51
|
Chen WH, Xu YY, Hwang WS, Wang JB. Pretreatment of rice straw using an extrusion/extraction process at bench-scale for producing cellulosic ethanol. BIORESOURCE TECHNOLOGY 2011; 102:10451-10458. [PMID: 21958526 DOI: 10.1016/j.biortech.2011.08.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/28/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
A combination of a twin-screw extrusion and an acid-catalyzed hot water extraction process performed at a bench-scale was used to prepare high monomeric xylose hydrolysate for cellulosic production. The influences of the screw speed (30-150 rpm), barrel temperature (80-160 °C) and corresponding specific mechanical energy of the extruder on the structural properties of the pretreated rice straw, sugar concentration and conversion were investigated. The optimal condition for the extrusion step was determined to be 40 rpm with 3% H2SO4 at 120 °C; the optimal condition for the extraction step was determined to be 130 °C for 20 min. After the pretreatment at the optimal condition, 83.7% of the xylan was converted to monomeric xylose, and the concentration reached levels of 53.7 g/L. Finally, after the subsequent enzymatic hydrolysis, an 80% yield of the total saccharification was obtained.
Collapse
Affiliation(s)
- Wen-Hua Chen
- Cellulosic Ethanol Program, Institute of Nuclear Energy Research, Taoyuan, Taiwan, ROC.
| | | | | | | |
Collapse
|
52
|
Li Y, Gao K, Tian S, Zhang S, Yang X. Evaluation of Saccharomyces cerevisiae Y5 for ethanol production from enzymatic hydrolysate of non-detoxified steam-exploded corn stover. BIORESOURCE TECHNOLOGY 2011; 102:10548-10552. [PMID: 21920732 DOI: 10.1016/j.biortech.2011.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
Saccharomyces cerevisiae Y5 was used to produce ethanol from enzymatic hydrolysate of non-detoxified steam-exploded corn stover, with and without a nitrogen source, and decreasing inoculum size. The results indicated that the ethanol concentration of 44.55 g/L, corresponding to 94.5% of the theoretical yield was obtained after 24 h, with an inoculum size of 10% (v/v) and nitrogen source (corn steep liquor, CSL) of 40 mL/L. With the same inoculum size, and without CSL, the ethanol concentration was 43.21 g/L, corresponding to 91.7% of the theoretical value after 60 h. With a decreased inoculum size of 5% (v/v), and without CSL, the ethanol concentration was 40.00 g/L, corresponding to 85.8% of the theoretical value after 72 h. The strain offers the potential to improve the economy of cellulosic ethanol production by simplifying the production process and reducing the costs associated with the process such as water, capital equipment and nutrient supplementation.
Collapse
Affiliation(s)
- Yun Li
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | | | | | | | | |
Collapse
|
53
|
Jarboe LR, Liu P, Royce LA. Engineering inhibitor tolerance for the production of biorenewable fuels and chemicals. Curr Opin Chem Eng 2011. [DOI: 10.1016/j.coche.2011.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
54
|
Efficient bioconversion of rice straw to ethanol with TiO2/UV pretreatment. Bioprocess Biosyst Eng 2011; 35:43-8. [PMID: 21909680 DOI: 10.1007/s00449-011-0589-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
Rice straw is a lignocellulosic biomass that constitutes a renewable organic substance and alternative source of energy; however, its structure confounds the liberation of monosaccharides. Pretreating rice straw using a TiO(2)/UV system facilitated its hydrolysis with Accellerase 1000(™), suggesting that hydroxyl radicals (OH·) from the TiO(2)/UV system could degrade lignin and carbohydrates. TiO(2)/UV pretreatment was an essential step for conversion of hemicellulose to xylose; optimal conditions for this conversion were a TiO(2) concentration of 0.1% (w/v) and an irradiation time of 2 h with a UV-C lamp at 254 nm. After enzymatic hydrolysis, the sugar yields from rice straw pretreated with these parameters were 59.8 ± 0.7% of the theoretical for glucose (339 ± 13 mg/g rice straw) and 50.3 ± 2.8% for xylose (64 ± 3 mg/g rice straw). The fermentation of enzymatic hydrolysates containing 10.5 g glucose/L and 3.2 g xylose/L with Pichia stipitis produced 3.9 g ethanol/L with a corresponding yield of 0.39 g/g rice straw. The maximum possible ethanol conversion rate is 76.47%. TiO(2)/UV pretreatment can be performed at room temperature and atmospheric pressure and demonstrates potential in large-scale production of fermentable sugars.
Collapse
|
55
|
Yang X, Zhang S, Zuo Z, Men X, Tian S. Ethanol production from the enzymatic hydrolysis of non-detoxified steam-exploded corn stalk. BIORESOURCE TECHNOLOGY 2011; 102:7840-7844. [PMID: 21683587 DOI: 10.1016/j.biortech.2011.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/18/2011] [Accepted: 05/20/2011] [Indexed: 05/30/2023]
Abstract
To reduce water consumption and equipment investment, and simplify the technological process, a Pichia stipitis-adapted strain with improved tolerance against inhibitors and ethanol was used in ethanol production. The steam-exploded corn stalk was directly enzymatically hydrolyzed without detoxification, and then the enzymatic hydrolysate was used as the fermentation substrate. Results from laboratory experiments in shake flasks and fermentation tanks indicated that, after fermentation for 48 h, ethanol concentration reached to 43.42 g/L; the ethanol yield was 0.47 g(p)/g(s), which was 92.16% of the theoretical ethanol yield. The results of the present research demonstrated that the application of this strain avoided detoxification of the steam-pretreated material through washing, thus simplifying the technological process. In addition, the application of the adapted strain reduced water consumption and lowered the equipment investment of ethanol production from corn stalk, which are important factors in further promotion of the development of ethanol production from straw.
Collapse
Affiliation(s)
- Xiushan Yang
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| | | | | | | | | |
Collapse
|
56
|
Huang H, Guo X, Li D, Liu M, Wu J, Ren H. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. BIORESOURCE TECHNOLOGY 2011; 102:7486-93. [PMID: 21624827 DOI: 10.1016/j.biortech.2011.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 05/12/2023]
Abstract
Compounds inhibitory to enzymatic hydrolysis and fermentation are generated from neutral steam exploded corn stover in the process of producing bio-ethanol. In this study, weak acids were identified as main yeast inhibitors, while phenols and aldehyde contribute to the inhibition to a lower degree. Main weak acids in hydrolysates are acetic acid and formic acid, for which critical levels for yeast inhibition are 6 and 4g/L, respectively. The inhibitory effect of these compounds can be greatly overcome by increasing pH of hydrolysates to 6.0-9.0, but there is a risk of bacterial contamination when fermenting at high pH. The relationship of pH, total solids of hydrolysates, fermentation and contamination was studied in detail. Results indicate that the contamination by bacteria when fermenting at high pH can be prevented effectively using hydrolysates with total solids of more than 20%. Meanwhile, ethanol yield is improved significantly.
Collapse
Affiliation(s)
- Hongzhi Huang
- Bioenergy Department of R&D China, Novozymes (China) Investment Co. Ltd., Beijing 100085, China
| | | | | | | | | | | |
Collapse
|
57
|
Random UV-C mutagenesis of Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 to improve anaerobic growth on lignocellulosic sugars. J Ind Microbiol Biotechnol 2011; 39:163-73. [PMID: 21748309 PMCID: PMC3249541 DOI: 10.1007/s10295-011-1012-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 06/16/2011] [Indexed: 12/31/2022]
Abstract
Scheffersomyces (formerly Pichia) stipitis NRRL Y-7124 was mutagenized using UV-C irradiation to produce yeast strains for anaerobic conversion of lignocellulosic sugars to ethanol. UV-C irradiation potentially produces large numbers of random mutations broadly and uniformly over the whole genome to generate unique strains. Wild-type cultures of S. stipitis NRRL Y-7124 were subjected to UV-C (234 nm) irradiation targeted at approximately 40% cell survival. When surviving cells were selected in sufficient numbers via automated plating strategies and cultured anaerobically on xylose medium for 5 months at 28°C, five novel mutagenized S. stipitis strains were obtained. Variable number tandem repeat analysis revealed that mutations had occurred in the genome, which may have produced genes that allowed the anaerobic utilization of xylose. The mutagenized strains were capable of growing anaerobically on xylose/glucose substrate with higher ethanol production during 250- to 500-h growth than a Saccharomyces cerevisiae yeast strain that is the standard for industrial fuel ethanol production. The S. stipitis strains resulting from this intense multigene mutagenesis strategy have potential application in industrial fuel ethanol production from lignocellulosic hydrolysates.
Collapse
|
58
|
Shu CH, Hsu HJ. Production of schizophyllan glucan by Schizophyllum commune ATCC 38548 from detoxificated hydrolysate of rice hull. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2010.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
59
|
Yu Y, Feng Y, Xu C, Liu J, Li D. Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. BIORESOURCE TECHNOLOGY 2011; 102:5123-5128. [PMID: 21334878 DOI: 10.1016/j.biortech.2011.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 05/27/2023]
Abstract
In the process of ethanol production from steam-exploded corn stover (SECS), a cellulose-degradation strain of Aspergillus nidulans (FLZ10) was investigated whether it could remove the inhibitors released from steam exploded pretreatment , and thereby be used for biological detoxification on Saccharomycescerevisiae. The results showed that FLZ10 removed 75.2% formic acid, 53.6% acetic acid, and 100% hydroxymethyl furfural (5-HMF) and furfural from the hydrolysate washed from SECS after 72h cultivation. A cellulase activity of 0.49 IU/ml was simultaneously produced while the biological detoxification occurred. An ethanol yield of 0.45 g/g on glucose was obtained in the hydrolysate biodetoxified by FLZ10. The glucose consumption rate of FLZ10 was much lower than that of S. cerevisiae, thereby it had little competition with S. cerevisiae on glucose consumption. Based on SECS to ethanol mass balance analysis, with the onsite bio-detoxification, fermentation using S. cerevisiae effectively converted monomeric glucose with 94.4% ethanol yield.
Collapse
Affiliation(s)
- Yanling Yu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | | | | | | | | |
Collapse
|
60
|
da Cunha-Pereira F, Hickert LR, Sehnem NT, de Souza-Cruz PB, Rosa CA, Ayub MAZ. Conversion of sugars present in rice hull hydrolysates into ethanol by Spathaspora arborariae, Saccharomyces cerevisiae, and their co-fermentations. BIORESOURCE TECHNOLOGY 2011; 102:4218-4225. [PMID: 21220201 DOI: 10.1016/j.biortech.2010.12.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 05/27/2023]
Abstract
The production of ethanol by the new yeast Spathaspora arborariae using rice hull hydrolysate (RHH) as substrate, either alone or in co-cultures with Saccharomyces cerevisiae is presented. Cultivations were also carried out in synthetic medium to gather physiological information on these systems, especially concerning their ability to grow and produce ethanol in the presence of acetic acid, furfural, and hydroxymethylfurfural, which are toxic compounds usually present in lignocellulosic hydrolysates. S. arborariae was able to metabolize xilose and glucose present in the hydrolysate, with ethanol yields (Y(P/S)(et)) of 0.45. In co-cultures, ethanol yields peaked to 0.77 and 0.62 in the synthetic medium and in RHH, respectively. When the toxic compounds were added to the synthetic medium, their presence produced negative effects on biomass formation and ethanol productivity. This work shows good prospects for the use of the new yeast S. arborariae alone and in co-cultures with S. cerevisiae for ethanol production.
Collapse
Affiliation(s)
- Fernanda da Cunha-Pereira
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | | | | | | | | | | |
Collapse
|
61
|
Huang CF, Jiang YF, Guo GL, Hwang WS. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. BIORESOURCE TECHNOLOGY 2011; 102:3322-9. [PMID: 21095119 DOI: 10.1016/j.biortech.2010.10.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 10/20/2010] [Accepted: 10/21/2010] [Indexed: 05/24/2023]
Abstract
The present study verified an applicable technology of xylitol bioconversion as part of the integration of co-product generation within second-generation bioethanol processes. A newly isolated yeast strain, Candida tropicalis JH030, was shown to have a capacity for xylitol production from hemicellulosic hydrolysate without detoxification. The yeast gives a promising xylitol yield of 0.71 g(p) g(s)(-1) from non-detoxified rice straw hydrolysate that had been prepared by the dilute acid pretreatment under severe conditions. The yeast's capacity was also found to be practicable with various other raw materials, such as sugarcane bagasse, silvergrass, napiergrass and pineapple peel. The lack of a need to hydrolysate detoxification enhances the potential of this newly isolated yeast for xylitol production and this, in turn, has the capacity to improve economics of lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Chiung-Fang Huang
- Cellulosic Ethanol Project, Institute of Nuclear Energy Research, Taoyuan County, Taiwan, ROC
| | | | | | | |
Collapse
|
62
|
Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T. A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. BIORESOURCE TECHNOLOGY 2011; 102:1844-1848. [PMID: 20947339 DOI: 10.1016/j.biortech.2010.09.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/13/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Abstract
In the fermentation process of lignocellulosic biomass (such as wood and rice straw), efficient conversion of pentose (mainly xylose) into ethanol is important. Mutants of Pichia stipitis NBRC1687 were obtained after UV mutagenesis and selection of large colonies on ethanol-containing medium. One mutant, PXF58, produced 4.3% ethanol from 11.4% xylose while the parent strain only produced 3.1%. The ethanol productivities of PXF58 from glucose and fructose were about were about 1.4-fold higher than those of the parent strain. After continuous cultivation of PXF58 in YNB (yeast nitrogen base) medium containing 2% xylose and 5-7% ethanol, an ethanol-tolerant mutant, PET41, was obtained. Strain PET41 was able to produce 4.4% ethanol when first supplied with xylose then with glucose. This isolate might be thus useful for two-phase fermentation in which xylan is saccharified by xylanase to produce xylose, and glucan is saccharified later by cellulase and β-glucosidase to produce glucose.
Collapse
Affiliation(s)
- Takashi Watanabe
- National Food Research Institute, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
63
|
Mussatto SI, Dragone G, Guimarães PM, Silva JPA, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 2010; 28:817-30. [DOI: 10.1016/j.biotechadv.2010.07.001] [Citation(s) in RCA: 479] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/02/2010] [Indexed: 11/27/2022]
|
64
|
Tian S, Luo XL, Yang XS, Zhu JY. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification. BIORESOURCE TECHNOLOGY 2010; 101:8678-85. [PMID: 20620049 DOI: 10.1016/j.biortech.2010.06.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/01/2010] [Accepted: 06/11/2010] [Indexed: 05/14/2023]
Abstract
This study reports an ethanol yield of 270L/ton wood from lodgepole pine pretreated with sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) using an adapted strain, Saccharomyces cerevisiae Y5, without detoxification. The enzymatic hydrolysate produced from pretreated cellulosic solids substrate was combined with pretreatment hydrolysate before fermentation. Detoxification of the pretreatment hydrolysate using overliming or XAD-4 resin before being combined with enzymatic hydrolysate improved ethanol productivity in the first 4h of fermentation and overall fermentation efficiency. However, detoxification did not improve final ethanol yield because of sugar losses. The Y5 strain showed excellent ethanol productivities of 2.0 and 0.8g/L/h averaged over a period of 4 and 24h, respectively, in the undetoxified run. The furan metabolization rates of the Y5 strain were significantly higher for the undetoxified run than those for the detoxidfied runs, suggesting it can tolerate even higher furan concentrations than those studied. Preliminary mass and energy balances were conducted. SPORL produced an excellent monomeric sugar recovery value of about 85% theoretical and a net energy output of 4.05GJ/ton wood with an ethanol energy production efficiency of 178% before distillation.
Collapse
Affiliation(s)
- S Tian
- College of Life Science, Capital Normal University, Beijing, China
| | | | | | | |
Collapse
|
65
|
Galafassi S, Merico A, Pizza F, Hellborg L, Molinari F, Piškur J, Compagno C. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions. J Ind Microbiol Biotechnol 2010; 38:1079-88. [PMID: 20936422 DOI: 10.1007/s10295-010-0885-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 09/23/2010] [Indexed: 11/25/2022]
Abstract
Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.
Collapse
Affiliation(s)
- Silvia Galafassi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, via Celoria 26, 20133, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
66
|
Oberoi HS, Vadlani PV, Brijwani K, Bhargav VK, Patil RT. Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.04.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
67
|
Oberoi HS, Vadlani PV, Madl RL, Saida L, Abeykoon JP. Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3422-3429. [PMID: 20158208 DOI: 10.1021/jf903163t] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Orange peels were evaluated as a fermentation feedstock, and process conditions for enhanced ethanol production were determined. Primary hydrolysis of orange peel powder (OPP) was carried out at acid concentrations from 0 to 1.0% (w/v) at 121 degrees C and 15 psi for 15 min. High-performance liquid chromatography analysis of sugars and inhibitory compounds showed a higher production of hydroxymethyfurfural and acetic acid and a decrease in sugar concentration when the acid level was beyond 0.5% (w/v). Secondary hydrolysis of pretreated biomass obtained from primary hydrolysis was carried out at 0.5% (w/v) acid. Response surface methodology using three factors and a two-level central composite design was employed to optimize the effect of pH, temperature, and fermentation time on ethanol production from OPP hydrolysate at the shake flask level. On the basis of results obtained from the optimization experiment and numerical optimization software, a validation study was carried out in a 2 L batch fermenter at pH 5.4 and a temperature of 34 degrees C for 15 h. The hydrolysate obtained from primary and secondary hydrolysis processes was fermented separately employing parameters optimized through RSM. Ethanol yields of 0.25 g/g on a biomass basis (YP/X) and 0.46 g/g on a substrate-consumed basis (YP/S) and a promising volumetric ethanol productivity of 3.37 g/L/h were attained using this process at the fermenter level, which shows promise for further scale-up studies.
Collapse
Affiliation(s)
- Harinder Singh Oberoi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
68
|
Zhang Y, Zhu Y, Zhu Y, Li Y. The importance of engineering physiological functionality into microbes. Trends Biotechnol 2009; 27:664-72. [DOI: 10.1016/j.tibtech.2009.08.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/16/2009] [Accepted: 08/21/2009] [Indexed: 11/16/2022]
|