51
|
Zhang Z, Li W, Chang D, Wei Z, Wang E, Yu J, Xu Y, Que Y, Chen Y, Fan C, Ma B, Zhou Y, Huan Z, Yang C, Guo F, Chang J. A combination therapy for androgenic alopecia based on quercetin and zinc/copper dual-doped mesoporous silica nanocomposite microneedle patch. Bioact Mater 2022; 24:81-95. [PMID: 36582348 PMCID: PMC9772573 DOI: 10.1016/j.bioactmat.2022.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
A nanocomposite microneedle (ZCQ/MN) patch containing copper/zinc dual-doped mesoporous silica nanoparticles loaded with quercetin (ZCQ) was developed as a combination therapy for androgenic alopecia (AGA). The degradable microneedle gradually dissolves after penetration into the skin and releases the ZCQ nanoparticles. ZCQ nanoparticles release quercetin (Qu), copper (Cu2+) and zinc ions (Zn2+) subcutaneously to synergistically promote hair follicle regeneration. The mechanism of promoting hair follicle regeneration mainly includes the regulation of the main pathophysiological phenomena of AGA such as inhibition of dihydrotestosterone, inhibition of inflammation, promotion of angiogenesis and activation of hair follicle stem cells by the combination of Cu2+ and Zn2+ ions and Qu. This study demonstrates that the systematic intervention targeting different pathophysiological links of AGA by the combination of organic drug and bioactive metal ions is an effective treatment strategy for hair loss, which provides a theoretical basis for development of biomaterial based anti-hair loss therapy.
Collapse
Affiliation(s)
- Zhaowenbin Zhang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenbo Li
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China
| | - Di Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Fudan University, Shanghai, 200433, PR China
| | - Ziqin Wei
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Endian Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jing Yu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuze Xu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yumei Que
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Yanxin Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Chen Fan
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China
| | - Bing Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yanling Zhou
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhiguang Huan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chen Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Corresponding author.
| | - Feng Guo
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200025, PR China,Corresponding author.
| | - Jiang Chang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China,Wenzhou Institute, University of Chinese Academy of Sciences, Zhejiang, 325000, PR China,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China,Corresponding author. State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.
| |
Collapse
|
52
|
Zhang Y, Yin P, Huang J, Yang L, Liu Z, Fu D, Hu Z, Huang W, Miao Y. Scalable and high-throughput production of an injectable platelet-rich plasma (PRP)/cell-laden microcarrier/hydrogel composite system for hair follicle tissue engineering. J Nanobiotechnology 2022; 20:465. [PMID: 36329527 PMCID: PMC9632161 DOI: 10.1186/s12951-022-01671-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Tissue engineering of hair follicles (HFs) has enormous potential for hair loss treatment. However, certain challenges remain, including weakening of the dermal papilla cell (DPC) viability, proliferation, and HF inducibility, as well as the associated inefficient and tedious preparation process required to generate extracellular matrix (ECM)-mimicking substrates for biomolecules or cells. Herein, we utilized gelatin methacryloyl (GelMA) and chitosan hydrogels to prepare scalable, monodispersed, and diameter-controllable interpenetrating network GelMA/chitosan-microcarriers (IGMs) loaded with platelet-rich plasma (PRP) and seeded with DPCs, on a high-throughput microfluidic chip. RESULTS The ECM-mimicking hydrogels used for IGMs exhibited surface nano-topography and high porosity. Mass production of IGMs with distinct and precise diameters was achieved by adjusting the oil and aqueous phase flow rate ratio. Moreover, IGMs exhibited appropriate swelling and sustained growth factor release to facilitate a relatively long hair growth phase. DPCs seeded on PRP-loaded IGMs exhibited good viability (> 90%), adhesion, spreading, and proliferative properties (1.2-fold greater than control group). Importantly, PRP-loaded IGMs presented a higher hair inducibility of DPCs in vitro compared to the control and IGMs group (p < 0.05). Furthermore, DPC/PRP-laden IGMs were effectively mixed with epidermal cell (EPC)-laden GelMA to form a PRP-loaded DPC/EPC co-cultured hydrogel system (DECHS), which was subcutaneously injected into the hypodermis of nude mice. The PRP-loaded DECHS generated significantly more HFs (~ 35 per site) and novel vessels (~ 12 per site) than the other groups (p < 0.05 for each). CONCLUSION Taken together, these results illustrate that, based on high-throughput microfluidics, we obtained scalable and controllable production of ECM-mimicking IGMs and DECHS, which simulate an effective micro- and macro-environment to promote DPC bioactivity and hair regeneration, thus representing a potential new strategy for HF tissue engineering.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Panjing Yin
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Lunan Yang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China.
| | - Wenhua Huang
- Department of Joint Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, PR China.
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, 510515, Guangzhou, Guangdong Province, China.
| |
Collapse
|
53
|
Chen X, Yan P, Zhang W, He X, Jiang R, Li Y, Sun J, Jiang J. Bioengineered polyester nanoparticles for the synergistic treatment of androgenic alopecia via the suppression of 5α-reductase and knockdown of androgen receptor. Front Bioeng Biotechnol 2022; 10:1033987. [DOI: 10.3389/fbioe.2022.1033987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Androgenic alopecia (AGA) is a common disease that negatively affects patients’ physical and mental health. AGA can be treated with drugs that improve the perifollicular microenvironment, such as 5α-reductase inhibitors (e.g., dutasteride [DUT]), androgen receptor blockers, and minoxidil. However, the efficacy of these treatments is limited. Therefore, this study aimed to show that nanoparticles are effective as stable carriers with high curative benefits and little adverse effects. The in vitro study showed that PLGA-DUT/siAR@DPCM NPs could deliver both DUT and siAR to dermal papilla cells. They could successfully suppress 5α-reductase and knock down androgen receptor, respectively, and thereby promote cell proliferation. In the in vivo study, PLGA-DUT/siAR@DPCM NPs showed a significant therapeutic effect in an AGA mouse model. They successfully penetrated the stratum corneum and showed a clear targeting effect on hair follicles and surrounding tissues. PLGA-DUT/siAR@DPCM NPs could enable the targeted delivery of DUT and siAR through percutaneous penetration, enhancing phagocytosis and decreasing adverse effects. Thus, they have great potential in the clinical treatment of AGA.
Collapse
|
54
|
Takahashi R, Takahashi G, Kameyama Y, Sato M, Ohtsuka M, Wada K. Gender-Difference in Hair Length as Revealed by Crispr-Based Production of Long-Haired Mice with Dysfunctional FGF5 Mutations. Int J Mol Sci 2022; 23:ijms231911855. [PMID: 36233155 PMCID: PMC9569730 DOI: 10.3390/ijms231911855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Fibroblast growth factor 5 (FGF5) is an important molecule required for the transition from anagen to catagen phase of the mammalian hair cycle. We previously reported that Syrian hamsters harboring a 1-bp deletion in the Fgf5 gene exhibit excessive hair growth in males. Herein, we generated Fgf5 mutant mice using genome editing via oviductal nucleic acid delivery (GONAD)/improved GONAD (i-GONAD), an in vivo genome editing system used to target early embryos present in the oviductal lumen, to study gender differences in hair length in mutant mice. The two lines (Fgf5go-malc), one with a 2-bp deletion (c.552_553del) and the other with a 1-bp insertion (c.552_553insA) in exon 3 of Fgf5, were successfully established. Each mutation was predicted to disrupt a part of the FGF domain through frameshift mutation (p.Glu184ValfsX128 or p.Glu184ArgfsX128). Fgf5go-malc1 mice had heterogeneously distributed longer hairs than wild-type mice (C57BL/6J). Notably, this change was more evident in males than in females (p < 0.0001). Immunohistochemical analysis revealed the presence of FGF5 protein in the dermal papilla and outer root sheath of the hair follicles from C57BL/6J and Fgf5go-malc1 mice. Histological analysis revealed that the prolonged anagen phase might be the cause of accelerated hair growth in Fgf5go-malc1 mice.
Collapse
Affiliation(s)
- Ryo Takahashi
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
| | - Gou Takahashi
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yuichi Kameyama
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
| | - Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara 259-1193, Japan
- The Institute of Medical Sciences, Tokai University, Isehara 259-1193, Japan
| | - Kenta Wada
- Graduate School of Bioindustry, Tokyo University of Agriculture, Abashiri 099-2493, Japan
- Correspondence: ; Tel.: +81-152-48-3827
| |
Collapse
|
55
|
Castro AR, Portinha C, Logarinho E. The Emergent Power of Human Cellular vs Mouse Models in Translational Hair Research. Stem Cells Transl Med 2022; 11:1021-1028. [PMID: 35962707 PMCID: PMC9585950 DOI: 10.1093/stcltm/szac059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/17/2022] [Indexed: 11/27/2022] Open
Abstract
Different animal models have been used for hair research and regeneration studies based on the similarities between animal and human skins. Primary knowledge on hair follicle (HF) biology has arisen from research using mouse models baring spontaneous or genetically engineered mutations. These studies have been crucial for the discovery of genes underlying human hair cycle control and hair loss disorders. Yet, researchers have become increasingly aware that there are distinct architectural and cellular features between the mouse and human HFs, which might limit the translation of findings in the mouse models. Thus, it is enticing to reason that the spotlight on mouse models and the unwillingness to adapt to the human archetype have been hampering the emergence of the long-awaited human hair loss cure. Here, we provide an overview of the major limitations of the mainstream mouse models for human hair loss research, and we underpin a future course of action using human cell bioengineered models and the emergent artificial intelligence.
Collapse
Affiliation(s)
- Ana Rita Castro
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Saúde Viável-Insparya Hair Center, Porto, Portugal.,Doctoral Program in Biomedical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | | | - Elsa Logarinho
- Aging and Aneuploidy Group, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Saúde Viável-Insparya Hair Center, Porto, Portugal
| |
Collapse
|
56
|
Zeng Q, Wang Z, Zhu Z, Hu Y, Wang Y, Xue Y, Wu Y, Guo Y, Liang P, Chen H, Zheng Z, Shen C, Jiang C, Zhu H, Shen Q, Yi Y, Li H, Yang Z, Liu L, Liu Q. Glycyrrhizin micellar nanocarriers for topical delivery of baicalin to the hair follicles: A targeted approach tailored for alopecia treatment. Int J Pharm 2022; 625:122109. [PMID: 35973589 DOI: 10.1016/j.ijpharm.2022.122109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 12/20/2022]
Abstract
Alopecia affected approximately 16.6% of all people in China, however, treatment options remain limited due to the side effects. Plant bioactive compound baicalin (BC) possesses hair growth-promotion activity, but poor water solubility and unsuitable log P value restrict its topical application, and natural Glycyrrhizin (GL) can exactly overcome these drawbacks. Here, BC was encapsulated in GL to form GL-BC micelles for alopecia treatment. Simultaneously, tween 80 (TW) as carriers was incorporated in the GL-BC to form GL-TW-BC micelles. The topical penetration, penetration pathways, cellular uptake and the underlying mechanisms behind the hair loss reconstruction of the GL micelles were investigated. We found the optimal GL-BC and GL-TW-BC formulations significantly improved the penetration and accumulation of BC in the porcine skin predominantly through the hair follicles pathways without causing skin irritation, which resulted in a targeted treatment. The proliferation of human dermal papilla cells (hDPCs) and effective cellular uptake was also enhanced. Moreover, the activation of the Wnt/β-catenin pathway, up-expression of vascular endothelial growth factor (VEGF), α-melanocyte-stimulating hormone (α-MSH) and interleukin-10 (IL-10) were the mechanisms of micelles for the hair recovery. Interestingly, GL and BC exhibited a synergistic treatment of alopecia. Collectively, GL-BC and GL-TW-BC can be used as promising approaches for the treatment of alopecia.
Collapse
Affiliation(s)
- Quanfu Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhaoming Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yaqi Xue
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qun Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yankui Yi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510000, China
| | - Zhijun Yang
- School of Traditional Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
57
|
da Cruz GK, Martins MIM, Antunes FTT, de Souza AH, Wiilland EDF, Picada JN, Brum LFDS. Evaluation of the efficacy and toxicity of oral and topical pumpkin oil on the hair growth of mice. Acta Histochem 2022; 124:151894. [PMID: 35447441 DOI: 10.1016/j.acthis.2022.151894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
This study aimed to evaluate the efficacy and safety of a topical and oral administration of pumpkin seed oil (PSO) on the hair growth of BALB/c male mice. The animals had their dorsal area shaved (2 ×2 cm) and they were divided into 6 experimental groups. They received orally saline (OS), finasteride (F), or PSO (OP) for 14 days; or topically saline (TS), minoxidil (M), or PSO (TP) for 7 days. The euthanasia of all of the mice occurred on the 22nd day, and the histological slides from the skin area were analyzed. Lipoperoxidation in the liver was assessed through the TBARS method and was also evaluated by the antioxidant enzymes (SOD and CAT). The comet assay and the micronucleus tests were performed for genotoxic/mutagenic safety analyses. A significant increase in the number of hair follicles in the TP group was seen (8.8 ± 0.8) but it was disorganized, with loose dermal collagen. Finasteride presented a significant increase in the levels of the TBARS, SOD, and CAT in the liver, and M increased the DNA damage in the blood and the liver tissues. PSO did not induce any significant changes. In addition, PSO did not induce genotoxic or mutagenic effects. In conclusion, the oral PSO for 14 days acted in the proliferation of the hair follicles, without toxicity signals in the liver. DATA AVAILABILITY: The authors confirm that all of the relevant data is included in the article and/or in the supplementary information file.
Collapse
|
58
|
Isolation and HPLC Quantitative Determination of 5α-Reductase Inhibitors from Tectona grandis L.f. Leaf Extract. Molecules 2022; 27:molecules27092893. [PMID: 35566245 PMCID: PMC9101728 DOI: 10.3390/molecules27092893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Steroid 5α-reductase plays a crucial role in catalyzing the conversion of testosterone to dihydrotestosterone, which is involved in many androgen-dependent disorders. Leaf-hexane extract from Tectona grandis L.f. has shown promise as a 5α-reductase inhibitor. The objectives of this current study were to isolate and identify 5α-reductase inhibitors from T. grandis leaves and to use them as the bioactive markers for standardization of the extract. Three terpenoid compounds, (+)-eperua-8,13-dien-15-oic acid (1), (+)-eperua-7,13-dien-15-oic acid (2), and lupeol (3), were isolated and evaluated for 5α-reductase inhibitory activity. Compounds 1 and 2 exhibited potent 5α-reductase inhibitory activity, while 3 showed weak inhibitory activity. An HPLC method for the quantitative determination of the two potent inhibitors (1 and 2), applicable for quality control of T. grandis leaf extracts, was also developed. The ethanolic extract showed a significantly higher content of 1 and 2 than found in the hexane extract, suggesting that ethanol is a preferable extraction solvent. This study is the first reported isolation of 5α-reductase inhibitors (1 and 2) from T. grandis leaves. The extraction and quality control methods that are safe and useful for further development of T. grandis leaf extract as an active ingredient for hair loss treatment products are also reported.
Collapse
|
59
|
Subedi L, Pandey P, Shim JH, Kim KT, Cho SS, Koo KT, Kim BJ, Park JW. Preparation of topical bimatoprost with enhanced skin infiltration and in vivo hair regrowth efficacy in androgenic alopecia. Drug Deliv 2022; 29:328-341. [PMID: 35040730 PMCID: PMC8774136 DOI: 10.1080/10717544.2022.2027046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To prepare a topical formulation of bimatoprost (BIM) with high skin permeability, we designed a solvent mixture system composed of ethanol, diethylene glycol monoethyl ether, cyclomethicone, and butylated hydroxyanisole, serving as a volatile solvent, nonvolatile co-solvent, spreading agent, and antioxidant, respectively. The ideal topical BIM formulation (BIM–TF#5) exhibited 4.60-fold higher human skin flux and a 529% increase in dermal drug deposition compared to BIM in ethanol. In addition, compared to the other formulations, BIM–TF#5 maximally activated human dermal papilla cell proliferation at a concentration of 5 μM BIM, equivalent to 10 μM minoxidil. Moreover, BIM–TF#5 (0.3% [w/w] BIM) significantly promoted hair regrowth in the androgenic alopecia mouse model and increased the area covered by hair at 10 days by 585% compared to the vehicle-treated mice, indicating that entire telogen area transitioned into the anagen phase. Furthermore, at day 14, the hair weight of mice treated with BIM–TF#5 (5% [w/w] BIM) was 8.45- and 1.30-fold greater than in the 5% (w/w) BIM in ethanol and 5% (w/v) minoxidil treated groups, respectively. In the histological examination, the number and diameter of hair follicles in the deep subcutis were significantly increased in the BIM–TF#5 (0.3 or 5% [w/w] BIM)-treated mice compared to the mice treated with vehicle or 5% (w/w) BIM in ethanol. Thus, our findings suggest that BIM–TF#5 is an effective formulation to treat scalp alopecia, as part of a novel therapeutic approach involving direct prostamide F2α receptor-mediated stimulation of dermal papilla cells within hair follicles.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Prashant Pandey
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| | - Kyo-Tan Koo
- BioBelief Co., Ltd., Seoul, Republic of Korea
| | - Beum Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam, Republic of Korea.,College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
60
|
Deng Z, Chen M, Liu F, Wang Y, Xu S, Sha K, Peng Q, Wu Z, Xiao W, Liu T, Xie H, Li J. Androgen receptor-mediated paracrine signaling induces regression of blood vessels in the dermal papilla in androgenetic alopecia. J Invest Dermatol 2022; 142:2088-2099.e9. [PMID: 35033537 DOI: 10.1016/j.jid.2022.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
Androgenetic alopecia (AGA), also known as male pattern baldness, is associated with androgen and androgen receptor (AR) signaling; however, the pathogenesis of AGA remains largely unknown. Here, we demonstrate that nuclear localization of androgen receptor is elevated in the dermal papilla (DP) of balding scalp from patients with AGA. Transcriptome analysis identifies microvascular abnormalities in the DP of balding scalp compared to non-balding scalp of AGA patients. We provide further evidence that blood vessels regress in the DP of balding scalp at the early stage of hair follicle miniaturization in AGA development. Consistently, we find that microvascular vessels accumulate around the dermal papilla upon anagen initiation, and angiogenesis is required for hair regeneration in mice. Mechanistically, we show that AR-mediated paracrine signaling, mainly TGF-β signaling, from DP cells induces apoptosis of microvascular endothelial cells in the DP of balding scalp of AGA. These findings define a role of AR-mediated regression of blood vessels in DP in AGA and support the notion that early anti-AR treatment is better than late treatment.
Collapse
Affiliation(s)
- Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yunying Wang
- Department of Dermatology, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ke Sha
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qinqin Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tangxiele Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan key laboratary of aging biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
61
|
Gilhar A, Keren A, Ullmann Y, Wu J, Paus R. Effect of minoxidil formulations on human scalp skin xenotransplants on SCID mice - a novel pre-clinical in vivo assay for androgenetic alopecia research. Exp Dermatol 2022; 31:980-982. [PMID: 35000229 DOI: 10.1111/exd.14523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 11/27/2022]
Affiliation(s)
- A Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - A Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - Y Ullmann
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Rambam Health Care Campus, Haifa, Israel
| | - J Wu
- Johnson & Johnson Consumer, Inc. Skillman, NJ, USA
| | - R Paus
- Dr. Philipp Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Manchester Biomedical Research Centre, Manchester, UK.,Monasterium Laboratory, Münster, Germany
| |
Collapse
|
62
|
Li Y, Yang S, Liao M, Zheng Z, Li M, Wei X, Liu M, Yang L. Association between genetically predicted leukocyte telomere length and non-scarring alopecia: A two-sample Mendelian randomization study. Front Immunol 2022; 13:1072573. [PMID: 36798520 PMCID: PMC9926966 DOI: 10.3389/fimmu.2022.1072573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Background The most commonly acknowledged non-scarring alopecia are androgenetic alopecia (AGA) and alopecia areata (AA). Previous studies have revealed various risk factors associated with alopecia. However, the relationship between leukocyte telomere length (LTL) and non-scarring alopecia remains unclear. Methods A two-sample Mendelian randomization (MR) analysis was performed to evaluate the causality between genetically predicted LTL and the risk of non-scarring alopecia. MR analyses were performed using the inverse variance-weighted (IVW) method and complemented with other MR methods. Results The summary statistics of the genome-wide association studies (GWAS) for AGA and AA were obtained from the FinnGen biobank, which included 119,185 and 211,428 individuals, respectively. A total of 126 single nucleotide polymorphisms (SNPs) with genome-wide significance were selected as the instrumental variables for LTL. The MR analyses suggested a causal relationship between LTL and AGA, and the risk of AGA increased by 3.19 times as the genetically predicted LTL was shortened by one standard deviation in log transformed form under the IVW method (OR = 4.19, 95% CI = 1.20-14.61, p = 0.024). The other MR methods also demonstrated a similar trend of the effect of LTL on AGA. There was no causal relationship between LTL and AA (p > 0.05). Sensitivity analyses further demonstrated that the current results were less likely to be affected by confounders and bias. Conclusion Our results suggested a potential causal relationship between LTL and AGA, and shortened LTL was associated with an increased risk of AGA.
Collapse
Affiliation(s)
- Yicheng Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Minjun Liao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengqian Liu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
63
|
Iltaf J, Noreen S, Rehman MFU, Ghumman SA, Batool F, Mehdi M, Hasan S, Ijaz B, Akram MS, Butt H. Ficus benghalensis as Potential Inhibitor of 5 α-Reductase for Hair Growth Promotion: In Vitro, In Silico, and In Vivo Evaluation. Front Pharmacol 2021; 12:774583. [PMID: 34950034 PMCID: PMC8688993 DOI: 10.3389/fphar.2021.774583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
The screening of hair follicles, dermal papilla cells, and keratinocytes through in vitro, in vivo, and histology has previously been reported to combat alopecia. Ficus benghalensis has been used conventionally to cure skin and hair disorders, although its effect on 5α-reductase II is still unknown. Currently, we aim to analyze the phytotherapeutic impact of F. benghalensis leaf extracts (FBLEs) for promoting hair growth in rabbits along with in vitro inhibition of the steroid isozyme 5α-reductase II. The inhibition of 5α-reductase II by FBLEs was assessed by RP-HPLC, using the NADPH cofactor as the reaction initiator and Minoxin (5%) as a positive control. In silico studies were performed using AutoDock Vina to visualize the interaction between 5α-reductase II and the reported phytoconstituents present in FBLEs. Hair growth in female albino rabbits was investigated by applying an oral dose of the FBLE formulation and control drug to the skin once a day. The skin tissues were examined by histology to see hair follicles. Further, FAAS, FTIR, and antioxidants were performed to check the trace elements and secondary metabolites in the FBLEs. The results of RP-HPLC and the binding energies showed that FBLEs reduced the catalytic activity of 5α-reductase II and improved cell proliferation in rabbits. The statistical analysis (p < 0.05 or 0.01) and percentage inhibition (>70%) suggested that hydroalcoholic FBLE has more potential in increasing hair growth by elongating hair follicle's anagen phase. FAAS, FTIR, and antioxidant experiments revealed sufficient concentrations of Zn, Cu, K, and Fe, together with the presence of polyphenols and scavenging activity in FBLE. Overall, we found that FBLEs are potent in stimulating hair follicle maturation by reducing the 5α-reductase II action, so they may serve as a principal choice in de novo drug designing to treat hair loss.
Collapse
Affiliation(s)
- Jawaria Iltaf
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | | | | | - Fozia Batool
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Mehdi
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
64
|
Alleviation of Androgenetic Alopecia with Aqueous Paeonia lactiflora and Poria cocos Extract Intake through Suppressing the Steroid Hormone and Inflammatory Pathway. Pharmaceuticals (Basel) 2021; 14:ph14111128. [PMID: 34832910 PMCID: PMC8621879 DOI: 10.3390/ph14111128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 01/28/2023] Open
Abstract
Paeonia lactiflora Pallas (PL) and Poria cocos Wolf (PC) have been traditionally used to treat inflammatory diseases reported in Dongui Bogam and Shen Nong Ben Cao Jing, traditional medical books in Korean and China, respectively. We determined the efficacies and the molecular mechanisms of PL, PC, and PL + PC aqueous extracts on androgenetic alopecia (AGA) induced by testosterone propionate in C57BL/6 mice. The molecular mechanisms of PL and PC in AGA treatment were examined using experimental assays and network pharmacology. The AGA model was generated by topically applying 0.5% testosterone propionate in 70% ethanol solution to the backs of mice daily for 28 days while the normal-control (Normal-Con; no AGA induction) mice applied 70% ethanol. The 0.1% PL (AGA-PL), 0.1% PC (AGA-PC), 0.05% PL + 0.05% PC (AGA-MIX), and 0.1% cellulose (AGA-Con; control) were supplemented in a high-fat diet for 28 days in AGA-induced mice. Positive-control (AGA-Positive) were administered 2% finasteride daily on the backs of the AGA mice. Hair growth rates decreased in the order of AGA-PL, AGA-MIX, AGA-PC, AGA-Positive, and AGA-Con after 21 days of treatment (ED21). On ED28, skins were completely covered with hair in the AGA-PL and AGA-MIX groups. Serum testosterone concentrations were lower in the AGA-PL group than in the AGA-Con group and similar to concentrations in the Normal-Con group, whereas serum 17β-estradiol concentrations showed the opposite pattern with increasing aromatase mRNA expression (p < 0.05). In the dorsal skin, DKK1 and NR3C2 mRNA expressions were significantly lower, but TGF-β2, β-Catenin, and PPARG expressions were higher in the AGA-PL and AGA-PC groups than in the AGA-Con group (p < 0.05), whereas TNF-α and IL-6 mRNA expressions were lower in the AGA-PL, AGA-MIX, and Normal-Con groups than in the AGA-Con group (p < 0.05). The phosphorylation of Akt and GSK-3β in the dorsal skin was lower in AGA-Con than normal-Con, and PL and MIX ingestion suppressed their decrease similar to the Normal-Con. In conclusion, PL or PL + PC intake had beneficial effects on hair growth similar to Normal-Con. The promotion was related to lower serum testosterone concentrations and pro-inflammatory cytokine levels, and inhibition of the steroid hormone pathway, consistent with network pharmacology analysis findings.
Collapse
|
65
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|