51
|
Wu D, Du D, Lin Y. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
52
|
Busin V, Wells B, Kersaudy-Kerhoas M, Shu W, Burgess STG. Opportunities and challenges for the application of microfluidic technologies in point-of-care veterinary diagnostics. Mol Cell Probes 2016; 30:331-341. [PMID: 27430150 DOI: 10.1016/j.mcp.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022]
Abstract
There is a growing need for low-cost, rapid and reliable diagnostic results in veterinary medicine. Point-of-care (POC) tests have tremendous advantages over existing laboratory-based tests, due to their intrinsic low-cost and rapidity. A considerable number of POC tests are presently available, mostly in dipstick or lateral flow formats, allowing cost-effective and decentralised diagnosis of a wide range of infectious diseases and public health related threats. Although, extremely useful, these tests come with some limitations. Recent advances in the field of microfluidics have brought about new and exciting opportunities for human health diagnostics, and there is now great potential for these new technologies to be applied in the field of veterinary diagnostics. This review appraises currently available POC tests in veterinary medicine, taking into consideration their usefulness and limitations, whilst exploring possible applications for new and emerging technologies, in order to widen and improve the range of POC tests available.
Collapse
Affiliation(s)
- Valentina Busin
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom; School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Beth Wells
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom.
| | - Maïwenn Kersaudy-Kerhoas
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Wenmaio Shu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom; Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, United Kingdom.
| | - Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom.
| |
Collapse
|
53
|
Sharma S, Raghav R, O’Kennedy R, Srivastava S. Advances in ovarian cancer diagnosis: A journey from immunoassays to immunosensors. Enzyme Microb Technol 2016; 89:15-30. [DOI: 10.1016/j.enzmictec.2016.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 01/12/2023]
|
54
|
Ge X, Zhang A, Lin Y, Du D. Simultaneous immunoassay of phosphorylated proteins based on apoferritin templated metallic phosphates as voltammetrically distinguishable signal reporters. Biosens Bioelectron 2016; 80:201-207. [DOI: 10.1016/j.bios.2016.01.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 02/01/2023]
|
55
|
Liao T, Yuan F, Shi C, He CX, Li Z. Lanthanide chelate-encapsulated polystyrene nanoparticles for rapid and quantitative immunochromatographic assay of procalcitonin. RSC Adv 2016. [DOI: 10.1039/c6ra23816e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Procalcitonin (PCT) is a potentially specific early marker of bloodstream infection and sepsis.
Collapse
Affiliation(s)
- Tao Liao
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Shenzhen Graduate School
- Shenzhen
| | - Fang Yuan
- Institute of Scientific and Technical Information of China
- Beijing
- China
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
| | - Chuan Shi
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Shenzhen Graduate School
- Shenzhen
| | - Chuan-Xin He
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- China
| | - Zigang Li
- Key Laboratory of Chemical Genomics
- School of Chemical Biology and Biotechnology
- Peking University
- Shenzhen Graduate School
- Shenzhen
| |
Collapse
|
56
|
Anik Ü, Timur S. Towards the electrochemical diagnosis of cancer: nanomaterial-based immunosensors and cytosensors. RSC Adv 2016. [DOI: 10.1039/c6ra23686c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this review, nanomaterial based electrochemical biosensors including electrochemical immunosensors and cytosensors towards cancer detection are covered.
Collapse
Affiliation(s)
- Ülkü Anik
- Mugla Sitki Kocman University
- Faculty of Science
- Chemistry Department
- 48000 Mugla
- Turkey
| | - Suna Timur
- Ege University
- Faculty of Science
- Biochemistry Department
- İzmir
- Turkey
| |
Collapse
|
57
|
Sajid M, Kawde AN, Daud M. Designs, formats and applications of lateral flow assay: A literature review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2015. [DOI: 10.1016/j.jscs.2014.09.001] [Citation(s) in RCA: 444] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
58
|
Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 2015; 73:47-63. [DOI: 10.1016/j.bios.2015.05.050] [Citation(s) in RCA: 316] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
|
59
|
Jiang T, Song Y, Wei T, Li H, Du D, Zhu MJ, Lin Y. Sensitive detection of Escherichia coli O157:H7 using Pt-Au bimetal nanoparticles with peroxidase-like amplification. Biosens Bioelectron 2015; 77:687-94. [PMID: 26496223 DOI: 10.1016/j.bios.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/15/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023]
Abstract
Escherichia coli O157:H7 is one of the most notorious foodborne pathogens causing serious disease at low infectious dose. To protect consumers from deadly foodborne E. coli O157:H7 infection, it is vital to develop a simple, reliable, sensitive and rapid method which can detect low level E. coli O157:H7 in foods at real-time. We have successfully developed a novel immunochromatographic assay (ICA) with enhanced sensitivity for the visual and quantitative detection of E. coli O157:H7. Sandwich-type immunoreactions were performed on the ICA, and Pt-Au bimetal nanoparticles (NPs) were accumulated on the test zone. The signal amplification is based on Pt-Au bimetal NPs possessing high peroxidase activity toward 3,3',5,5'-tetramethylbenzidine, which can produce characteristic colored bands and thus, enable visual detection of E. coli O157:H7 without instrumentation. The innovative aspect of this approach lies in the visualization and quantification of target pathogen through the detection of color intensity. Due to the excellent peroxidase activity of Pt-Au NPs, they emit strong visible color intensity in less than 1 min for visual observation even in low concentration range of E. coli O157:H7. Quantification was performed using a commercial assay meter. The sensitivity was improved more than 1000-folds compared to the conventional test strip based on colored gold-colloids. Although the feasibility was demonstrated using E. coli O157:H7 as a model analyte, this approach could be easily developed to be a universal signal amplification technique and applied to detection of a wide variety of foodborne pathogens and protein biomarkers.
Collapse
Affiliation(s)
- Tao Jiang
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, United States; Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yang Song
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, United States
| | - Tianxiang Wei
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, United States
| | - He Li
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, United States
| | - Dan Du
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, United States; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, United States
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, United States.
| | - Yuehe Lin
- School of Mechanical and Material Engineering, Washington State University, Pullman, WA 99164, United States; Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
60
|
Sanchez OF, Williamson D, Cai L, Yuan C. A sensitive protein-based sensor for quantifying histone acetylation levels. Talanta 2015; 140:212-218. [DOI: 10.1016/j.talanta.2015.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 01/05/2023]
|
61
|
Kim M, Kim MS, Kweon SH, Jeong S, Kang MH, Kim MI, Lee J, Doh J. Simple and Sensitive Point-of-Care Bioassay System Based on Hierarchically Structured Enzyme-Mimetic Nanoparticles. Adv Healthc Mater 2015; 4:1311-6. [PMID: 25866283 DOI: 10.1002/adhm.201500173] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 01/08/2023]
Abstract
An enzyme-mimetic nanoparticle-based point of care bioassay device is developed for rapid and sensitive detection of analytes. Digital images acquired by smart cellular phones allow quantifying the amounts of analytes. Using this new device, quantitative analysis of liquid sample is performed within 15 min with an order of magnitude enhancement of sensitivity compared with conventional Au nanoparticle-based devices.
Collapse
Affiliation(s)
- Miju Kim
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongbuk 790-784 Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio); POSTECH; Pohang Gyeongbuk 790-784 Republic of Korea
| | - Min Su Kim
- Department of Chemical Engineering; POSTECH; Pohang Gyeongbuk 790-784 Republic of Korea
| | - Soon Ho Kweon
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio); POSTECH; Pohang Gyeongbuk 790-784 Republic of Korea
| | - Sanha Jeong
- Department of Chemical Engineering; POSTECH; Pohang Gyeongbuk 790-784 Republic of Korea
| | - Mi Hyun Kang
- Department of Nano Medical Engineering; Pusan National University; Busan 609-735 Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology; Gachon University; Seongnam Gyeonggi 461-701 Republic of Korea
| | - Jinwoo Lee
- Department of Chemical Engineering; POSTECH; Pohang Gyeongbuk 790-784 Republic of Korea
| | - Junsang Doh
- Department of Mechanical Engineering; Pohang University of Science and Technology (POSTECH); Pohang Gyeongbuk 790-784 Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio); POSTECH; Pohang Gyeongbuk 790-784 Republic of Korea
| |
Collapse
|
62
|
Determination of prostate-specific antigen in serum samples using gold nanoparticle based amplification and lab-on-a-chip based amperometric detection. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1477-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
63
|
Ivandini TA, Wicaksono WP, Saepudin E, Rismetov B, Einaga Y. Anodic stripping voltammetry of gold nanoparticles at boron-doped diamond electrodes and its application in immunochromatographic strip tests. Talanta 2015; 134:136-143. [DOI: 10.1016/j.talanta.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022]
|
64
|
Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 2015; 132:162-74. [DOI: 10.1016/j.talanta.2014.08.063] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/13/2022]
|
65
|
YASUKAWA T, KIBA Y, MIZUTANI F. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine. ANAL SCI 2015; 31:583-9. [DOI: 10.2116/analsci.31.583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Liang J, Liu H, Lan C, Fu Q, Huang C, Luo Z, Jiang T, Tang Y. Silver nanoparticle enhanced Raman scattering-based lateral flow immunoassays for ultra-sensitive detection of the heavy metal chromium. NANOTECHNOLOGY 2014; 25:495501. [PMID: 25410010 DOI: 10.1088/0957-4484/25/49/495501] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a simple and ultra-sensitive surface enhanced Raman scattering (SERS) strip sensor based on silver nanoparticles (AgNPs) and lateral flow immunoassays (LFIAs). LFIAs are inexpensive, simple, portable and robust, thus making them commonplace in medicine, agriculture and food safety. However, their applications are limited due to the low signal intensity of the color-formation reaction based on the label accumulation. SERS is a powerful molecular spectroscopy technique for ultra-detection, which is based on the enhancement of the inelastic scattering from molecules located near nanostructured metallic surfaces when the molecules are illuminated and the surface plasmons are excited. Because of the rapidity and robustness of LFIAs and the high sensitivity of SERS, we introduce SERS into LFIAs (SERS-LFIA). Our SERS-LFIA demonstrates fast, excellent performance and is suitable for the semiquantitative examination of ultratrace analytes (Cr(3+)), with the limit of the detection (LOD) as low as 10(-5) ng mL(-1), which is 10(5)-fold more highly sensitive than those previously used to detect Cr(3+) within 15 min.
Collapse
Affiliation(s)
- Jiajie Liang
- Department of Bioengineering, Guangdong Province Key Laboratory of Molecular Immunology and Antibody Engineering, Jinan University, Guangzhou 510632, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Rivas L, Medina-Sánchez M, de la Escosura-Muñiz A, Merkoçi A. Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. LAB ON A CHIP 2014; 14:4406-14. [PMID: 25241662 DOI: 10.1039/c4lc00972j] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although lateral flow assays (LFAs) are currently being used in some point-of-care applications (POC), they cannot still be extended to a broader range of analytes for which higher sensitivities and lower detection limits are required. To overcome such drawbacks, we propose here a simple and facile alternative based on the use of delay hydrophobic barriers fabricated by wax printing so as to improve LFA sensitivity. Several wax pillar patterns were printed onto the nitrocellulose membrane in order to produce delays as well as pseudoturbulence in the microcapillary flow. The effect of the proposed wax pillar-modified devices was also mathematically simulated, corroborating the experimental results obtained for the different patterns tested afterwards for detection of HIgG as model protein in a gold nanoparticle-based LFA. The effect of the introduction of such wax-printed pillars was a sensitivity improvement of almost 3-fold compared to the sensitivity of a conventional free-barrier LFA.
Collapse
Affiliation(s)
- Lourdes Rivas
- ICN2 - Nanobioelectronics & Biosensors Group, Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | |
Collapse
|
68
|
Abstract
Prostate-specific antigen or PSA is a protein biomarker which is produced by the cells of prostate gland. The normal level of PSA in blood is often elevated in men with prostate cancer. In India, prostate cancer is one among the five, mostly cited cancer in men and it is getting increased by 1% every year. The screening test used for prostate cancer is the Prostate Specific Antigen test. The first PSA assay was determined in 1979. Most of the current techniques used for PSA detection are utilizing large analyzers, there by increased time and cost. Increased PSA levels can also because of prostatitis (inflammation of the prostate gland) or due to many other reasons. A proper technique to differential diagnose this disease is also an issue. The benchmark for the PSA level cannot be determined accurately. For this, various types of biosensors are used. This review journal is is trying to analyze variouus Nano-Biosensors used for early detection of PSA from blood in an early stage itself.
Collapse
|
69
|
Ge X, Asiri AM, Du D, Wen W, Wang S, Lin Y. Nanomaterial-enhanced paper-based biosensors. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2014.03.008] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
70
|
Liu B, Du D, Hua X, Yu XY, Lin Y. Paper-Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics. ELECTROANAL 2014. [DOI: 10.1002/elan.201400036] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
Suaifan GARY, Shehadeh M, Al-Ijel H, Ng A, Zourob M. Recent progress in prostate-specific antigen and HIV proteases detection. Expert Rev Mol Diagn 2014; 13:707-18. [PMID: 24063398 DOI: 10.1586/14737159.2013.835576] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteases mediate a wide variety of biological events and have a critical role in the development of many diseases. Protease detection methods can be hindered by the limitation of assay safety, sensitivity, specificity, time constraints and ease of on-site analysis. Notably, the implementation of various detection methods on biosensing platforms translates them into practical biosensing applications. Currently, the detection of prostate cancer and AIDS at the earliest occasion is one of the major research obstacles. Therefore, recent advances focus on the development of portable detection systems toward point-of-care testing. These detection systems should be highly sensitive and specific for the detection of their prognostic biomarkers, such as the prostate-specific antigen and HIV load assay for prostate cancer and AIDS, respectively. These methods will also facilitate decision-making on a treatment regimen.
Collapse
Affiliation(s)
- Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | | | | |
Collapse
|
72
|
Eatemadi A, Daraee H, Karimkhanloo H, Kouhi M, Zarghami N, Akbarzadeh A, Abasi M, Hanifehpour Y, Joo SW. Carbon nanotubes: properties, synthesis, purification, and medical applications. NANOSCALE RESEARCH LETTERS 2014; 9:393. [PMID: 25170330 PMCID: PMC4141964 DOI: 10.1186/1556-276x-9-393] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 05/09/2023]
Abstract
Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.
Collapse
Affiliation(s)
- Ali Eatemadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | - Hadis Daraee
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | - Hamzeh Karimkhanloo
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | - Mohammad Kouhi
- Department of Physics, College of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozhgan Abasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5154853431, Iran
| | - Younes Hanifehpour
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, South Korea
| |
Collapse
|
73
|
Park HI, Lee S, Kim Y, Shin DY, Lee C, Han S, Chung C, Chang JK, Seo IB. Analytical performance of a new one-step quantitative prostate-specific antigen assay, the FREND™ PSA Plus. Clin Chem Lab Med 2013; 52:715-23. [PMID: 24323891 DOI: 10.1515/cclm-2013-0545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/31/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND We evaluated the analytical performance of a new one-step rapid quantitative sandwich immunoassay for total prostate-specific antigen (tPSA), the FREND™ PSA Plus (FREND PSA) (NanoEnTek Inc., Seoul, Korea). METHODS The imprecision, linearity, hook effect, detection limit (LoD), and interference were evaluated and trueness verification and matrix validation were performed. For method comparison, 79 patient specimens were analyzed with FREND PSA and two comparative tPSA assays (Architect® total PSA and cobas® total PSA assay). RESULTS Total CVs of the imprecision for low (0.208 ng/mL), medium (4.051 ng/mL), and high PSA levels (5.469 ng/mL) were 15.9%, 6.4%, and 9.1%, respectively. Linearity was observed from 1.01 to 19.15 ng/mL and the hook phenomenon was absent up to 171.48 ng/mL. The LoD was 0.094 ng/mL. The regression equations between FREND (y) and Architect or cobas were as follows: y=0.0133+1.054x (r=0.973), y=-0.2144+1.066x (r=0.977), respectively. Differences between FREND PSA and the comparative methods at a medical decision level of 4.0 ng/mL were less than the optimum specification bias (9.3%). The percentage biases from the trueness verification and interference test were less than the desirable specifications for bias (18.7%). The plasma tPSA level measured with lithium heparin or K2EDTA was comparable to that in the serum. CONCLUSIONS The FREND PSA provided reliable analytical performance and test results in comparison to two widely used tPSA assays. It is a simple and rapid test for tPSA and can be applied in point-of-care testing.
Collapse
|
74
|
Shah P, Zhu X, Li CZ. Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn 2013; 13:83-91. [PMID: 23256705 DOI: 10.1586/erm.12.130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Paper-based analytical devices have been widely used for biomedical, environmental and food-quality testing. This review focuses on paper-based tests for biomarkers and bacterial detection with a brief introduction about various fabrication techniques and designs, biological and nonbiological probes and detection methods. Paper is relatively cheap and available in abundance. Moreover, properties of paper such as it being disposable, easy to use and store, and that it is easy to transport and modify draw significant attention to it as a platform for the development of paper-based analytical devices. These traits make paper-based analytical devices a strong candidate in point-of-care devices for rapid and economical testing near the site of patients.
Collapse
Affiliation(s)
- Pratikkumar Shah
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 W Flagler St. Miami, Florida 33174, USA
| | | | | |
Collapse
|
75
|
Development of a novel electrochemical sensor using pheochromocytoma cells and its assessment of acrylamide cytotoxicity. Biosens Bioelectron 2013; 44:122-6. [DOI: 10.1016/j.bios.2013.01.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/22/2022]
|
76
|
Zhu X, Hondroulis E, Liu W, Li CZ. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1821-30. [PMID: 23417999 DOI: 10.1002/smll.201201593] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/28/2012] [Indexed: 05/21/2023]
Abstract
The increased utilization of nanomaterials could affect human health and the environment due to increased exposure. Several mechanisms regarding the negative effects of nanomaterials have been proposed, one of the most discussed being oxidative stress. Many studies have shown that some metal oxide nanoparticles can enhance reactive oxygen species generation, inducing oxidative stress, DNA damage, and unregulated cell signaling, and eventually leading to changes in cell motility, apoptosis, and even carcinogenesis. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is one of the predominant forms of oxidative DNA damage, and has therefore been widely used as a biomarker for oxidative stress and carcinogenesis. Ther are two major objectives to this study. Firstly, the development of a novel lateral flow immunoassay (LFIA) is presented to measure the concentration of 8-OHdG in cells and thus reveal the nanotoxicity on the genomic level. The feasibility of this new method is validated by comparison with two other established methods: Alamar Blue assay and a recently developed electrical impedance sensing (EIS) system on the level of cell proliferation/viability. Secondly, the toxicological effects of three metallic nanoparticles (CuO, CdO, and TiO2 ) are investigated and compared using these three methods with completely different mechanisms. The results show that there is a high variation among different nanoparticles concerning their ability to cause toxic effects. CuO nanoparticles are the most potent regarding cytotoxicity and DNA damage. CdO shows a fallen cell viability as well as DNA damage, however, to a lesser extent than CuO nanoparticles. TiO2 particles only cause very limited cytotoxicity, and there is no obvious increase in 8-OHdG levels. In conclusion, LFIA as well as the EIS system are useful methods for quantitative or qualitative nanotoxicity assessments with high sensitivity, specificity, speed of performance, and simplicity.
Collapse
Affiliation(s)
- Xuena Zhu
- Nanobioengineering/Bioelectronics Lab, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
| | | | | | | |
Collapse
|
77
|
Abstract
In this review we discuss how nanomaterials can be integrated in diagnostic paper-based biosensors for the detection of proteins, nucleic acids and cells. In particular first the different types and properties of paper-based nanobiosensors and nanomaterials are briefly explained. Then several examples of their application in diagnostics of several biomarkers are reported. Finally our opinions regarding future trends in this field are discussed.
Collapse
Affiliation(s)
- Claudio Parolo
- Nanobioelectronics & Biosensors Group, Institut Català de Nanotecnologia, CIN2 (ICN-CSIC), Campus UAB, Barcelona, Spain
| | | |
Collapse
|
78
|
MODERN TECHNIQUES OF IMMUNOCHEMICAL ANALYSIS: INTEGRATION OF SENSITIVITY AND RAPIDITY. BIOTECHNOLOGIA ACTA 2013. [DOI: 10.15407/biotech6.04.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
79
|
Suárez-Pantaleón C, Wichers J, Abad-Somovilla A, van Amerongen A, Abad-Fuentes A. Development of an immunochromatographic assay based on carbon nanoparticles for the determination of the phytoregulator forchlorfenuron. Biosens Bioelectron 2012. [PMID: 23202348 DOI: 10.1016/j.bios.2012.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rapid analytical methods enabling the determination of diverse targets are essential in a number of research areas, from clinical diagnostics to feed and food quality and safety. Herein, the development of a quantitative immunochromatographic assay for the detection of the synthetic phytoregulator forchlorfenuron (CPPU) is described. The competitive lateral flow immunoassay (LFIA) was based on the immobilization onto a nitrocellulose membrane of an ovalbumin-CPPU conjugate (test line) and on the use of an immunodetection ligand consisting of carbon nanoparticles labeled with an anti-CPPU monoclonal antibody through interaction with a secondary antibody. The presence of CPPU in horticultural samples was visually interpreted by the decrease in the black signal intensity of the test line, according to the competitive character of the format. The quantitative determination of the analyte was easily performed by a two-step procedure consisting of flatbed scanning of the strips followed by computer-based image analysis of the pixel gray volumes of the test lines. Under optimized conditions, the immunochromatographic test afforded a limit of quantification in buffer of 89 ng/L. The accuracy of the strip test was assessed by the analysis of fruit samples with incurred residues, and the obtained results were compared with those derived from two reference methods, ELISA and HPLC. The LOQ of the CPPU-specific LFIA in kiwifruits and grapes was established at 33.4 μg/kg. The excellent analytical performance of the developed strip test demonstrates the potential of immunochromatographic assays for the quantitative monitoring of small organic molecules in complex matrices.
Collapse
Affiliation(s)
- Celia Suárez-Pantaleón
- Department of Biotechnology, IATA-CSIC, Agustí Escardino 7, 46980 Paterna, València, Spain
| | | | | | | | | |
Collapse
|
80
|
Olasagasti F, Ruiz de Gordoa JC. Miniaturized technology for protein and nucleic acid point-of-care testing. Transl Res 2012; 160:332-45. [PMID: 22683416 PMCID: PMC7104926 DOI: 10.1016/j.trsl.2012.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 01/26/2023]
Abstract
The field of point-of-care (POC) testing technology is developing quickly and producing instruments that are increasingly reliable, while their size is being gradually reduced. Proteins are a common target for POC analyses and the detection of protein markers typically involves immunoassays aimed at detecting different groups of proteins such as tumor markers, inflammation proteins, and cardiac markers; but other techniques can also be used to analyze plasma proteins. In the case of nucleic acids, hybridization and amplification strategies can be used to record electromagnetic or electric signals. These techniques allow for the identification of specific viral or bacterial infections as well as specific cancers. In this review, we consider some of the latest advances in the analysis of specific nucleic acid and protein biomarkers, taking into account their trend toward miniaturization and paying special attention to the technology that can be implemented in future applications, such as lab-on-a-chip instruments.
Collapse
Key Words
- poc, point-of-care
- lfi, lateral flow immunochromatography
- psa, prostate-specific antigen
- hcg, human chorionic gonadotropin
- tsh, thyroid-stimulating hormone
- seb, staphylococcal enterotixin b
- fret, förster resonance energy transfer
- mmp, matrix metalloproteinase 9
- bnp, b-type natriuretic peptide
- crp, c-reactive protein
- pdms, polydimethylsiloxane
- ig, immunoglobulin
- hb a1c, hemoglobin a1c
- ag, antigen
- ab, antibody
- tnfα, tumor necrosis factor α
- pct, procalcitonin
- il, interleukin
- pcr, polymerase chain reaction
- ca, cancer antigen
- cea, carcinoembryonic antigen
- nmp, nuclear matrix protein
- s100β, s100 calcium binding protein beta
- elisa, enzyme-linked immunosorbent assay
- vegf, vascular endothelial growth factor
- pmma, methyl methacrylate
- ctni, cardiac troponin i
- egf, epidermal growth factor
- ip, interferon-inducible
- mcp, monocyte chemoattractant protein
- timp-1, tissue inhibitor of matrix metalloproteinase-1
- rantes, regulated upon activation, normal t cell expressed and secreted
- mip-1 β, macrophage inflammatory protein-beta
- ctnt, cardiac troponin t
- hrp, horseradish peroxidase
- si-fet, silicon field-effect-transistor
- afp, alpha fetoprotein
- act, antichymotrypsin
- mia, magnetic immunoassay
- apc, allophycocyanin
- he4, human epididymis protein 4
- tmb, 3,3',5,5'-tetramethylbenzidine
- hp, hairpin
- lamp, loop-mediated isothermal amplification
- mrsa, methicillin resistant staphylococcus aureus
- fmdv, foot-and-mouth disease virus
- mμlamp, multiplex microfluidic lamp
- had, helicase-dependent amplification
- nasba, nucleic acid sequence based amplification
- lfm, lateral flow chromatography microarrays
- hsp, heat shock proteins
- spr, surface plasmon resonance
- mems, micro-electro-mechanical systems
- mimed, magnetic integrated microfluidic electrochemical detectors
Collapse
Affiliation(s)
- Felix Olasagasti
- Department of Biochemistry and Molecular Biology, Farmazia Fakultatea/Facultad de Farmacia, UPV-EHU, Gasteiz, Spain.
| | | |
Collapse
|
81
|
Kiba Y, Otani Y, Yasukawa T, Mizutani F. Electrochemical detection of redox species flowing in a nitrocellulose membrane and application to quantitative immunochromatography. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.07.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
82
|
Yasukawa T, Yoshimoto Y, Goto T, Mizutani F. Highly-sensitive electrochemical immunosensing method based on dual amplification systems. Biosens Bioelectron 2012; 37:19-23. [DOI: 10.1016/j.bios.2012.04.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 04/10/2012] [Accepted: 04/13/2012] [Indexed: 11/17/2022]
|
83
|
Zhang D, Li P, Zhang Q, Li R, Zhang W, Ding X, Li CM. A naked-eye based strategy for semiquantitative immunochromatographic assay. Anal Chim Acta 2012; 740:74-9. [DOI: 10.1016/j.aca.2012.06.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/08/2012] [Accepted: 06/10/2012] [Indexed: 11/15/2022]
|
84
|
Choi YB, Jeon WY, Kim HH. Electrochemical Immunoassay for Detecting Hippuric Acid Based on the Interaction of Osmium-Antigen Conjugate Films with Antibody on Screen Printed Carbon Electrodes. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.5.1485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
Zou ZX, Wang J, Wang H, Li YQ, Lin Y. An integrated electrochemical device based on immunochromatographic test strip and enzyme labels for sensitive detection of disease-related biomarkers. Talanta 2012; 94:58-64. [PMID: 22608414 DOI: 10.1016/j.talanta.2012.02.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 11/25/2022]
Abstract
A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensor in this study. Some critical parameters governing the performance of the sensor were investigated in detail. Under optimal conditions, this sensor was capable of detecting a minimum of 0.3 ng mL(-1) (S/N=3) HBsAg with a wide linear concentration range from 1 to 500 ng mL(-1). The sensor was further utilized to detect HBsAg spiked in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population.
Collapse
Affiliation(s)
- Zhe-Xiang Zou
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, China
| | | | | | | | | |
Collapse
|
86
|
Nian H, Wang J, Wu H, Lo JG, Chiu KH, Pounds JG, Lin Y. Electrochemical immunoassay of cotinine in serum based on nanoparticle probe and immunochromatographic strip. Anal Chim Acta 2012; 713:50-5. [DOI: 10.1016/j.aca.2011.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/10/2011] [Accepted: 11/12/2011] [Indexed: 10/15/2022]
|
87
|
Dey A, Kaushik A, Arya SK, Bhansali S. Mediator free highly sensitive polyaniline–gold hybrid nanocomposite based immunosensor for prostate-specific antigen (PSA) detection. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31663c] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
88
|
Wu D, Li R, Wang H, Liu S, Wang H, Wei Q, Du B. Hollow mesoporous silica microspheres as sensitive labels for immunoassay of prostate-specific antigen. Analyst 2012; 137:608-13. [DOI: 10.1039/c2an16033a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
89
|
Arya SK, Bhansali S. Anti-Prostate Specific Antigen (Anti-PSA) Modified Interdigitated Microelectrode-Based Impedimetric Biosensor for PSA Detection. ACTA ACUST UNITED AC 2012. [DOI: 10.4303/bj/h110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
90
|
D'Orazio P. Biosensors in clinical chemistry - 2011 update. Clin Chim Acta 2011; 412:1749-61. [PMID: 21729694 PMCID: PMC7094392 DOI: 10.1016/j.cca.2011.06.025] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 12/19/2022]
Abstract
Research activity and applications of biosensors for measurement of analytes of clinical interest over the last eight years are reviewed. Nanotechnology has been applied to improve performance of biosensors using electrochemical, optical, mechanical and physical modes of transduction, and to allow arrays of biosensors to be constructed for parallel sensing. Biosensors have been proposed for measurement of cancer biomarkers, cardiac biomarkers as well as biomarkers for autoimmune disease, infectious disease and for DNA analysis. Novel applications of biosensors include measurements in alternate sample types, such as saliva. Biosensors based on immobilized whole cells have found new applications, for example to detect the presence of cancer and to monitor the response of cancer cells to chemotherapeutic agents. The number of research reports describing new biosensors for analytes of clinical interest continues to increase; however, movement of biosensors from the research laboratory to the clinical laboratory has been slow. The greatest impact of biosensors will be felt at point-of-care testing locations without laboratory support. Integration of biosensors into reliable, easy-to-use and rugged instrumentation will be required to assure success of biosensor-based systems at the point-of-care.
Collapse
Affiliation(s)
- Paul D'Orazio
- Instrumentation Laboratory, Bedford, MA 01730, United States.
| |
Collapse
|
91
|
Choi YB, Kim HH. Electrochemical Method for Detecting Hippuric Acid Using Osmium-antigen Conjugate on the Gold Nanoparticles Modified Screen-printed Carbon Electrodes. J ELECTROCHEM SCI TE 2011. [DOI: 10.5229/jecst.2011.2.1.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
92
|
Lin J, He C, Pang X, Hu K. Amperometric Immunosensor for Prostate Specific Antigen Based on Gold Nanoparticles/Ionic Liquid/Chitosan Hybrid Film. ANAL LETT 2011. [DOI: 10.1080/00032711003790049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
93
|
Choi YB, Tae GS. Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles. JOURNAL OF THE KOREAN ELECTROCHEMICAL SOCIETY 2011. [DOI: 10.5229/jkes.2011.14.1.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
94
|
Zani A, Laschi S, Mascini M, Marrazza G. A New Electrochemical Multiplexed Assay for PSA Cancer Marker Detection. ELECTROANAL 2010. [DOI: 10.1002/elan.201000486] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
95
|
Wang L, Lu D, Wang J, Du D, Zou Z, Wang H, Smith JN, Timchalk C, Liu F, Lin Y. A novel immunochromatographic electrochemical biosensor for highly sensitive and selective detection of trichloropyridinol, a biomarker of exposure to chlorpyrifos. Biosens Bioelectron 2010; 26:2835-40. [PMID: 21195597 DOI: 10.1016/j.bios.2010.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/20/2010] [Accepted: 11/09/2010] [Indexed: 11/19/2022]
Abstract
We present a novel portable immunochromatographic electrochemical biosensor (IEB) for simple, rapid, and sensitive biomonitoring of trichloropyridinol (TCP), a metabolite biomarker of exposure to organophosphorus insecticides. Our new approach takes the advantage of immunochromatographic test strip for a rapid competitive immunoreaction and a disposable screen-printed carbon electrode for a rapid and sensitive electrochemical analysis of captured HRP labeling. Several key experimental parameters (e.g. immunoreaction time, the amount of HRP labeled TCP, concentration of the substrate for electrochemical measurements, and the blocking agents for the nitrocellulose membrane) were optimized to achieve a high sensitivity, selectivity and stability. Under optimal conditions, the IEB has demonstrated a wide linear range (0.1-100 ng/ml) with a detection limit as low as 0.1 ng/ml TCP. Furthermore, the IEB has been successfully applied for biomonitoring of TCP in the rat plasma samples with in vivo exposure to organophosphorus insecticides like Chlorpyrifos-oxon (CPF-oxon). The IEB thus opens up new pathways for designing a simple, rapid, clinically accurate, and quantitative tool for TCP detection, as well as holds a great promise for in-field screening of metabolite biomarkers, e.g., TCP, for humans exposed to organophosphorus insecticides.
Collapse
Affiliation(s)
- Limin Wang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Luo Y, Nartker S, Miller H, Hochhalter D, Wiederoder M, Wiederoder S, Setterington E, Drzal LT, Alocilja EC. Surface functionalization of electrospun nanofibers for detecting E. coli O157:H7 and BVDV cells in a direct-charge transfer biosensor. Biosens Bioelectron 2010; 26:1612-7. [PMID: 20833013 DOI: 10.1016/j.bios.2010.08.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 08/06/2010] [Accepted: 08/12/2010] [Indexed: 11/16/2022]
Abstract
Electrospinning is a versatile and cost effective method to fabricate biocompatible nanofibrous materials. The novel nanostructure significantly increases the surface area and mass transfer rate, which improves the biochemical binding effect and sensor signal to noise ratio. This paper presents the electrospinning method of nitrocellulose nanofibrous membrane and its antibody functionalization for application of bacterial and viral pathogen detection. The capillary action of the nanofibrous membrane is further enhanced using oxygen plasma treatment. An electrospun biosensor is designed based on capillary separation and conductometric immunoassay. The silver electrode is fabricated using spray deposition method which is non-invasive for the electrospun nanofibers. The surface functionalization and sensor assembly process retain the unique fiber morphology. The antibody attachment and pathogen binding effect is verified using the confocal laser scanning microscope (CLSM) and scanning electronic microscope (SEM). The electrospun biosensor exhibits linear response to both microbial samples, Escherichia coli O157:H7 and bovine viral diarrhea virus (BVDV) sample. The detection time of the biosensor is 8 min, and the detection limit is 61 CFU/mL and 10(3)CCID/mL for bacterial and viral samples, respectively. With the advantage of efficient antibody functionalization, excellent capillary capability, and relatively low cost, the electrospinning process and surface functionalization method can be implemented to produce nanofibrous capture membrane for different immuno-detection applications.
Collapse
Affiliation(s)
- Yilun Luo
- Department of Biosystems and Agricultural Engineering, Michigan State University, Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 2010; 398:1575-89. [DOI: 10.1007/s00216-010-4054-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 07/17/2010] [Accepted: 07/20/2010] [Indexed: 11/26/2022]
|
98
|
Dungchai W, Chailapakul O, Henry CS. Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 2010; 674:227-33. [DOI: 10.1016/j.aca.2010.06.019] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 10/19/2022]
|
99
|
Affiliation(s)
- Benjamin J Privett
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
100
|
Zou Z, Du D, Wang J, Smith JN, Timchalk C, Li Y, Lin Y. Quantum Dot-Based Immunochromatographic Fluorescent Biosensor for Biomonitoring Trichloropyridinol, a Biomarker of Exposure to Chlorpyrifos. Anal Chem 2010; 82:5125-33. [DOI: 10.1021/ac100260m] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhexiang Zou
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 China, and Pacific Northwest National Laboratory, Richland, Washington 99352, and College of Chemistry, Central China Normal University, Wuhan 430039 China
| | - Dan Du
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 China, and Pacific Northwest National Laboratory, Richland, Washington 99352, and College of Chemistry, Central China Normal University, Wuhan 430039 China
| | - Jun Wang
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 China, and Pacific Northwest National Laboratory, Richland, Washington 99352, and College of Chemistry, Central China Normal University, Wuhan 430039 China
| | - Jordan N. Smith
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 China, and Pacific Northwest National Laboratory, Richland, Washington 99352, and College of Chemistry, Central China Normal University, Wuhan 430039 China
| | - Charles Timchalk
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 China, and Pacific Northwest National Laboratory, Richland, Washington 99352, and College of Chemistry, Central China Normal University, Wuhan 430039 China
| | - Yaoqun Li
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 China, and Pacific Northwest National Laboratory, Richland, Washington 99352, and College of Chemistry, Central China Normal University, Wuhan 430039 China
| | - Yuehe Lin
- Department of Chemistry and Key Laboratory of Analytical Sciences, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 China, and Pacific Northwest National Laboratory, Richland, Washington 99352, and College of Chemistry, Central China Normal University, Wuhan 430039 China
| |
Collapse
|