage secretion for tissue regeneration. In a rat femur implantation model, the PSL-multilayer-coated implant displayed augmented de novo bone formation and bone-to-implant integration, associated with an increased M1-to-M2-like phenotypic transition. This triggered the proper generation and activation of bone-forming osteoblasts and bone-resorbing osteoclasts relative to their uncoated counterparts. This study demonstrates the benefit of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for potent bone regeneration and bone-to-implant integration. The results of this study may help in the design of new immunomodulatory biomaterials. STATEMENT OF SIGNIFICANCE: Effective strategies for tissue regeneration are essential in the clinical practice. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. Artificially produced phosphatidylserine-containing liposomes (PSLs) can induce M2 macrophage polarization by mimicking the inverted plasma membranes of apoptotic cells. This study demonstrates the advantages of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for effective bone regeneration and osseointegration (bone-to-implant integration). Mechanistically, M2 macrophages promote osteogenesis but inhibit osteoclastogenesis, and M1 macrophages vice versa. We believe that our study makes a significant contribution to the design of new immunomodulatory biomaterials for regenerative medicine because it is the first to validate the benefit of PSLs for tissue regeneration.
Collapse
Affiliation(s)
- Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka, 564-8565, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
56
|
Ge YW, Fan ZH, Ke QF, Guo YP, Zhang CQ, Jia WT. SrFe12O19-doped nano-layered double hydroxide/chitosan layered scaffolds with a nacre-mimetic architecture guide in situ bone ingrowth and regulate bone homeostasis. Mater Today Bio 2022; 16:100362. [PMID: 35937572 PMCID: PMC9352545 DOI: 10.1016/j.mtbio.2022.100362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
Osteoporotic bone defects result from an imbalance in bone homeostasis, excessive osteoclast activity, and the weakening of osteogenic mineralization, resulting in impaired bone regeneration. Herein, inspired by the hierarchical structures of mollusk nacre, nacre exhibits outstanding high-strength mechanical properties, which are in part due to its delicate layered structure. SrFe12O19 nanoparticles and nano-layered double hydroxide (LDH) were incorporated into a bioactive chitosan (CS) matrix to form multifunctional layered nano-SrFe12O19-LDH/CS scaffolds. The compressive stress value of the internal ordered layer structure matches the trabecular bone (0.18 MPa). The as-released Mg2+ ions from the nano-LDH can inhibit bone resorption in osteoclasts by inhibiting the NFκB signaling pathway. At the same time, the as-released Sr2+ ions promote the high expression of osteoblast collagen 1 proteins and accelerate bone mineralization by activating the BMP-2/SMAD signaling pathway. In vivo, the Mg2+ ions released from the SrFe12O19-LDH/CS scaffolds inhibited the release of pro-inflammatory factors (IL-1β and TNF-α), while the as-released Sr2+ ions promoted osteoblastic proliferation and the mineralization of osteoblasts inside the layered SrFe12O19-LDH/CS scaffolds. Immunofluorescence for OPG, RANKL, and CD31, showed that stable vasculature could be formed inside the layered SrFe12O19-LDH/CS scaffolds. Hence, this study on multifunctional SrFe12O19-LDH/CS scaffolds clarifies the regulatory mechanism of osteoporotic bone regeneration and is expected to provide a theoretical basis for the research, development, and clinical application of this scaffold on osteoporotic bone defects. 1, SrFe12O19 nanoparticles and LDH were incorporated into a bioactive CS matrix. 2, SrFe12O19-LDH/CS scaffolds were prepared as a layered scaffold to increase mechanical strength. 3, The slow release of Mg2+ and Sr2+ could maintain bone homeostasis. 4, The scaffolds also promote the formation of new blood vessels.
Collapse
|
57
|
Zhao Y, Chen H, Ran K, Zhang Y, Pan H, Shangguan J, Tong M, Yang J, Yao Q, Xu H. Porous hydroxyapatite scaffold orchestrated with bioactive coatings for rapid bone repair. BIOMATERIALS ADVANCES 2022; 144:213202. [PMID: 36434928 DOI: 10.1016/j.bioadv.2022.213202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Current bioceramic scaffolds for critical-size bone defects are still facing various challenges such as the poor capability of self-resorption, vascularization and osteogenesis. Herein, a composite scaffold (HOD) is fabricated by integrating bioactive coatings of konjac glucomannan (KGM) and deferoxamine (DFO) into porous hydroxyapatite scaffold (HA), where KGM coating induces the self-resorption of HOD after implanting and DFO promoted the vascularization at the defected bone. Porous HA scaffolds with 200-400 μm of pore sizes were prepared and these bioactive coatings were successfully deposited on the scaffold, which was confirmed by SEM. MC3T3-E1 cells could be tightly attached to the pore wall of HOD and the obvious osteogenic differentiation was clearly displayed after 14 days of co-culture. Besides, HOD displayed the potential of promoting the vascularization of HUVECs. Importantly, the accelerated degradation of HOD was observed in a macrophage-associated acidic medium, which led to the self-resorption of HOD in vivo. Micro-CT images showed that HOD was gradually replaced by newly formed bone, achieving a balance between the new bone formation and the scaffold degradation. The rapid bone repairing of the femoral defects in rats was displayed for HOD in comparison to the HA scaffold. Moreover, the therapeutic mechanism of HOD was highly associated with promoted osteogenesis and vascularization. Collectively, the porous ceramic scaffold orchestrated with bioactive coatings may be a promising strategy for repairing of the large bone defect.
Collapse
Affiliation(s)
- Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Hangbo Chen
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Kunjie Ran
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Yingying Zhang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Hanxiao Pan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jianxun Shangguan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Mengqi Tong
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jiaojiao Yang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Qing Yao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Helin Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
58
|
Mao Y, Chen Y, Li W, Wang Y, Qiu J, Fu Y, Guan J, Zhou P. Physiology-Inspired Multilayer Nanofibrous Membranes Modulating Endogenous Stem Cell Recruitment and Osteo-Differentiation for Staged Bone Regeneration. Adv Healthc Mater 2022; 11:e2201457. [PMID: 36027596 DOI: 10.1002/adhm.202201457] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Indexed: 01/28/2023]
Abstract
Bone regeneration involves a cascade of sophisticated, multiple-staged cellular and molecular events, where early-phase stem cell recruitment mediated by chemokines and late-phase osteo-differentiation induced by pro-osteogenic factors play the crucial roles. Herein, enlightened by a bone physiological and regenerative mechanism, the multilayer nanofibrous membranes (PLLA@SDF-1α@MT01) consisting of PLLA/MT01 micro-sol electrospun nanofibers as intima and PLLA/PEG/SDF-1α electrospun nanofibers as adventitia are fabricated through micro-sol electrospinning and manual multi-layer stacking technologies. In vitro releasing profiles show that PLLA@SDF-1α@MT01 represents the rapid release of stromal cell-derived SDF-1α (SDF-1α) in the outer layers, while with long-term sustained release of MT01 in the inner layer. Owing to interconnected porosity like the natural bone extracellular matrix and improved hydrophilia, PLLA@SDF-1α@MT01 manifests good biocompatibility both in vitro and in vivo. Furthermore, PLLA@SDF-1α@MT01 can promote bone marrow mesenchymal stem cells (BMSCs) migration by amplifying the SDF-1α/CXCR4 axis and stimulating BMSCs osteo-differentiation via activating the MAPK pathway in vitro. PLLA@SDF-1α@MT01, with a programmed dual-delivery system, exhibits the synergetic promotion of bone regeneration and vascularization by emulating key characteristics of the staged bone repair in vivo. Overall, PLLA@SDF-1α@MT01 that mimics the endogenous cascades of bone regeneration can enrich the physiology-mimetic staged regenerative strategy and represent a promising tissue-engineered scaffold for the bone defect.
Collapse
Affiliation(s)
- Yingji Mao
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yu Chen
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Weifeng Li
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Ying Wang
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Department of Plastic Surgery, The First Affiliated Hospital, Bengbu Medical College, Bengbu, 233004, China
| | - Jingjing Qiu
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Yingxiao Fu
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China
| | - Jianzhong Guan
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| | - Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital, School of Life Science, Bengbu Medical College, Bengbu, 233030, China.,Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, 233030, China
| |
Collapse
|
59
|
Ma L, Ke W, Liao Z, Feng X, Lei J, Wang K, Wang B, Li G, Luo R, Shi Y, Zhang W, Song Y, Sheng W, Yang C. Small extracellular vesicles with nanomorphology memory promote osteogenesis. Bioact Mater 2022; 17:425-438. [PMID: 35386457 PMCID: PMC8964989 DOI: 10.1016/j.bioactmat.2022.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/02/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022] Open
Abstract
Nanotopographical cues endow biomaterials the ability to guide cell adhesion, proliferation, and differentiation. Cellular mechanical memory can maintain the cell status by retaining cellular information obtained from past mechanical microenvironments. Here, we propose a new concept “morphology memory of small extracellular vesicles (sEV)” for bone regeneration. We performed nanotopography on titanium plates through alkali and heat (Ti8) treatment to promote human mesenchymal stem cell (hMSC) differentiation. Next, we extracted the sEVs from the hMSC, which were cultured on the nanotopographical Ti plates for 21 days (Ti8-21-sEV). We demonstrated that Ti8-21-sEV had superior pro-osteogenesis ability in vitro and in vivo. RNA sequencing further confirmed that Ti8-21-sEV promote bone regeneration through osteogenic-related pathways, including the PI3K-AKT signaling pathway, MAPK signaling pathway, focal adhesion, and extracellular matrix-receptor interaction. Finally, we decorated the Ti8-21-sEV on a 3D printed porous polyetheretherketone scaffold. The femoral condyle defect model of rabbits was used to demonstrate that Ti8-21-sEV had the best bone ingrowth. In summary, our study demonstrated that the Ti8-21-sEV have memory function by copying the pro-osteogenesis information from the nanotopography. We expect that our study will encourage the discovery of other sEV with morphology memory for tissue regeneration. Nanotopography fabricated on titanium plates has superior promoted hMSCs differentiation ability. sEV extracted from hMSCs which were cultured on Ti8 plates for 21 days had the superior pro-osteogenesis ability. Ti8-21-sEV have memory function through copy the pro-osteogenesis information from nanotopography. RNA sequencing confirmed that Ti8-21-sEV promote bone regeneration through osteogenic-related pathways.
Collapse
|
60
|
Novel structural designs of 3D-printed osteogenic graft for rapid angiogenesis. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
61
|
Wu M, Chen F, Liu H, Wu P, Yang Z, Zhang Z, Su J, Cai L, Zhang Y. Bioinspired sandwich-like hybrid surface functionalized scaffold capable of regulating osteogenesis, angiogenesis, and osteoclastogenesis for robust bone regeneration. Mater Today Bio 2022; 17:100458. [PMID: 36278143 PMCID: PMC9583582 DOI: 10.1016/j.mtbio.2022.100458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
Abstract
Recently, strategies that focus on biofunctionalized implant surfaces to enhance bone defect healing through the synergistic regulation of osteogenesis, angiogenesis, and osteoclastogenesis have attracted increasing attention in the bone tissue engineering field. Studies have shown that the Wnt/β-catenin signaling pathway has an imperative effect of promoting osteogenesis and angiogenesis while reducing osteoclastogenesis. However, how to prepare biofunctionalized bone implants with balanced osteogenesis, angiogenesis, and osteoclastogenesis by activating the Wnt/β-catenin pathway has seldom been investigated. Herein, through a bioinspired dopamine chemistry and self-assembly method, BML-284 (BML), a potent and highly selective Wnt signaling activator, was loaded on a mussel-inspired polydopamine (PDA) layer that had been immobilized on the porous beta-tricalcium calcium phosphate (β-TCP) scaffold surface and subsequently modified by a biocompatible carboxymethyl chitosan hydrogel to form a sandwich-like hybrid surface. β-TCP provides a biomimetic three-dimensional porous microenvironment similar to that of natural cancellous bone, and the BML-loaded sandwich-like hybrid surface endows the scaffold with multifunctional properties for potential application in bone regeneration. The results show that the sustained release of BML from the sandwich-like hybrid surface significantly facilitates the adhesion, migration, proliferation, spreading, and osteogenic differentiation of MC3T3-E1 cells as well as the angiogenic activity of human umbilical vein endothelial cells. In addition to osteogenesis and angiogenesis, the hybrid surface also exerts critical roles in suppressing osteoclastic activity. Remarkably, in a critical-sized cranial defect model, the biofunctionalized β-TCP scaffold could potentially trigger a chain of biological events: stimulating the polarization of M2 macrophages, recruiting endogenous stem cells and endothelial cells at the injury site to enable a favorable microenvironment for greatly accelerating bone ingrowth and angiogenesis while compromising osteoclastogenesis, thereby promoting bone healing. Therefore, these surface-biofunctionalized β-TCP implants, which regulate the synergies of osteogenesis, angiogenesis, and anti-osteoclastogenesis, indicate strong potential for clinical application as advanced orthopedic implants.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Huifan Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Ping Wu
- College of Life Science and Technology Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China
| | - Zhe Zhang
- National Demonstration Center for Experimental General Medicine Education, Xianning Medical College, Hubei University of Science and Technology, China
| | - Jiajia Su
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Corresponding author.
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China,Corresponding author.
| | - Yufeng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, 168 Donghu Street, Wuchang District, Wuhan, 430071, Hubei, China,Corresponding author.
| |
Collapse
|
62
|
Kakarla AB, Kong I, Nguyen TH, Kong C, Irving H. Boron nitride nanotubes reinforced gelatin hydrogel-based ink for bioprinting and tissue engineering applications. BIOMATERIALS ADVANCES 2022; 141:213103. [PMID: 36084352 DOI: 10.1016/j.bioadv.2022.213103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The rapid evolution of 3D bioprinting technique, very few biomaterials have been studied and utilised as ink solutions to produce structures. In this work, a polymeric nanocomposite hydrogel-based ink solution was developed using boron nitride nanotubes (BNNTs) reinforced gelatin for 3D bioprinting of scaffolds. The ink solutions and printed scaffolds were characterised for their printability, mechanical, thermal, water uptake, and biological properties (cell viability and inflammation). The viscoelastic behaviour of the scaffolds indicated the increase in storage modulus with an increase in BNNTs composition. Additionally, the compressive strength of the scaffolds increased from 9.43 ± 1.3 kPa to 30.09 ± 1.5 kPa with the addition of BNNTs. Similarly, the thermal stability of the scaffolds enhanced with an increase in BNNTs composition. Furthermore, the scaffolds with a higher concentration of BNNTs displayed resilience in cell culture media at 37 °C for up to 14 days compared with pure gelatin scaffolds. The cell viability results showed a decreased viability rate with an increased concentration of BNNTs scaffolds. However, BNNTs incubated with cells did not display cytokine inflammation. Therefore, this work provides a potential hydrogel-based ink solution for 3D bioprinting of biomimetic tissue constructs with adequate structural stability for a wide range of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Akesh Babu Kakarla
- School of Computing Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3350, Australia
| | - Ing Kong
- School of Computing Engineering and Mathematical Sciences, La Trobe University, Bendigo, Victoria 3350, Australia.
| | - Trang Hong Nguyen
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, Bendigo, Victoria 3550, Australia
| | - Cin Kong
- Department of Biomedical Sciences, University of Nottingham Malaysia Campus, Semenyih, Selangor 43500, Malaysia
| | - Helen Irving
- Department of Rural Clinical Sciences, La Trobe Institute for Molecular Sciences, Bendigo, Victoria 3550, Australia
| |
Collapse
|
63
|
Zhang J, Tong D, Song H, Ruan R, Sun Y, Lin Y, Wang J, Hou L, Dai J, Ding J, Yang H. Osteoimmunity-Regulating Biomimetically Hierarchical Scaffold for Augmented Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202044. [PMID: 35785450 DOI: 10.1002/adma.202202044] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/14/2022] [Indexed: 05/22/2023]
Abstract
Engineering a proper immune response following biomaterial implantation is essential to bone tissue regeneration. Herein, a biomimetically hierarchical scaffold composed of deferoxamine@poly(ε-caprolactone) nanoparticles (DFO@PCL NPs), manganese carbonyl (MnCO) nanosheets, gelatin methacryloyl hydrogel, and a polylactide/hydroxyapatite (HA) matrix is fabricated to augment bone repair by facilitating the balance of the immune system and bone metabolism. First, a 3D printed stiff scaffold with a well-organized gradient structure mimics the cortical and cancellous bone tissues; meanwhile, an inside infusion of a soft hydrogel further endows the scaffold with characteristics of the extracellular matrix. A Fenton-like reaction between MnCO and endogenous hydrogen peroxide generated at the implant-tissue site triggers continuous release of carbon monoxide and Mn2+ , thus significantly lessening inflammatory response by upregulating the M2 phenotype of macrophages, which also secretes vascular endothelial growth factor to induce vascular formation. Through activating the hypoxia-inducible factor-1α pathway, Mn2+ and DFO@PCL NP further promote angiogenesis. Moreover, DFO inhibits osteoclast differentiation and synergistically collaborates with the osteoinductive activity of HA. Based on amounts of data in vitro and in vivo, strong immunomodulatory, intensive angiogenic, weak osteoclastogenic, and superior osteogenic abilities of such an osteoimmunity-regulating scaffold present a profound effect on improving bone regeneration, which puts forward a worthy base and positive enlightenment for large-scale bone defect repair.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Dongmei Tong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Honghai Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Yifu Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Yandai Lin
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Linxi Hou
- College of Chemical Engineering, Qingyuan Innovation Laboratory, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| | - Jiayong Dai
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou, 310016, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, P. R. China
| |
Collapse
|
64
|
Huang D, Xu K, Huang X, Lin N, Ye Y, Lin S, Zhang J, Shao J, Chen S, Shi M, Zhou X, Lin P, Xue Y, Yu C, Yu X, Ye Z, Cheng K. Remotely Temporal Scheduled Macrophage Phenotypic Transition Enables Optimized Immunomodulatory Bone Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203680. [PMID: 36031402 DOI: 10.1002/smll.202203680] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Precise timing of macrophage polarization plays a pivotal role in immunomodulation of tissue regeneration, yet most studies mainly focus on M2 macrophages for their anti-inflammatory and regenerative effects while the essential proinflammatory role of the M1 phenotype on the early inflammation stage is largely underestimated. Herein, a superparamagnetic hydrogel capable of timely controlling macrophage polarization is constructed by grafting superparamagnetic nanoparticles on collagen nanofibers. The magnetic responsive hydrogel network enables efficient polarization of encapsulated macrophage to the M2 phenotype through the podosome/Rho/ROCK mechanical pathway in response to static magnetic field (MF) as needed. Taking advantage of remote accessibility of magnetic field together with the superparamagnetic hydrogels, a temporal engineered M1 to M2 transition course preserving the essential role of M1 at the early stage of tissue healing, as well as enhancing the prohealing effect of M2 at the middle/late stages is established via delayed MF switch. Such precise timing of macrophage polarization matching the regenerative process of injured tissue eventually leads to optimized immunomodulatory bone healing in vivo. Overall, this study offers a remotely time-scheduled approach for macrophage polarization, which enables precise manipulation of inflammation progression during tissue healing.
Collapse
Affiliation(s)
- Donghua Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kaicheng Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xin Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yuxiao Ye
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Suya Lin
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiamin Zhang
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Jiaqi Shao
- The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Mingmin Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xingzhi Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Peng Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Chengcheng Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Zhaoming Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, Zhejiang Province, 310000, P. R. China
| | - Kui Cheng
- School of Material Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
65
|
Ma S, Wang C, Dong Y, Jing W, Wei P, Peng C, Liu Z, Zhao B, Wang Y. Microsphere-Gel Composite System with Mesenchymal Stem Cell Recruitment, Antibacterial, and Immunomodulatory Properties Promote Bone Regeneration via Sequential Release of LL37 and W9 Peptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38525-38540. [PMID: 35973165 DOI: 10.1021/acsami.2c10242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various types of biomaterials have been widely used to treat complex bone defects. However, potential infection risks and inappropriate host immune responses induced by biomaterials can adversely affect the final bone repair outcome. Therefore, the development of novel bone biomaterials with antibacterial and immunomodulatory capabilities is conducive to achieving a good interaction between the host and material, thereby creating a local microenvironment favorable for osteogenesis and ultimately accelerating bone regeneration. In this study, we fabricated a porcine small intestinal submucosa (SIS) hydrogel containing LL37 peptides and polylactic-glycolic acid (PLGA) microspheres encapsulated with WP9QY(W9) peptide (LL37-W9/PLGA-SIS), which can fill irregular bone defects and exhibits excellent mechanical properties. In vitro experiments showed that the microsphere-gel composite system had sequential drug release characteristics. The LL37 peptide released first had good antibacterial performance and BMSC recruitment ability, which could prevent infection at an early stage and increase the number of BMSCs at the injured site. In addition, it also has immunomodulatory properties, showing both pro-inflammatory and anti-inflammatory activities, but its early pro-inflammatory properties are more inclined to activate the M1 phenotype of macrophages. Moreover, the subsequently released W9 peptide not only reduced the expression of pro-inflammatory genes to alleviate inflammation and induced more macrophages to convert to M2 phenotypes but also promoted the osteogenic differentiation of BMSCs. This finely regulated immune response is considered to be more closely related to the physiological bone healing process. When studying the interaction between macrophages and BMSCs mediated by the material, it was found that the immunomodulatory and osteogenic effects were enhanced. In vivo experiments, we constructed rat skull defect models, which further proved that LL37-W9/PLGA-SIS gel can properly regulate the immune response, and has a good ability to promote osteogenesis in situ. In conclusion, the LL37-W9/PLGA-SIS hydrogel has great application prospects in immune regulation and bone therapy.
Collapse
Affiliation(s)
- Shiqing Ma
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Chuanwen Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Yifan Dong
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
- Foshan (Southern China) Institute for New Materials, Foshan 528220, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Cheng Peng
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co., Ltd., Beijing 102600, China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 30070, China
| |
Collapse
|
66
|
Luo X, Xiao D, Zhang C, Wang G. The Roles of Exosomes upon Metallic Ions Stimulation in Bone Regeneration. J Funct Biomater 2022; 13:jfb13030126. [PMID: 36135561 PMCID: PMC9506099 DOI: 10.3390/jfb13030126] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Metallic ions have been widely investigated and incorporated into bone substitutes for bone regeneration owing to their superior capacity to induce angiogenesis and osteogenesis. Exosomes are key paracrine mediators that play a crucial role in cell-to-cell communication. However, the role of exosomes in metallic ion-induced bone formation and their underlying mechanisms remain unclear. Thus, this review systematically analyzes the effects of metallic ions and metallic ion-incorporated biomaterials on exosome secretion from mesenchymal stem cells (MSCs) and macrophages, as well as the effects of secreted exosomes on inflammation, angiogenesis, and osteogenesis. In addition, possible signaling pathways involved in metallic ion-mediated exosomes, followed by bone regeneration, are discussed. Despite limited investigation, metallic ions have been confirmed to regulate exosome production and function, affecting immune response, angiogenesis, and osteogenesis. Although the underlying mechanism is not yet clear, these insights enrich our understanding of the mechanisms of the metallic ion-induced microenvironment for bone regeneration, benefiting the design of metallic ion-incorporated implants.
Collapse
Affiliation(s)
- Xuwei Luo
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
- Correspondence: (D.X.); (G.W.)
| | - Chengdong Zhang
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong 637000, China
| | - Guanglin Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (D.X.); (G.W.)
| |
Collapse
|
67
|
Zhu M, Zhang R, Mao Z, Fang J, Ren F. Topographical biointerface regulating cellular functions for bone tissue engineering. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Mingyu Zhu
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Rui Zhang
- Department of Prosthodontics Stomatology Center Peking University Shenzhen Hospital Shenzhen Guangdong China
| | - Zhixiang Mao
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Ju Fang
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| | - Fuzeng Ren
- Department of Materials Science and Engineering Southern University of Science and Technology Shenzhen Guangdong China
| |
Collapse
|
68
|
Tan J, Zhang QY, Song YT, Huang K, Jiang YL, Chen J, Wang R, Zou CY, Li QJ, Qin BQ, Sheng N, Nie R, Feng ZY, Yang DZ, Yi WH, Xie HQ. Accelerated bone defect regeneration through sequential activation of the M1 and M2 phenotypes of macrophages by a composite BMP-2@SIS hydrogel: An immunomodulatory perspective. COMPOSITES PART B: ENGINEERING 2022; 243:110149. [DOI: 10.1016/j.compositesb.2022.110149] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
69
|
Ding Y, Liu X, Zhang J, Lv Z, Meng X, Yuan Z, Long T, Wang Y. 3D printing polylactic acid polymer-bioactive glass loaded with bone cement for bone defect in weight-bearing area. Front Bioeng Biotechnol 2022; 10:947521. [PMID: 35957643 PMCID: PMC9358041 DOI: 10.3389/fbioe.2022.947521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
The treatment of bone defects in weight-bearing areas is mainly to transplant filling materials into the defect area, to provide immediate and strong support for weight-bearing. At present, the commonly used filling material is bone cement, which can only provide physical support without bone regeneration effect. The long-term stress at the interface may cause the loosening of bone cement. The ideal filling material should provide not only strong mechanical support but also promote bone regeneration. We introduce a 3D printing frame-filling structure in this study. The structure was printed with polylactic acid/bioactive glass as the frame, and bone cement as the filler. In this system, bone cement was used to provide immediate fixation, and the frame provided long-term fixation by promoting osteogenic induction and conduction between the interface. The results showed that the degradation of bioactive glass in the frame promoted osteogenic metabolism, induced M2 polarization of macrophages, and inhibited local inflammatory response. The in vivo study revealed that implantation of the frame-filling structure significantly promoted bone regeneration in the femoral bone defect area of New Zealand white rabbits. For a bone defect in a weight-bearing area, long-term stability could be obtained by bone integration through this frame-filling structure.
Collapse
|
70
|
Fang Y, Liu Z, Wang H, Luo X, Xu Y, Chan HF, Lv S, Tao Y, Li M. Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27525-27537. [PMID: 35687834 DOI: 10.1021/acsami.2c02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.
Collapse
Affiliation(s)
- Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
71
|
Venugopal D, Vishwakarma S, Kaur I, Samavedi S. Electrospun fiber-based strategies for controlling early innate immune cell responses: Towards immunomodulatory mesh designs that facilitate robust tissue repair. Acta Biomater 2022; 163:228-247. [PMID: 35675893 DOI: 10.1016/j.actbio.2022.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/16/2022] [Accepted: 06/01/2022] [Indexed: 12/16/2022]
Abstract
Electrospun fibrous meshes are widely used for tissue repair due to their ability to guide a host of cell responses including phenotypic differentiation and tissue maturation. A critical factor determining the eventual biological outcomes of mesh-based regeneration strategies is the early innate immune response following implantation. The natural healing process involves a sequence of tightly regulated, temporally varying and delicately balanced pro-/anti-inflammatory events which together promote mesh integration with host tissue. Matrix designs that do not account for the immune milieu can result in dysregulation, chronic inflammation and fibrous capsule formation, thus obliterating potential therapeutic outcomes. In this review, we provide systematic insights into the effects of specific fiber/mesh properties and mechanical stimulation on the responses of early innate immune modulators viz., neutrophils, monocytes and macrophages. We identify matrix characteristics that promote anti-inflammatory immune phenotypes, and we correlate such responses with pro-regenerative in vivo outcomes. We also discuss recent advances in 3D fabrication technologies, bioactive functionalization approaches and biomimetic/bioinspired immunomodulatory mesh design strategies for tissue repair and wound healing. The mechanobiological insights and immunoregulatory strategies discussed herein can help improve the translational outcomes of fiber-based regeneration and may also be leveraged for intervention in degenerative diseases associated with dysfunctional immune responses. STATEMENT OF SIGNIFICANCE: The crucial role played by immune cells in promoting biomaterial-based tissue regeneration is being increasingly recognized. In this review focusing on the interactions of innate immune cells (primarily neutrophils, monocytes and macrophages) with electrospun fibrous meshes, we systematically elucidate the effects of the fiber microenvironment and mechanical stimulation on biological responses, and build upon these insights to inform the rational design of immunomodulatory meshes for effective tissue repair. We discuss state-of-the-art fabrication methods and mechanobiological advances that permit the orchestration of temporally controlled phenotypic switches in immune cells during different phases of healing. The design strategies discussed herein can also be leveraged to target several complex autoimmune and inflammatory diseases.
Collapse
|
72
|
Tuning the surface potential to reprogram immune microenvironment for bone regeneration. Biomaterials 2022; 282:121408. [DOI: 10.1016/j.biomaterials.2022.121408] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
|
73
|
Cai M, Liu Y, Tian Y, Liang Y, Xu Z, Liu F, Lai R, Zhou Z, Liu M, Dai J, Liu X. Osteogenic peptides in periodontal ligament stem cell-containing three-dimensional bioscaffolds promote bone healing. Biomater Sci 2022; 10:1765-1775. [PMID: 35212326 DOI: 10.1039/d1bm01673c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone tissue engineering shows great potential in bone regeneration; however, the lack of bone growth factors with high biocompatibility and efficiency is a major concern. Oligopeptides have drawn great attention due to their high biological efficacy, low toxicity, and low molecular weight. The oligopeptide SDSSD promotes the osteogenesis of human periodontal ligament stem cells (hPDLSCs) in vitro. The SDSSD-modified three-dimensional (3D) bioscaffolds promote osteogenesis and bone formation in the subcutaneous pockets of BALB/c nude mice and facilitate bone healing in vivo. Mechanistically, SDSSD promoted bone formation by binding to G protein-coupled receptors and regulating the AKT signaling pathway. 3D-printing bioscaffolds with SDSSD may be potential bone tissue engineering materials for treating bone defects.
Collapse
Affiliation(s)
- Mingxiang Cai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Yaoyao Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Yinping Tian
- Department of Stomatology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445099, China
| | - Yan Liang
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Zinan Xu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Fangchen Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Renfa Lai
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Zhiying Zhou
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Minyi Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Xiangning Liu
- The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
74
|
Daskalakis E, Huang B, Vyas C, Acar AA, Fallah A, Cooper G, Weightman A, Koc B, Blunn G, Bartolo P. Novel 3D Bioglass Scaffolds for Bone Tissue Regeneration. Polymers (Basel) 2022; 14:445. [PMID: 35160435 PMCID: PMC8839207 DOI: 10.3390/polym14030445] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
The design of scaffolds with optimal biomechanical properties for load-bearing applications is an important topic of research. Most studies have addressed this problem by focusing on the material composition and not on the coupled effect between the material composition and the scaffold architecture. Polymer-bioglass scaffolds have been investigated due to the excellent bioactivity properties of bioglass, which release ions that activate osteogenesis. However, material preparation methods usually require the use of organic solvents that induce surface modifications on the bioglass particles, compromising the adhesion with the polymeric material thus compromising mechanical properties. In this paper, we used a simple melt blending approach to produce polycaprolactone/bioglass pellets to construct scaffolds with pore size gradient. The results show that the addition of bioglass particles improved the mechanical properties of the scaffolds and, due to the selected architecture, all scaffolds presented mechanical properties in the cortical bone region. Moreover, the addition of bioglass indicated a positive long-term effect on the biological performance of the scaffolds. The pore size gradient also induced a cell spreading gradient.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Boyang Huang
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Anil Ahmet Acar
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey; (A.A.A.); (A.F.); (B.K.)
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey; (A.A.A.); (A.F.); (B.K.)
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Glen Cooper
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Andrew Weightman
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
| | - Bahattin Koc
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Turkey; (A.A.A.); (A.F.); (B.K.)
- SUNUM Nanotechnology Research Center, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (E.D.); (B.H.); (C.V.); (G.C.); (A.W.)
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
75
|
Zhao T, Zhang J, Gao X, Yuan D, Gu Z, Xu Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J Mater Chem B 2022; 10:6078-6106. [DOI: 10.1039/d2tb01182d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, a variety of novel materials and processing technologies have been developed to prepare tissue engineering scaffolds for bone defect repair. Among them, nanofibers fabricated via electrospinning technology...
Collapse
|
76
|
Yang X, Zhang C, Zhang T, Xiao J. Cobalt-doped Ti surface promotes immunomodulation. Biomed Mater 2021; 17. [PMID: 34942605 DOI: 10.1088/1748-605x/ac4612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 11/12/2022]
Abstract
Here, cobalt-doped plasma electrolytic oxidation (PEO) coatings with different cobalt contents were prepared on Ti implants. The cobalt ions in the PEO coating exhibited a slow and sustainable release and thus showed excellent biocompatibility and enhanced cell adhesion. In vitro ELISA and RT-PCR assays demonstrated that the cobalt-loaded Ti showed immunomodulatory functions to macrophages and upregulated the expression of anti-inflammatory (M1 type) genes and downregulated expression levels of pro-inflammatory (M2 type) genes compared with that of pure Ti sample. High cobalt content induced increased macrophage polarization into the M2 type. Furthermore, the findings from the in vivo air pouch model suggested that cobalt-loaded Ti could mitigate inflammatory reactions. The present work provides a novel strategy to exploit the immunomodulatory functions of implant materials.
Collapse
Affiliation(s)
- Xiaoming Yang
- Fujian Medical University Affiliated First Quanzhou Hospital, 248~252, East Street, Licheng District, Quanzhou, Fujian, 362000, CHINA
| | - Chi Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, Guangdong, 510080, CHINA
| | - Tao Zhang
- PLA General Hospital of Southern Theatre Command, 1838 North, Guangzhou Avenue, Guangzhou, 510010, CHINA
| | - Jin Xiao
- Guangdong Provincial People's Hospital, 106 Zhongshan 2nd Road Yuexiu District, Guangzhou, 510080, CHINA
| |
Collapse
|
77
|
Sun J, Huang Y, Zhao H, Niu J, Ling X, Zhu C, Wang L, Yang H, Yang Z, Pan G, Shi Q. Bio-clickable mussel-inspired peptides improve titanium-based material osseointegration synergistically with immunopolarization-regulation. Bioact Mater 2021; 9:1-14. [PMID: 34820551 PMCID: PMC8586442 DOI: 10.1016/j.bioactmat.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 12/21/2022] Open
Abstract
Upon the osteoporotic condition, sluggish osteogenesis, excessive bone resorption, and chronic inflammation make the osseointegration of bioinert titanium (Ti) implants with surrounding bone tissues difficult, often lead to prosthesis loosening, bone collapse, and implant failure. In this study, we firstly designed clickable mussel-inspired peptides (DOPA-N3) and grafted them onto the surfaces of Ti materials through robust catechol-TiO2 coordinative interactions. Then, two dibenzylcyclooctyne (DBCO)-capped bioactive peptides RGD and BMP-2 bioactive domain (BMP-2) were clicked onto the DOPA-N3-coated Ti material surfaces via bio-orthogonal reaction. We characterized the surface morphology and biocompatibility of the Ti substrates and optimized the osteogenic capacity of Ti surfaces through adjusting the ideal ratios of BMP-2/RGD at 3:1. In vitro, the dual-functionalized Ti substrates exhibited excellent promotion on adhesion and osteogenesis of mesenchymal stem cells (MSCs), and conspicuous immunopolarization-regulation to shift macrophages to alternative (M2) phenotypes and inhibit inflammation, as well as enhancement of osseointegration and mechanical stability in osteoporotic rats. In summary, our biomimetic surface modification strategy by bio-orthogonal reaction provided a convenient and feasible method to resolve the bioinertia and clinical complications of Ti-based implants, which was conducive to the long-term success of Ti implants, especially in the osteoporotic or inflammatory conditions. A clickable mussel-inspired peptide and two DBCO-capped bioactive peptides for facile decoration of Ti prostheses via robust catechol/TiO2 coordinative interactions and click chemical reaction. Dual functionalized Ti-based surface can improve cell anchoring and osteogenicitity by rationally adjusting the grafting ratio of BMP-2 and RGD peptides. Dual functionalized Ti-based surface synergistically achieve M2 shifting and efficient inflammation inhibition for osseointegration.
Collapse
Affiliation(s)
- Jie Sun
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Yingkang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Huan Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Junjie Niu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Xuwei Ling
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Can Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Lin Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| | - Zhilu Yang
- Affiliated Dongguan Hospital, Southern Medical University, No. 3 Wandao Road, Dongguan, Guangdong, 523059, China.,Guangdong Provincial Key Laboratory of Shock and Microcirculation, No. 1023 Shatai Road, Guangzhou, Guangdong, 510080, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai, Suzhou, Jiangsu, 215031, China
| |
Collapse
|
78
|
Zhao C, Qiu P, Li M, Liang K, Tang Z, Chen P, Zhang J, Fan S, Lin X. The spatial form periosteal-bone complex promotes bone regeneration by coordinating macrophage polarization and osteogenic-angiogenic events. Mater Today Bio 2021; 12:100142. [PMID: 34647005 PMCID: PMC8495177 DOI: 10.1016/j.mtbio.2021.100142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Bone defects associated with soft tissue injuries are an important cause of deformity that threatens people’s health and quality of life. Although bone substitutes have been extensively explored, effective biomaterials that can coordinate early inflammation regulation and subsequent repair events are still lacking. We prepared a spatial form periosteal bone extracellular matrix (ECM) scaffold, which has advantages in terms of low immunogenicity, good retention of bioactive ingredients, and a natural spatial structure. The periosteal bone ECM scaffold with the relatively low-stiffness periosteum (41.6 ± 3.7 kPa) could inhibit iNOS and IL-1β expression, which might be related to actin-mediated YAP translocation. It also helped to promote CD206 expression with the potential influence of proteins related to immune regulation. Moreover, the scaffold combined the excellent properties of decalcified bone and periosteum, promoted the formation of blood vessels, and good osteogenic differentiation (RUNX2, Col 1α1, ALP, OPN, and OCN), and achieved good repair of a cranial defect in rats. This scaffold, with its natural structural and biological advantages, provides a new idea for bone healing treatment that is aligned with bone physiology. We provided a spatial form periosteal-bone complex. The scaffold preserved major biological components and spatial structure. The periosteum part of the scaffold acted as a physical barrier. The scaffold participated in the transformation of the macrophage phenotype. The scaffold promoted osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- C. Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - M. Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - K. Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Z. Tang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - P. Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - J. Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - S. Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| | - X. Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
- Corresponding author.
| |
Collapse
|