51
|
Razavi BM, Farivar O, Etemad L, Hosseinzadeh H. Suvorexant, a Dual Orexin Receptor Antagonist, Protected Seizure through Interaction with GABA A and Glutamate Receptors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:383-390. [PMID: 33224245 PMCID: PMC7667563 DOI: 10.22037/ijpr.2019.14688.12584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Orexin can increase neuronal excitability and induce epileptic activity. In this study, the effects of suvorexant (orexin receptor antagonist) on pentylenetetrazol (PTZ) and maximal electroshock (MES)-induced seizure were investigated. Mice were divided into 5 groups of six animals each including normal saline (10 mL/kg), diazepam (2 mg/kg), and suvorexant (50, 100 and 200 mg/kg) groups. In PTZ test, the latency to first minimal clonic seizure (MCS), latency to the first generalized tonic–clonic seizures (GTCS), total duration of seizure and also protection against mortality were evaluated. In MES, the hind limb tonic extension (HLTE) and the protection against mortality were recorded. In order to evaluate the role of GABAA in anticonvulsant effect of suvorexant, flumazenil was used and to investigate the role of glutamate, the protein levels of AMPAR and NMDAR were measured in hippocampus by western blotting. In PTZ model, suvorexant (200mg/kg) increased MCS and GTCS latencies. Suvorexant (100 and 200 mg/kg) decreased total duration of seizure compared to control group. In PTZ model, flumazenil inhibited the prolongation of seizure latency induced by suvorexant. In MES, the HLTE was decreased by suvorexant (100 and 200 mg/kg) and suvorexant was protected against mortality by 83.3%. Moreover, the protein levels of NMDAR and AMPAR were decreased by suvorexant. Suvorexant exerted anticonvulsant activity and in addition to its inhibitory effect on orexin receptors, this effect may be mediated, at least partly, through interaction with GABAA and glutamate receptors.
Collapse
Affiliation(s)
- Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Mdical sciences,Mashhad,Iran
| | - Omid Farivar
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Mdical sciences,Mashhad,Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
52
|
Amodeo LR, Liu W, Wills DN, Vetreno RP, Crews FT, Ehlers CL. Adolescent alcohol exposure increases orexin-A/hypocretin-1 in the anterior hypothalamus. Alcohol 2020; 88:65-72. [PMID: 32619610 DOI: 10.1016/j.alcohol.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/30/2022]
Abstract
Adolescence is a time of marked changes in sleep, neuromaturation, and alcohol use. While there is substantial evidence that alcohol disrupts sleep and that disrupted sleep may play a role in the development of alcohol use disorders (AUD), there is very little known about the brain mechanisms underlying this phenomenon. The orexin (also known as hypocretin) system is fundamental for a number of homeostatic mechanisms, including the initiation and maintenance of wakefulness that may be impacted by adolescent alcohol exposure. The current study investigated the impact of adolescent ethanol exposure on adult orexin-A/hypocretin-1 immunoreactive (orexin-A + IR) cells in hypothalamic nuclei in two models of adolescent intermittent ethanol (AIE) exposure. Both models assess adult hypothalamic orexin following either an AIE vapor exposure paradigm, or an AIE intragastric gavage paradigm during adolescence. Both AIE exposure models found that binge levels of ethanol intoxication during adolescence significantly increased adult orexin-A + IR expression in the anterior hypothalamic nucleus (AHN). Further, both AIE models found no change in orexin-A + IR in the posterior hypothalamic area (PH), perifornical nucleus (PeF), dorsomedial hypothalamic nucleus dorsal part (DMD) or lateral hypothalamic area (LH). However, AIE vapor exposure reduced orexin-A + IR in the paraventricular nucleus (PVN), but AIE gavage exposure did not. These findings suggest that the AHN orexinergic system is increased in adults following binge-like patterns of intoxication during adolescence. Altered adult AHN orexin could contribute to long-lasting changes in sleep.
Collapse
Affiliation(s)
- Leslie R Amodeo
- Department of Psychology, California State University, San Bernardino, San Bernardino, CA, 92407, United States
| | - Wen Liu
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Derek N Wills
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, United States
| | - Cindy L Ehlers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, United States.
| |
Collapse
|
53
|
Ahmadi-Soleimani SM, Mianbandi V, Azizi H, Azhdari-Zarmehri H, Ghaemi-Jandabi M, Abbasi-Mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behav Brain Res 2020; 391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
54
|
Structure-based development of a subtype-selective orexin 1 receptor antagonist. Proc Natl Acad Sci U S A 2020; 117:18059-18067. [PMID: 32669442 DOI: 10.1073/pnas.2002704117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Orexins are neuropeptides that activate the rhodopsin-like G protein-coupled receptors OX1R and OX2R. The orexin system plays an important role in the regulation of the sleep-wake cycle and the regulation of feeding and emotions. The nonselective orexin receptor antagonist suvorexant has been the first drug on the market targeting the orexin system and is prescribed for the treatment of insomnia. Subtype-selective OX1R antagonists are valuable tools to further investigate the functions and physiological role of the OX1R in vivo and promising lead compounds for the treatment of drug addiction, anxiety, pain or obesity. Starting from the OX1R and OX2R crystal structures bound to suvorexant, we exploited a single amino acid difference in the orthosteric binding site by using molecular docking and structure-based drug design to optimize ligand interactions with the OX1R while introducing repulsive interactions with the OX2R. A newly established enantiospecific synthesis provided ligands showing up to 75-fold selectivity for the OX1R over the OX2R subtype. The structure of a new OX1R antagonist with subnanomolar affinity (JH112) was determined by crystallography in complex with the OX1R and corresponded closely to the docking-predicted geometry. JH112 exhibits high selectivity over a panel of different GPCRs, is able to cross the blood-brain barrier and acts as slowly diffusing and insurmountable antagonist for Gq protein activation and in particular β-arrestin-2 recruitment at OX1R. This study demonstrates the potential of structure-based drug design to develop more subtype-selective GPCR ligands with potentially reduced side effects and provides an attractive probe molecule and lead compound.
Collapse
|
55
|
Martin-Saavedra JS, Ruiz-Sternberg AM. The effects of music listening on the management of pain in primary dysmenorrhea: A randomized controlled clinical trial. NORDIC JOURNAL OF MUSIC THERAPY 2020. [DOI: 10.1080/08098131.2020.1761867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Angela Maria Ruiz-Sternberg
- Clinical Research Group, Escuela de Medicina y Ciencias de la Salud-Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
56
|
Kuner R, Kuner T. Cellular Circuits in the Brain and Their Modulation in Acute and Chronic Pain. Physiol Rev 2020; 101:213-258. [PMID: 32525759 DOI: 10.1152/physrev.00040.2019] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic, pathological pain remains a global health problem and a challenge to basic and clinical sciences. A major obstacle to preventing, treating, or reverting chronic pain has been that the nature of neural circuits underlying the diverse components of the complex, multidimensional experience of pain is not well understood. Moreover, chronic pain involves diverse maladaptive plasticity processes, which have not been decoded mechanistically in terms of involvement of specific circuits and cause-effect relationships. This review aims to discuss recent advances in our understanding of circuit connectivity in the mammalian brain at the level of regional contributions and specific cell types in acute and chronic pain. A major focus is placed on functional dissection of sub-neocortical brain circuits using optogenetics, chemogenetics, and imaging technological tools in rodent models with a view towards decoding sensory, affective, and motivational-cognitive dimensions of pain. The review summarizes recent breakthroughs and insights on structure-function properties in nociceptive circuits and higher order sub-neocortical modulatory circuits involved in aversion, learning, reward, and mood and their modulation by endogenous GABAergic inhibition, noradrenergic, cholinergic, dopaminergic, serotonergic, and peptidergic pathways. The knowledge of neural circuits and their dynamic regulation via functional and structural plasticity will be beneficial towards designing and improving targeted therapies.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; and Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
57
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
58
|
Richardson K, Sweatt N, Tran H, Apprey V, Uthayathas S, Taylor R, Gupta K. Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease. Front Mol Biosci 2020; 7:5. [PMID: 32118032 PMCID: PMC7025496 DOI: 10.3389/fmolb.2020.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/10/2020] [Indexed: 12/23/2022] Open
Abstract
Sickle cell disease is a hemoglobinopathy that causes sickling of red blood cells, resulting in vessel blockage, stroke, anemia, inflammation, and extreme pain. The development and treatment of pain, in particular, neuropathic pain in sickle cell disease patients is poorly understood and impedes our progress toward the development of novel therapies to treat pain associated with sickle cell disease. The orexin/hypocretin system offers a novel approach to treat chronic pain and hyperalgesia. These neuropeptides are synthesized in three regions: perifornical area (PFA), lateral hypothalamus (LH), and dorsomedial hypothalamus (DMH). Data suggest that orexin-A neuropeptide has an analgesic effect on inflammatory pain and may affect mechanisms underlying the maintenance of neuropathic pain. The purpose of this study was to determine whether there are neuronal activation differences in the orexin system as a result of neuropathic pain testing in a mouse model of sickle cell disease. Female transgenic sickle mice that express exclusively (99%) human sickle hemoglobin (HbSS-BERK) and age-/gender-matched controls (HbAA-BERK mice; n = 10/group, 20-30 g) expressing normal human hemoglobin A were habituated to each test protocol and environment before collecting baseline measurements and testing. Four measures were used to assess pain-related behaviors: thermal/heat hyperalgesia, cold hyperalgesia, mechanical hyperalgesia, and deep-tissue hyperalgesia. Hypothalamic brain sections from HbAA-BERK and HbSS-BERK mice were processed to visualize orexin and c-Fos immunoreactivity and quantified. The percentage of double labeled neurons in the PFA was significantly higher than the percentage of double labeled neurons in the LH orexin field of HbAA-BERK mice (* p < 0.05). The percentages of double labeled neurons in PFA and DMH orexin fields are significantly higher than those neurons in the LH of HbSS-BERK mice (* p < 0.05). These data suggest that DMH orexin neurons were preferentially recruited during neuropathic pain testing and a more diverse distribution of orexin neurons may be required to produce analgesia in response to pain in the HbSS-BERK mice. Identifying specific orexin neuronal populations that are integral in neuropathic pain processing will allow us to elucidate mechanisms that provide a more selective, targeted approach in treating of neuropathic pain in sickle cell disease.
Collapse
Affiliation(s)
- Kimberlei Richardson
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Nia Sweatt
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Huy Tran
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Victor Apprey
- Department of Family Medicine, Howard University College of Medicine, Washington, DC, United States
| | - Subramaniam Uthayathas
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Robert Taylor
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Kalpna Gupta
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
- Division of Hematology/Oncology, Department of Medicine, University of California-Irvine School of Medicine, Irvine, CA, United States
| |
Collapse
|
59
|
Sleep deficiency and chronic pain: potential underlying mechanisms and clinical implications. Neuropsychopharmacology 2020; 45:205-216. [PMID: 31207606 PMCID: PMC6879497 DOI: 10.1038/s41386-019-0439-z] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022]
Abstract
Pain can be both a cause and a consequence of sleep deficiency. This bidirectional relationship between sleep and pain has important implications for clinical management of patients, but also for chronic pain prevention and public health more broadly. The review that follows will provide an overview of the neurobiological evidence of mechanisms thought to be involved in the modulation of pain by sleep deficiency, including the opioid, monoaminergic, orexinergic, immune, melatonin, and endocannabinoid systems; the hypothalamus-pituitary-adrenal axis; and adenosine and nitric oxide signaling. In addition, it will provide a broad overview of pharmacological and non-pharmacological approaches for the management of chronic pain comorbid with sleep disturbances and for the management of postoperative pain, as well as discuss the effects of sleep-disturbing medications on pain amplification.
Collapse
|
60
|
Analysis of HCRTR2, GNB3, and ADH4 Gene Polymorphisms in a Southeastern European Caucasian Cluster Headache Population. J Mol Neurosci 2019; 70:467-474. [PMID: 31768945 DOI: 10.1007/s12031-019-01439-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
Studies point to an increased hereditary risk of cluster headache. HCRTR2 gene rs2653349 and ADH4 gene rs1800759 polymorphisms have been associated with cluster headache susceptibility. Also, GNB3 rs5443 polymorphism, associated with increased signal transduction via GPCRs, seems to influence triptan treatment response. DNA from 114 cluster headache patients and 570 non-related controls, representing a general Southeastern European Caucasian (SEC) population, was extracted from buccal swabs and genotyped using real-time PCR. Gene distribution for the rs2653349 was GG = 79.8%, GA = 18.4%, and AA = 1.8% for patients and GG = 79.1%, GA = 19.1%, and AA = 1.8% for controls. The frequency of the mutated A allele was 11.0% for patients and 11.3% for controls. The frequencies for rs5443 were CC = 44.7%, CT = 44.7%, and TT = 10.5% for patients and CC = 43.9%, CT = 42.6%, and TT = 13.5% for controls. The frequency of the mutated T allele was 32.9% for patients and 34.8% for controls. A 2.7-fold more frequent appearance of the mutated T allele was observed in patients with better triptan treatment response, although not statistically significant. For rs1800759, the frequencies were CC = 36.0%, CA = 43.0%, and AA = 21.0% for patients and CC = 34.0%, CA = 50.2%, and AA = 15.8% for controls. The frequency of the mutated A allele was 42.5% and 40.9% for patients and controls, respectively. The mutated T allele of GNB3 rs5443 polymorphism was more prevalent in patients with better triptan treatment response, indicating a possible trend of association between this polymorphism and triptan treatment response in SEC population. According to our observation, no association of HCRTR2 rs2653349 and ADH4 rs1800759 polymorphisms and cluster headache in SEC population could be documented.
Collapse
|
61
|
Stanojlovic M, Pallais JP, Lee MK, Kotz CM. Pharmacological and chemogenetic orexin/hypocretin intervention ameliorates Hipp-dependent memory impairment in the A53T mice model of Parkinson's disease. Mol Brain 2019; 12:87. [PMID: 31666100 PMCID: PMC6822428 DOI: 10.1186/s13041-019-0514-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/18/2019] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD), classically defined as a progressive motor disorder accompanied with dopaminergic neuron loss and presence of Lewy bodies, is the second most common neurodegenerative disease. PD also has various non-classical symptoms, including cognitive impairments. In addition, inflammation and astrogliosis are recognized as an integral part of PD pathology. The hippocampus (Hipp) is a brain region involved in cognition and memory, and the neuropeptide orexin has been shown to enhance learning and memory. Previous studies show impairments in Hipp-dependent memory in a transgenic mouse model of Parkinson's disease (A53T mice), and we hypothesized that increasing orexin tone will reverse this. To test this, we subjected 3, 5, and 7-month old A53T mice to a Barnes maze and a contextual object recognition test to determine Hipp dependent memory. Inflammation and astrogliosis markers in the Hipp were assessed by immuno-fluorescence densitometry. The data show that early cognitive impairment is coupled with an increase in expression of inflammatory and astrogliosis markers. Next, in two separate experiments, mice were given intra-hippocampal injections of orexin or chemogenetic viral injections of an orexin neuron specific Designer Receptor Exclusively Activated by Designer Drug (DREADD). For the pharmacological approach mice were intracranially treated with orexin A, whereas the chemogenetic approach utilized clozapine N-oxide (CNO). Both pharmacological orexin A intervention as well as chemogenetic activation of orexin neurons ameliorated Hipp-dependent early memory impairment observed in A53T mice. This study implicates orexin in PD-associated cognitive impairment and suggests that exogenous orexin treatment and/or manipulation of endogenous orexin levels may be a potential strategy for addressing early cognitive loss in PD.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
| | - Jean Pierre Pallais
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Institute for Translational Neuroscience (ITN), University of Minnesota, Minneapolis, MN, USA
| | - Catherine M Kotz
- Integrative Biology and Physiology, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
- Minneapolis VA Health Care System, GRECC, Minneapolis, MN, USA
| |
Collapse
|
62
|
Coppola G, Di Renzo A, Petolicchio B, Tinelli E, Di Lorenzo C, Serrao M, Calistri V, Tardioli S, Cartocci G, Parisi V, Caramia F, Di Piero V, Pierelli F. Increased neural connectivity between the hypothalamus and cortical resting-state functional networks in chronic migraine. J Neurol 2019; 267:185-191. [PMID: 31606759 DOI: 10.1007/s00415-019-09571-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The findings of resting-state functional MRI studies have suggested that abnormal functional integration between interconnected cortical networks characterises the brain of patients with migraine. The aim of this study was to investigate the functional connectivity between the hypothalamus, brainstem, considered as the migraine generator, and the following areas/networks that are reportedly involved in the pathophysiology of migraine: default mode network (DMN), executive control network, dorsal attention system, and primary and dorsoventral visual networks. METHODS Twenty patients with chronic migraine (CM) without medication overuse and 20 healthy controls (HCs) were prospectively recruited. All study participants underwent 3-T MRI scans using a 7.5-min resting-state protocol. Using a seed-based approach, we performed a ROI-to-ROI analysis selecting the hypothalamus as the seed. RESULTS Compared to HCs, patients with CM showed significantly increased neural connectivity between the hypothalamus and brain areas belonging to the DMN and dorsal visual network. We did not detect any connectivity abnormalities between the hypothalamus and the brainstem. The correlation analysis showed that the severity of the migraine headache was positively correlated with the connectivity strength of the hypothalamus and negatively with the connectivity strength of the medial prefrontal cortex, which belongs to the DMN. CONCLUSION These data provide evidence for hypothalamic involvement in large-scale reorganisation at the functional-network level in CM and in proportion with the perceived severity of the migraine pain.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Antonio Di Renzo
- Research Unit of Neurophysiology of Vision and Neurophthalmology, IRCCS-Fondazione Bietti, Via Livenza 3, 00198, Rome, Italy
| | | | - Emanuele Tinelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
| | - Valentina Calistri
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Tardioli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Gaia Cartocci
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Parisi
- Research Unit of Neurophysiology of Vision and Neurophthalmology, IRCCS-Fondazione Bietti, Via Livenza 3, 00198, Rome, Italy.
| | - Francesca Caramia
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy
- IRCCS-Neuromed, Pozzilli, IS, Italy
| |
Collapse
|
63
|
Herrero Babiloni A, De Koninck BP, Beetz G, De Beaumont L, Martel MO, Lavigne GJ. Sleep and pain: recent insights, mechanisms, and future directions in the investigation of this relationship. J Neural Transm (Vienna) 2019; 127:647-660. [DOI: 10.1007/s00702-019-02067-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
|
64
|
Stanojlovic M, Pallais JP, Kotz CM. Chemogenetic Modulation of Orexin Neurons Reverses Changes in Anxiety and Locomotor Activity in the A53T Mouse Model of Parkinson's Disease. Front Neurosci 2019; 13:702. [PMID: 31417337 PMCID: PMC6682689 DOI: 10.3389/fnins.2019.00702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/21/2019] [Indexed: 01/02/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PD symptomology is recognized as heterogeneous and in addition to motor function decline includes cognitive, mood, sleep, and metabolic disorders. Previous studies showed early reductions in anxiety and locomotion in the A53T mice model of PD. Since inflammation and astrogliosis are an integral part of PD pathology and impair proper neuronal function, we were keen to investigate if behavioral changes in A53T mice are accompanied by increased inflammation and astrogliosis in the hippocampus (Hipp) and motor cortex (mCtx) brain regions involved in the regulation of anxiety and locomotion, respectively. To test this, we used 3-, 5-, and 7-month-old A53T mice to examine anxiety-like behavior, locomotion, and expression of inflammation and astrogliosis markers in the Hipp and mCtx. Further, we examined the presence of alpha-synuclein accumulation in orexin neurons and orexin neuronal loss. The data show early reductions in anxiety-like behavior as well as increased locomotor activity, which was accompanied by inflammation and astrogliosis in the Hipp and mCtx. Due to the persistence of the orexin neuron population in A53T mice and the involvement of orexin in anxiety and locomotor regulation, we hypothesized that chemogenetic modulation of orexin neurons would reverse the observed reductions in anxiety-like behavior and the increases in locomotor activity in these animals. We showed that chemogenetic activation of orexin neurons in A53T mice restores anxiety-like behavior back to control levels without affecting locomotor activity, whereas the inhibition of orexin neurons reverses the elevated locomotor activity without any effects on anxiety-like behavior. This study exemplifies the complex role of orexin neurons in this model of PD and demonstrates the novel finding that changes in locomotor and anxiety-like behavior are accompanied by inflammation and astrogliosis. Together, these data suggest that the orexin system may play a significant role in early and late stages of PD.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Jean Pierre Pallais
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States.,Minneapolis VA Health Care System, Geriatric Research, Education and Clinical Center, Minneapolis, MN, United States
| |
Collapse
|
65
|
Stanojlovic M, Pallais Yllescas JP, Vijayakumar A, Kotz C. Early Sociability and Social Memory Impairment in the A53T Mouse Model of Parkinson's Disease Are Ameliorated by Chemogenetic Modulation of Orexin Neuron Activity. Mol Neurobiol 2019; 56:8435-8450. [PMID: 31250383 DOI: 10.1007/s12035-019-01682-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is a multi-layered progressive neurodegenerative disease. Signature motor system impairments are accompanied by a variety of other symptoms such as mood, sleep, metabolic, and cognitive disorders. Interestingly, social cognition impairments can be observed from the earliest stages of the disease, prior to the onset of the motor symptoms. In this study, we investigated age-related reductions in sociability and social memory in the A53T mouse model of PD. Since inflammation and astrogliosis are an integral part of PD pathology and impair proper neuronal function, we examined astrogliosis and inflammation markers and parvalbumin expression in medial pre-frontal cortex (mPFC), part of the brain responsible for social cognition regulation. Finally, we used DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) for the stimulation and inhibition of orexin neuronal activity to modulate sociability and social memory in A53T mice. We observed that social cognition impairment in A53T mice is accompanied by an increase in astrogliosis and inflammation markers, in addition to loss of parvalbumin neurons and inhibitory pre-synaptic terminals in the mPFC. Moreover, DREADD-induced activation of orexin neurons restores social cognition in the A53T mouse model of PD. SIGNIFICANCE STATEMENT: Social cognition is severely affected in the early stages of Parkinson's disease. In this study, we identified the A53T mouse as a model of social cognitive impairment in PD. Observed alterations in sociability and social memory are accompanied by loss of parvalbumin positive neurons and loss of inhibitory input to mPFC. Stimulating orexin neurons using a chemogenetic approach (DREADDs) ameliorated social cognitive impairment. This study identifies a role for orexin neurons in social cognition in PD and suggests potential therapeutic targets for PD-related social cognition impairments.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.
| | | | - Aarthi Vijayakumar
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA.,GRECC, Minneapolis VA Health Care System, Minneapolis, MN, USA
| |
Collapse
|
66
|
Han X, Zhou J, Peng W. Orexins Facilitates Osteogenic Differentiation of MC3T3-E1 Cells. IUBMB Life 2019; 70:633-641. [PMID: 29999239 DOI: 10.1002/iub.1757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of osteoblastic bone formation and matrix mineralization plays a key role in the pathological development of osteoporosis. The orexin peptide orexin-A, a highly excitatory neuropeptide hormone, possesses various biological functions by activating its specific G protein-coupled receptors, orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R). Here, we report that OX1R but not OX2R was expressed in MC3T3-E1 cells. Importantly, we found that orexin-A accelerated osteoblast differentiation and matrix mineralization in MC3T3-E1 cells, as manifested by elevation of physiological markers of osteoblastic differentiation [alkaline phosphatase (ALP) and osteogenic genes] and Alizarin Red staining, respectively. Importantly, our findings indicated that orexin-A significantly increased the expression of runt-related transcription factor 2 (Runx-2), which is the central transcriptional factor. Orexin-A treatment phosphorylated the kinase p38 mitogen-activated protein kinase (MAPK) in a dose- and time-dependent manner. Also, orexin-induced increase in gene expression (Runx-2, ALP, osteocalcin, and osterix) and matrix mineralization were prevented by the p38 MAPK specific inhibitor SB203580. Additionally, we also revealed that protein kinase D (PKD) is involved in the effects of Orexin-A on p38 MAPK activation and Runx-2 expression. Finally, we found that Orexin-A-induced osteoblastic formation and matrix mineralization and the activation of the PKD/p38 MAPK pathway are mediated by OX1R. Based on these findings, we concluded that activation of OX1R by orexin-A might possess a therapeutic strategy for bone disease. © 2018 IUBMB Life, 70(7):633-641, 2018.
Collapse
Affiliation(s)
- Xuesong Han
- New Medical Department of Orthopedics, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Jicheng Zhou
- Department of Orthopeadic Surgery, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Wei Peng
- Department of Orthopeadic Surgery, Daqing People's Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
67
|
Asano H, Arima Y, Yokota S, Fujitani M. New nociceptive circuits to the hypothalamic perifornical area from the spinal cord and spinal trigeminal nucleus via the parabrachial nucleus. Biochem Biophys Res Commun 2019; 512:705-711. [DOI: 10.1016/j.bbrc.2019.02.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
|
68
|
Stanojlovic M, Pallais Yllescas JP, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019; 316:R571-R583. [PMID: 30726119 PMCID: PMC6589608 DOI: 10.1152/ajpregu.00383.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Aging affects numerous physiological processes, as well as behavior. A large number of these processes are regulated, at least partially, by hypothalamic orexin neurons, and orexin tone may decrease with normal aging. In this study, we hypothesized that designer receptors exclusively activated by designer drugs (DREADD) stimulation of orexin neuronal activity will ameliorate the effect of aging on behavioral and metabolic alterations in young and middle-aged mice. DREADD targeting was achieved by stereotaxic injection of AAV vectors (AAV2-hSyn-DIO-hM3D(Gq)-mCherry) into the lateral hypothalamus of 5- and 12-mo old orexin-cre female mice and was confirmed by immunohistochemistry (IHC) analysis of orexin A and mCherry expression. After recovery, animals were subjected to a behavioral test battery consisting of the elevated plus maze (EPM), open field (OFT), and novel object recognition tests (NORT) to assess effects of aging on anxiety-like behavior, general locomotion, and working memory. A comprehensive laboratory animal monitoring system (CLAMS) was used to measure spontaneous physical activity (SPA) and energy expenditure (EE). The results indicate that activation of orexin neurons mitigates aging-induced reductions in anxiety-like behavior in middle-aged mice (P < 0.005) and increases locomotion in both young and middle-aged mice (P < 0.05). Activation of orexin neurons increases SPA (P < 0.01) and EE (P < 0.005) in middle-aged mice, restoring the levels to that observed in young animals. Results from this study identify orexin neurons as potential therapeutic targets for age-related impairments in cognitive and anxiety-related behavior, and energy balance.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | | | - Vijaya Mavanji
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| |
Collapse
|
69
|
Spinal Orexin-2 Receptors are Involved in Modulation of the Lateral Hypothalamic Stimulation-Induced Analgesia. Neurochem Res 2019; 44:1152-1158. [DOI: 10.1007/s11064-019-02749-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022]
|
70
|
Niknia S, Kaeidi A, Hajizadeh MR, Mirzaei MR, Khoshdel A, Hajializadeh Z, Fahmidehkar MA, Mahmoodi M. Neuroprotective and antihyperalgesic effects of orexin-A in rats with painful diabetic neuropathy. Neuropeptides 2019; 73:34-40. [PMID: 30447858 DOI: 10.1016/j.npep.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/19/2023]
Abstract
AIM OF STUDY Diabetes mellitus is related to the development of neuronal tissue injury in different peripheral and central nervous system regions. A common complication of diabetes is painful diabetic peripheral neuropathy (PDN). We have studied the neuroprotective and anti-nociceptive properties of neuropeptide orexin-A in an animal experimental model of diabetic neuropathy. METHODS All experiments were carried out on male Wistar rats (220-250 g). Diabetes was induced by a single intraperitoneal injection of 55 mg/kg (i.p.) streptozotocin (STZ). Orexin-A was chronically administrated into the implanted intrathecal catheter (0.6, 2.5 and 5 nM/L, daily, 4 weeks). The tail-flick and rotarod treadmill tests were used to evaluate the nociceptive threshold and motor coordination of these diabetic rats, respectively. Cleaved caspase-3, Bax, Bcl2 and the Bax/Bcl-2 ratio, as the biochemical indicators of apoptosis, were investigated in the dorsal half of the lumbar spinal cord tissue by western blotting method. RESULTS Treatment of the diabetic rats with orexin-A (5 nM/L) significantly attenuated the hyperalgesia and motor deficit in diabetic animals. Furthermore, orexin-A (5 nM/L) administration suppressed pro-apoptotic cleaved caspase-3 and Bax proteins. Also, orexin-A (5 nM/L) reduced the expression of Bax/Bcl-2 ratio in spinal cord dorsal half of rats with PDN. CONCLUSIONS Altogether our data suggest that the orexin-A has anti-hyperalgesic and neuroprotective effects in rats with PDN. Cellular mechanisms underlying the observed effects may, at least partially, be related to reducing the neuronal apoptosis.
Collapse
Affiliation(s)
- Seddigheh Niknia
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Mirzaei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Khoshdel
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Hajializadeh
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Ali Fahmidehkar
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Science, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
71
|
Pourrahimi AM, Abbasnejad M, Esmaeili-Mahani S, Kooshki R, Raoof M. Intra-periaqueductal gray matter administration of orexin-A exaggerates pulpitis-induced anxiogenic responses and c-fos expression mainly through the interaction with orexin 1 and cannabinoid 1 receptors in rats. Neuropeptides 2019; 73:25-33. [PMID: 30587409 DOI: 10.1016/j.npep.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/15/2023]
Abstract
Different types of trigeminal pains are frequently associated with psychophysiological concerns. Orexin-A and orexin 1 receptor (OX1R) are involved in modulation of both trigeminal pain and anxiety responses. Ventrolateral periaqueductal gray matter (vlPAG), a controlling site for nociception and emotion, receives orexinergic inputs. Here, the role of vlPAG OX1Rs and their interaction with cannabinoid 1 (CB1) receptor was evaluated in anxiety-like behavior following capsaicin-induced dental pulp pain. Rats were cannulated in the vlPAG and orexin-A was injected at the doses of 0.17, 0.35 and 0.51 μg/rat prior to the induction of pain. The elevated plus maze (EPM) and open field (OF) tests were used for assessing the anxiety responses. In addition, the induction of c-fos, in the vlPAG, was investigated using immunofluorescence microscopy. Capsaicin-treated rats displayed significantly higher anxiogenic behavior on EPM and OF tests. Pretreatment with orexin-A (0.51 μg/rat) attenuated capsaicin-mediated nociception, while exaggerated anxiogenic responses (p < 0.05). In addition, orexin-A effects were diminished by the administration of OX1R (SB-334867, 12 μg/rat) and cannabinoid 1 (AM251, 4 μg/rat) receptor antagonists. Intradental capsaicin induced a significant increase in c-fos expression in the vlPAG that was exaggerated by orexin-A (0.51 μg/rat). Blockage of OX1R and CB1 receptors attenuated the effect of orexin-A on c-fos expression in capsaicin-treated rats. In conclusion, the data suggest that manipulation of OX1R and CB1 receptors in the vlPAG alters capsaicin-evoked anxiety like behaviors and c-fos induction in rats.
Collapse
Affiliation(s)
- Ali Mohammad Pourrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Razieh Kooshki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Raoof
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
72
|
Pérez de Vega MJ, Ferrer-Montiel A, González-Muñiz R. Recent progress in non-opioid analgesic peptides. Arch Biochem Biophys 2018; 660:36-52. [DOI: 10.1016/j.abb.2018.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023]
|
73
|
Orexin A may suppress inflammatory response in fibroblast-like synoviocytes. Biomed Pharmacother 2018; 107:763-768. [DOI: 10.1016/j.biopha.2018.07.159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
|
74
|
Raoof M, Soofiabadi S, Abbasnejad M, Kooshki R, Esmaeili-Mahani S, Mansoori M. Activation of orexin-1 receptors in the ventrolateral periaqueductal grey matter (vlPAG) modulates pulpal nociception and the induction of substance P in vlPAG and trigeminal nucleus caudalis. Int Endod J 2018; 52:318-328. [PMID: 30152877 DOI: 10.1111/iej.13007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/24/2018] [Indexed: 12/24/2022]
Abstract
AIM To characterize the role of orexin-1 receptors (OX1Rs) in ventrolateral periaqueductal grey matter (vlPAG) on modulation of capsaicin-induced pulpal nociception in rats. METHODOLOGY Sixty-six adult male Wistar rats (2 months old) weighing between 230 and 260 g were used. The animals were cannulated for microinjection of drugs into the vlPAG matter. Pulpalgia was induced by intradental application of capsaicin solution (100 μg) into the incisor teeth of the rats. Ten min prior to capsaicin application, orexin-A (50, 100 and 150 pmol L-1 per rat) was administered. Orexin-A (150 pmol L-1 ) was also co-administrated with SB-334867 (40 nmol L-1 per rat), an OX1Rs antagonist; or bicuculline (1 μg per rat), a GABAA receptors antagonist. Moreover, treatment effects on the release of pro-nociceptive modulator substance P (SP) in vlPAG and trigeminal nucleus caudalis (Vc) of rats were explored using an immunofluorescence technique. One-way analysis of variance was used for the statistical analysis. RESULTS Orexin-A dose-dependently decreased capsaicin-induced nociceptive behaviour. However, SB-334867 (40 nmol L-1 per rat) pretreatment (P < 0.05), but not bicuculline (1 μg per rat), attenuated the analgesic effect of orexin-A (150 pmol L-1 ). The level of SP was significantly increased in Vc and decreased in vlPAG of capsaicin-treated rats (P < 0.05). Capsaicin-induced changes in SP levels, however, were prohibited by orexin-A treatment (150 pmol L-1 ) (P < 0.05). CONCLUSIONS Orexin-A administration into the vlPAG was associated with an inhibitory effect on capsaicin-induced pulpal nociception and bidirectional effects on the induction of SP in vlPAG and Vc of rats. Central activation of OX1Rs is a potential therapeutic tool for pulpalgia.
Collapse
Affiliation(s)
- M Raoof
- Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - S Soofiabadi
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - M Abbasnejad
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - R Kooshki
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - S Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - M Mansoori
- Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
75
|
Herring WJ, Roth T, Krystal AD, Michelson D. Orexin receptor antagonists for the treatment of insomnia and potential treatment of other neuropsychiatric indications. J Sleep Res 2018; 28:e12782. [DOI: 10.1111/jsr.12782] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 01/06/2023]
Affiliation(s)
| | - Thomas Roth
- Sleep Disorders and Research Center Henry Ford Hospital Detroit MI USA
| | - Andrew D. Krystal
- Department of Psychiatry University of California San Francisco California USA
| | - David Michelson
- Clinical ResearchMerck & Co., Inc. Kenilworth New Jersey USA
| |
Collapse
|
76
|
Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018; 9:1061. [PMID: 30319410 PMCID: PMC6167434 DOI: 10.3389/fphar.2018.01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal’s activity and wakefulness. These sets of data are here reviewed. They concern the discharge profile during the sleep/wake cycle, spontaneous Fos induction, peptide synthesis and release reflected by immunostaining intensity and peptide levels in the cerebrospinal fluid as well as postsynaptic effects. At the synaptic level, adaptive capacity of orexin neurons subserved by remodeling of excitatory and inhibitory inputs has been shown in response to changes in the nutritional status and prolonged wakefulness. The present review wishes to highlight that synaptic plasticity in the wiring of orexin neurons also occurs in unperturbed conditions and could account for diurnal variations of orexin neuron activity. Data in zebrafish larvae have shown rhythmic changes in the density of inhibitory innervation of orexin dendrites in relation to vigilance states. Recent findings in mice have indicated a diurnal reorganization of the excitatory/inhibitory balance in the perisomatic innervation of orexin neurons. Taken together these sets of data point to “chronoconnectivity,” i.e., a synaptic rearrangement of inputs to orexin neurons over the course of the day in relation to sleep and wake states. This opens questions on the underlying circadian and homeostatic regulation and on the involved players at synaptic level, which could implicate dual transmitters, cytoskeletal rearrangements, hormonal regulation, as well as surrounding glial cells and extracellular matrix. Furthermore, the question arises of a “chronoconnectivity” in the wiring of other neuronal cell groups of the sleep-wake-regulatory network, many of which are characterized by variations of their firing rate during vigilance states.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona Unit, Verona, Italy
| |
Collapse
|
77
|
Ohtani S, Fujita S, Hasegawa K, Tsuda H, Tonogi M, Kobayashi M. Relationship between the fluorescence intensity of rhodamine-labeled orexin A and the calcium responses in cortical neurons: An in vivo two-photon calcium imaging study. J Pharmacol Sci 2018; 138:76-82. [PMID: 30293961 DOI: 10.1016/j.jphs.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/24/2018] [Accepted: 09/12/2018] [Indexed: 10/28/2022] Open
Abstract
Neural responses to a ligand vary widely between neurons; however, the mechanisms underlying this variation remain unclear. One possible mechanism is a variation in the number of receptors expressed in each neural membrane. Here, we synthesized a rhodamine-labeled orexin A compound, enabling us to quantify the amount of orexin binding to its receptors, OX1 and OX2, which principally couple to the Gq/11 protein. The rhodamine intensity and calcium response were measured under tetrodotoxin application from insular cortical glutamatergic neurons in Thy1-GCaMP6s transgenic mice using an in vivo two-photon microscope. Applying rhodamine-labeled orexin A (10 μM) to the cortical surface gradually and heterogeneously increased both the intensity of the rhodamine fluorescence and [Ca2+]i. Calcium responses started simultaneously with the increase in rhodamine-labeled orexin fluorescence and reached a plateau within several minutes. We classified neurons as high- and low-responding neurons based on the peak amplitude of the [Ca2+]i increase. The rhodamine fluorescence intensity was larger in the high-responding neurons than the low-responding neurons. Preapplication of SB334867 and TCS-OX2-29, OX1 and OX2 antagonists, respectively, decreased the proportion of high-responding neurons. These results suggest that the diverse receptor expression level in neural membranes is involved in mechanisms underlying varied neural responses, including [Ca2+]i increases.
Collapse
Affiliation(s)
- Saori Ohtani
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Satoshi Fujita
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Koki Hasegawa
- Center for Instrumental Analysis, Kyoto Pharmaceutical University, Misasagi-Shichonocho 1, Yamashina-ku, Kyoto 607-8412, Japan
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Masayuki Kobayashi
- Department of Pharmacology, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Division of Oral and Craniomaxillofacial Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Molecular Dynamics Imaging Unit, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
78
|
Komatsu T, Katsuyama S, Uezono Y, Sakurada C, Tsuzuki M, Hamamura K, Bagetta G, Sakurada S, Sakurada T. Possible involvement of the peripheral Mu-opioid system in antinociception induced by bergamot essential oil to allodynia after peripheral nerve injury. Neurosci Lett 2018; 686:127-132. [PMID: 30201308 DOI: 10.1016/j.neulet.2018.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 11/24/2022]
Abstract
The essential oil of bergamot (BEO) is one of the most common essential oils and is most familiar to the general public. The aims of this study were to investigate the effect of intraplantar (i.pl.) BEO on neuropathic allodynia induced by partial sciatic nerve ligation (PSNL) in mice and the opioid receptor subtypes involved in the antiallodynic effects of BEO. Our findings showed that a single dose of i.pl. administration of BEO significantly inhibited the PSNL-induced neuropathic pain using the von Frey test. The i.pl pretreatment with naloxone methiodide, a peripherally acting μ-opioid receptor preferring antagonist, β-funaltrexamine hydrochloride (β-FNA), a selective μ-opioid receptor antagonist, and β-endorphin antiserum significantly reversed the antiallodynic effect of BEO in the von Frey test, but not by naltrindole, the nonselective δ-opioid receptor antagonist and nor-binaltorphimine, the selective κ-opioid receptor antagonist. Furthermore, in the western blotting analysis, i.pl. administration of BEO resulted in a significant blockage of spinal extracellular signal-regulated protein kinase (ERK) activation induced by PSNL. Naloxone methiodide and β-FNA significantly reversed the blockage of spinal ERK activation induced by BEO. These results suggest that i.pl. injection of BEO-induced antiallodynic effect and blockage of spinal ERK activation may be triggered by activation of peripheral μ-opioid receptors.
Collapse
Affiliation(s)
- Takaaki Komatsu
- Department of Drug analysis, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Soh Katsuyama
- Center for Experiential Pharmacy Practice, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Chikai Sakurada
- Department of Biochemistry, Nihon Pharmaceutical University, 10281 Komuro Ina-Machi Kitaadachi-gun, Saitama 362-0806, Japan
| | - Minoru Tsuzuki
- Department of Biochemistry, Nihon Pharmaceutical University, 10281 Komuro Ina-Machi Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kengo Hamamura
- Department of Drug analysis, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Giacinto Bagetta
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
| | - Shinobu Sakurada
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Tsukasa Sakurada
- Department of Drug analysis, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
79
|
Caffarelli C, Santamaria F, Di Mauro D, Mastrorilli C, Montella S, Tchana B, Valerio G, Verrotti A, Valenzise M, Bernasconi S, Corsello G. Advances in pediatrics in 2017: current practices and challenges in allergy, endocrinology, gastroenterology, genetics, immunology, infectious diseases, neonatology, nephrology, neurology, pulmonology from the perspective of Italian Journal of Pediatrics. Ital J Pediatr 2018; 44:82. [PMID: 30016966 PMCID: PMC6050676 DOI: 10.1186/s13052-018-0524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/03/2018] [Indexed: 11/25/2022] Open
Abstract
This review provides an overview of a remarkable number of significant studies in pediatrics that have been published over the past year in the Italian Journal of Pediatrics. We have selected information from papers presented in the Journal that deal with allergy, endocrinology, gastroenterology, genetics, immunology, infectious diseases, neonatology, nephrology, neurology, pulmonology. The relevant epidemiologic findings, and developments in prevention, diagnosis and treatment of the last year have been discussed and placed in context. We think that advances achieved in 2017 will help readers to make the future of patients better.
Collapse
Affiliation(s)
- Carlo Caffarelli
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera-Universitaria, University of Parma, Parma, Italy
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Dora Di Mauro
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera-Universitaria, University of Parma, Parma, Italy
| | - Carla Mastrorilli
- Clinica Pediatrica, Department of Medicine and Surgery, Azienda Ospedaliera-Universitaria, University of Parma, Parma, Italy
| | - Silvia Montella
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bertrand Tchana
- Cardiologia Pediatrica, Azienda Ospedaliera-Universitaria, Parma, Italy
| | - Giuliana Valerio
- Pediatria, Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Naples, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L’Aquila, L’Aquila, Italy
| | - Mariella Valenzise
- UOC Clinica Pediatrica AOU G, Martino Università di Messina, Messina, Italy
| | - Sergio Bernasconi
- Pediatrics Honorary Member University Faculty, G D’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| |
Collapse
|
80
|
Llorca-Torralba M, Mico JA, Berrocoso E. Behavioral effects of combined morphine and MK-801 administration to the locus coeruleus of a rat neuropathic pain model. Prog Neuropsychopharmacol Biol Psychiatry 2018. [PMID: 29524514 DOI: 10.1016/j.pnpbp.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The persistent activation of N-methyl-d-aspartate acid receptors (NMDARs) seems to be responsible for a series of changes in neurons associated with neuropathic pain, including the failure of opioids that act through mu-opioid receptors (MORs) to provide efficacious pain relief. As the noradrenergic locus coeruleus (LC) forms part of the endogenous analgesic system, we explored how intra-LC administration of morphine, a MORs agonist, alone or in combination with MK-801, a NMDARs antagonist, affects the sensorial and affective dimension of pain in a rat model of neuropathic pain; chronic constriction injury (CCI). Intra-LC microinjection of morphine induced analgesia in CCI rats, as evident in the von Frey and cold plate test 7 and 30 days after surgery, although it was not able to reverse pain-related aversion when evaluated using the place escape/avoidance test. However, the thermal anti-nociception produced by morphine was enhanced when it was administered to the LC of CCI animals in combination with MK-801, without altering its effects on the mechanical thresholds. Furthermore, pain-related aversion was reduced by co-administration of these agents, yet only in the short-term CCI (7 day) rats. Overall the data indicate that administration of morphine to the LC produces analgesia in nerve injured animals and that this effect is potentiated in specific pain modalities by the co-administration of MK-801. While a combination of morphine and MK-801 could reduce pain-related aversion in short-term neuropathic animals, it was ineffective in the long-term, suggesting that its sensorial effects and its influence on the affective component of pain are regulated by different mechanisms.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, University of Cádiz, Cádiz, Spain
| | - Juan A Mico
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
81
|
Tsai MC, Huang TL. Orexin A in men with heroin use disorder undergoing methadone maintenance treatment. Psychiatry Res 2018; 264:412-415. [PMID: 29680730 DOI: 10.1016/j.psychres.2018.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/02/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022]
Abstract
Orexins have played a role in reward-seeking and addiction-related behavior. There are few reports in the literature on serum levels of orexins in patients with heroin use disorder (HUD) undergoing methadone maintenance treatment (MMT). The aim of this study was to investigate the serum levels of orexin A in HUD patients undergoing MMT. Fifty male HUD patients undergoing MMT and 25 healthy males were enrolled for this study. Serum orexin A were measured with assay kits. Using analysis of covariance (ANCOVA) with body mass index (BMI) adjustments, the serum levels of orexin A in HUD men undergoing MMT were found to be significantly higher than in healthy controls. In conclusion, our results suggest that MMT might increase orexin A levels in HUD patients.
Collapse
Affiliation(s)
- Meng-Chang Tsai
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, ROC.
| |
Collapse
|
82
|
Blanco-Centurion C, Bendell E, Zou B, Sun Y, Shiromani PJ, Liu M. VGAT and VGLUT2 expression in MCH and orexin neurons in double transgenic reporter mice. IBRO Rep 2018; 4:44-49. [PMID: 30155524 PMCID: PMC6111069 DOI: 10.1016/j.ibror.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/23/2018] [Accepted: 05/09/2018] [Indexed: 11/11/2022] Open
Abstract
MCH neurons contain neither VGAT nor VGLUT2. Majority of orexin neurons contain VGLUT2. MCH neurons do not contain orexin.
The neuropeptides orexin and melanin-concentrating hormone (MCH), as well as the neurotransmitters GABA (γ-Aminobutyric acid) and glutamate are chief modulators of the sleep-wake states in the posterior hypothalamus. To investigate co-expression of vesicular GABA transporter (VGAT, a marker of GABA neurons) and the vesicular glutamate transporter-2 (VGLUT2, a marker of glutamate neurons) in orexin and MCH neurons, we generated two transgenic mouse lines. One line selectively expressed the reporter gene EYFP in VGAT+ neurons, whereas the other line expressed reporter gene tdTomato in VGLUT2+ neurons. Co-localization between these genetic reporters and orexin or MCH immunofluorescent tags was determined using 3D computer reconstructions of Z stacks that were acquired using a multiphoton laser confocal microscope. Our results demonstrated that MCH neurons expressed neither VGAT nor VGLUT2, suggesting MCH neurons are a separate cluster of cells from VGAT+ GABAergic neurons and VGLUT2+ glutamatergic neurons. Moreover, most orexin neurons expressed VGLUT2, indicating these neurons are glutamatergic. Our data suggested that in the posterior hypothalamus there are four major distinct groups of neurons: VGAT+, orexin+/VGLUT2+, orexin-/VGLUT2+, and MCH neurons. This study facilitated our understanding of the role of these neurotransmitters and neuropeptides in relation to sleep/wake regulation.
Collapse
Key Words
- Arousal
- CeA, central nucleus of amygdala
- GABA
- GABA-γ, Aminobutyric acid
- GAD65, glutamic acid decarboxylase-65
- GAD67, glutamic acid decarboxylase-67
- Gad1, Glutamate decarboxylase 1
- Glutamate
- MCH, melanin concentrating hormone
- NREM, non-rapid eye movement
- REM, rapid eye movement
- RTN, reticular thalamic nucleus
- SSC, somatosensory cortex
- Sleep
- VGAT, vesicular GABA transporter
- VGLUT2, vesicular glutamate transporter-2
Collapse
Affiliation(s)
- Carlos Blanco-Centurion
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Emmaline Bendell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bingyu Zou
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Ying Sun
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Priyattam J Shiromani
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29425, USA.,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
83
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy .,4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy .,2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
84
|
Sheng Q, Xue Y, Wang Y, Chen AQ, Liu C, Liu YH, Chu HY, Chen L. The Subthalamic Neurons are Activated by Both Orexin-A and Orexin-B. Neuroscience 2017; 369:97-108. [PMID: 29138106 DOI: 10.1016/j.neuroscience.2017.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 02/02/2023]
Abstract
The subthalamic nucleus is an important nucleus in the indirect pathway of the basal ganglia circuit and therefore is involved in motor control under both normal and pathological conditions. Morphological studies reveal that the subthalamic nucleus receives relatively dense orexinergic projections originating from the hypothalamus. Both orexin-1 (OX1) and orexin-2 (OX2) receptors are expressed in the subthalamic nucleus. To explore the functions of orexinergic system in the subthalamic nucleus, extracellular electrophysiological recordings and behavioral tests were performed in the present study. Exogenous application of orexin-A significantly increased the spontaneous firing rate from 5.70 ± 0.66 Hz to 9.87 ± 1.18 Hz in 64.00% subthalamic neurons recorded. OX1 receptors are involved in orexin-A-induced excitation. Application of orexin-B increased the firing rate from 7.47 ± 0.92 Hz to 11.85 ± 1.39 Hz in 80.95% subthalamic neurons recorded, entirely through OX2 receptors. Both OX1 and OX2 receptor antagonists decreased the firing rate in 43.75% and 62.50% subthalamic neurons recorded respectively, suggesting the involvement of endogenous orexinergic system in the control of spontaneous firing activity. Further elevated body swing test revealed that microinjection of orexins and the receptor antagonists into the subthalamic nucleus induced contralateral-biased swing and ipsilateral-biased swing, respectively. Taken together, the present study suggests that orexins play important roles in the subthalamic nucleus which may provide further evidence for the involvement of subthalamic orexinergic tone in Parkinson's disease. SIGNIFICANCE Previous morphological studies indicate that the subthalamic nucleus receives orexinergic innervation and expresses both OX1 and OX2 receptors. Using in vivo multibarrel electrophysiological recordings, the present study revealed that exogenous application of orexin-A and orexin-B increased the spontaneous firing rate of the subthalamic neurons through OX1 and OX2 receptors. Endogenous orexinergic system was involved in the control of spontaneous firing of the subthalamic neurons. Further behavioral test revealed that intrasubthalamic application of orexins and the receptor antagonists induced biased swing behavior. The present study may provide further evidence for the involvement of subthalamic orexinergic tone in Parkinson's disease.
Collapse
Affiliation(s)
- Qing Sheng
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Yan Xue
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Ying Wang
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - An-Qi Chen
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Cui Liu
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Yun-Hai Liu
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Hong-Yan Chu
- Department of Physiology, Qingdao University, Qingdao 266071, China
| | - Lei Chen
- Department of Physiology, Qingdao University, Qingdao 266071, China.
| |
Collapse
|