51
|
Xu S, Zhang G, Fang B, Xiong Q, Duan H, Lai W. Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31283-31290. [PMID: 31389683 DOI: 10.1021/acsami.9b08789] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, polydopamine-coated gold nanoparticles (Au@PDAs) were synthesized by the oxidative self-polymerization of dopamine (DA) on the surface of AuNPs and applied for the first time as a signal-amplification label in lateral flow immunoassays (LFIAs) for the sensitive detection of zearalenone (ZEN) in maize. The PDA layer functioned as a linker between AuNPs and anti-ZEN monoclonal antibody (mAb) to form a probe (Au@PDA-mAb). Compared with AuNPs, Au@PDA had excellent color intensity, colloidal stability, and mAb coupling efficiency. The limit of detection of the Au@PDA-based LFIA (Au@PDA-LFIA) was 7.4 pg/mL, which was 10-fold lower than that of the traditional AuNP-based LFIA (AuNP-LFIA) (76.1 pg/mL). The recoveries of Au@PDA-LFIA were 93.80-111.82%, with the coefficient of variation of 1.08-9.04%. In addition, the reliability of Au@PDA-LFIA was further confirmed by the high-performance liquid chromatography method. Overall, our study showed that PDA coating can chemically modify the surface of AuNPs through a simple method and can thus significantly improve the detection sensitivity of LFIA.
Collapse
Affiliation(s)
- Shaolan Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Ganggang Zhang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Bolong Fang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457
| | - Weihua Lai
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
52
|
Kainz DM, Früh SM, Hutzenlaub T, Zengerle R, Paust N. Flow control for lateral flow strips with centrifugal microfluidics. LAB ON A CHIP 2019; 19:2718-2727. [PMID: 31276132 DOI: 10.1039/c9lc00308h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Lateral flow strips (LFSs) are widely used for clinical diagnostics. The restricted flow control of the current designs is one challenge to the development of quantitative and highly sensitive LFSs. Here, we present a flow control for LFSs using centrifugal microfluidics. In contrast to previously presented implementations of lateral flow membranes into centrifugal microfluidic cartridges, we direct the flow radially outwards through the membrane. We control the flow using only the centrifugal force, thus it is independent of membrane wetting properties and permeability. The flow rate can be decreased and increased, enabling control of incubation times for a wide variety of samples. We deduced a formula as a guideline for the integration of chromatographic membranes into centrifugal microfluidic disks to ensure that all the sample liquid flows through the membrane, hence safely avoiding bypass flow around the membrane. We verified the calculated operation conditions using different membranes, different flow rates, and different sample viscosities.
Collapse
Affiliation(s)
- Daniel M Kainz
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Susanna M Früh
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Tobias Hutzenlaub
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nils Paust
- Laboratory for MEMS Applications, IMTEK Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany. and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
53
|
Shao Y, Duan H, Zhou S, Ma T, Guo L, Huang X, Xiong Y. Biotin-Streptavidin System-Mediated Ratiometric Multiplex Immunochromatographic Assay for Simultaneous and Accurate Quantification of Three Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9022-9031. [PMID: 31339724 DOI: 10.1021/acs.jafc.9b03222] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The quantitative multiplex immunochromatographic assay (mICA) has received an increasing amount of attention in multitarget detection. However, the quantitative results in the reported mICAs were obtained by recording the signals on the test lines that with which various analyte-independent factors readily interfere, resulting in inaccurate quantitation. The ratiometric strategy using the T/C value (ratios of signals on the test line to those of the control line) for signal correction can effectively circumvent these issues to enable more accurate detection. Herein, we present for the first time a novel ratiometric mICA strip with multiple T lines for the simultaneous quantitative detection of aflatoxin B1 (AFB1), fumonisin B1 (FB1), and ochratoxin A (OTA) using highly luminescent quantum dot nanobeads (QBs) as enhanced signal reporters. To achieve reliable ratiometric signal output, a biotin-streptavidin system was introduced to replace the conventional anti-mouse IgG antibody for reliable reference signals on the control line that are completely independent of the signal probe and analyte. By using stable T/C values as quantitative signals, our proposed QB-mICA method can successfully detect three mycotoxins with concentrations as low as 1.65 pg/mL for AFB1, 1.58 ng/mL for FB1, and 0.059 ng/mL for OTA. The detection performance of the developed QB-mICA strip, including precision, specificity, and reliability, was further evaluated using artificially contaminated cereal samples. The results demonstrate the improved accuracy and reliability of quantitative determination by comparison with the anti-mouse IgG antibody. Thus, this work provides a promising strategy for developing a ratiometric mICA method for accurately quantifying multiple analytes using the biotin-SA system, opening up a new direction in quantitative mICAs.
Collapse
Affiliation(s)
- Yanna Shao
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Hong Duan
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Shu Zhou
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Tongtong Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- School of Food Science and Technology , Nanchang University , Nanchang 330031 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang 330047 , P. R. China
- School of Food Science and Technology , Nanchang University , Nanchang 330031 , P. R. China
- Jiangxi-OAI Joint Research Institute , Nanchang University , Nanchang 330047 , P. R. China
| |
Collapse
|
54
|
Bishop JD, Hsieh HV, Gasperino DJ, Weigl BH. Sensitivity enhancement in lateral flow assays: a systems perspective. LAB ON A CHIP 2019; 19:2486-2499. [PMID: 31251312 DOI: 10.1039/c9lc00104b] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lateral flow assays (LFAs) are rapid, inexpensive, easy-to-manufacture and -use tests widely employed in medical and environmental applications, particularly in low resource settings. Historically, LFAs have been stigmatized as having limited sensitivity. However, as their global usage expands, extensive research has demonstrated that it is possible to substantially improve LFA sensitivity without sacrificing their advantages. In this critical review, we have compiled state-of-the-art approaches to LFA sensitivity enhancement. Moreover, we have organized and evaluated these approaches from a system-level perspective, as we have observed that the advantages and disadvantages of each approach have arisen from the integrated and tightly interconnected chemical, physical, and optical properties of LFAs.
Collapse
Affiliation(s)
| | - Helen V Hsieh
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA.
| | | | - Bernhard H Weigl
- Intellectual Ventures Laboratory, Bellevue, 98007 WA, USA. and Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
55
|
Jiang N, Ahmed R, Damayantharan M, Ünal B, Butt H, Yetisen AK. Lateral and Vertical Flow Assays for Point-of-Care Diagnostics. Adv Healthc Mater 2019; 8:e1900244. [PMID: 31081270 DOI: 10.1002/adhm.201900244] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/08/2019] [Indexed: 02/03/2023]
Abstract
Lateral flow assays (LFAs) have been the pillar of rapid point-of-care (POC) diagnostics due to their simplicity, rapid process, and low cost. Recent advances in sensitivity, selectivity, and chemical stability enhancement have ensured the foothold of LFAs in commercial POC diagnostics. This paper reviews recent developments in labeling strategies and detection methods of LFAs. Moreover, vertical flow assays (VFAs) have emerged as an alternate paper-based assay due to faster detection time and unique multiplexing capabilities. Smartphones as LFA readers have been transformed into a universal integrated platform for imaging, data processing, and storage, providing quantitative results in low-resource settings. Commercial LFAs and VFAs products are evaluated with regards to their performance, market trends, and regulatory issues. The future outlook of the flow-based assays for POC diagnostics is also discussed.
Collapse
Affiliation(s)
- Nan Jiang
- School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
| | - Rajib Ahmed
- School of MedicineStanford University Palo Alto CA 94304 USA
| | - Mylon Damayantharan
- School of EngineeringUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Barış Ünal
- Triton Systems Inc. 200 Turnpike Rd. Chelmsford MA 01824 USA
| | - Haider Butt
- School of EngineeringUniversity of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London London SW7 2AZ UK
| |
Collapse
|
56
|
Huang Z, Hu S, Xiong Y, Wei H, Xu H, Duan H, Lai W. Application and development of superparamagnetic nanoparticles in sample pretreatment and immunochromatographic assay. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
57
|
He X, Han H, Liu L, Shi W, Lu X, Dong J, Yang W, Lu X. Self-Assembled Microgels for Sensitive and Low-Fouling Detection of Streptomycin in Complex Media. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13676-13684. [PMID: 30888150 DOI: 10.1021/acsami.9b00277] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In terms of detection of antibiotics within complex media, the nonspecific adsorption is an enormous challenge and antifouling sensing interfaces capable of reducing the nonspecific adsorption from complex biological samples are highly desirable. In this work, a novel antifouling electrochemical immunosensor was explored based on the self-assembly of two kinds of poly( N-isopropylacrylamide) microgels on the surface of graphene oxide for sensitive detection of streptomycin (STR). The microgels modified with glycidyl methacrylate (GMA) and zwitterionic liquid 1-propyl-3-vinylimidazole sulfonate (PVIS) were prepared. The microgels with GMA were used by combining specific recognition of anti-STR. The rapid specific binding of antigen and anti-STR resulted in a decrease of current density to generate electrochemical responsive signals. Zwitterionic liquid-modified microgels were used for antifouling, which can form stronger hydration and show excellent antifouling ability. As a result, we achieved efficient and sensitive detection of STR in the complex sample with evidently resisted nonspecific adsorption effect, the wide linear range toward STR was from 0.05 to 100 ng mL-1, with a detection limit down to 1.7 pg mL-1. The immunosensor based on the surface functionalization of microgels showed promising applications for the detection of antibiotics in complex media.
Collapse
Affiliation(s)
- Xiaoyan He
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Huimin Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Liqin Liu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Wenyu Shi
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Xiong Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Jiandi Dong
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Wu Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering , Northwest Normal University , Lanzhou 730070 , China
| |
Collapse
|
58
|
Si J, Li J, Zhang L, Zhang W, Yao J, Li T, Wang W, Zhu W, Allain JP, Fu Y, Li C. A signal amplification system on a lateral flow immunoassay detecting for hepatitis e-antigen in human blood samples. J Med Virol 2019; 91:1301-1306. [PMID: 30851129 DOI: 10.1002/jmv.25452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Hepatitis B e-antigen (HBeAg) is the secretory form of the nucleocapsid of the hepatitis B virus (HBV), which is a marker of viral replication. In this study, a novel signal amplification system (SAS) based on the lateral flow immunoassay (LFIA) was used for rapid detection of HBeAg in blood samples from patients or blood donors. In this assay, the detection antibody was conjugated with gold nanoparticles (GNPs), and the capture antibody was labeled with biotin. The presence of targeting antigen HBeAg in blood sample would act as a bridge with biotinylated captured antibody and GNP-conjugated detection antibody to form the dendritic nanoparticle complex. The dendritic complexes in the sample solution were migrated and immobilized on the testing line of strip coated with antibiotin antibodies. Signal intensity was massively amplified by the SAS, which was positively correlated with the concentration of targeting antigen in the blood sample and was assessed by eyes or strip scanner. The SAS worked only when targeting antigens were present in the sample. By using this SAS-LFIA, we were able to detect a very low concentration of HBeAg (9 ng/mL), which was 27-fold sensitive than that by conventional LFIA (cLFIA). A number of 420 blood samples were detested by this novel SAS-LFIA, the results were in accordance with those of enzyme-linked immunosorbent assay (ELISA) completely, while the cLFIA missed an HBeAg-positive sample. In conclusion, the novel SAS has high specificity and sensitivity, which can be used to replace the conventional rapid test and ELISA in clinical diagnosis.
Collapse
Affiliation(s)
- Jinhong Si
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinfeng Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Shenzhen Key Laboratory of Molecular Epidemiology, Center for Disease Control and Prevention (CDC), Shenzhen, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Weiyun Zhang
- Laboratory Department, Military General Hospital of Guangzhou, Guangzhou, China
| | - Jinxiu Yao
- Laboratory Department, Yangjiang People's Hospital, Yangjiang, Guangdong, China
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Weihang Zhu
- Department of Blood Donation Screening, Shenzhen Blood Center, Shenzhen, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Emeritus Professor, University of Cambridge, Cambridge, UK
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Insitutue of Clinical Transfusion, Guangzhou Blood Center, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
59
|
|
60
|
Hu S, Huang Z, Chen WY, Xing KY, Peng J, Lai WH. Dual signal insight: field-efficient qualitative/quantitative detection of sulphamethazine in raw milk. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2018.1557600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Song Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Zhen Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Wen-Yao Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Ke-Yu Xing
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Juan Peng
- School of Food Science, Nanchang University, Nanchang, People’s Republic of China
| | - Wei-Hua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
61
|
Henderson WA, Xiang L, Fourie NH, Abey SK, Ferguson EG, Diallo AF, Kenea ND, Kim CH. Simple lateral flow assays for microbial detection in stool. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:5358-5363. [PMID: 31241058 PMCID: PMC6253687 DOI: 10.1039/c8ay01475b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 06/09/2023]
Abstract
Diarrheal diseases claim the lives of 1300 children daily, mostly in the developing world. We have developed a simple lateral flow assay capable of detecting E. coli and EPEC DNA and RNA rapidly (<15 minutes) at the point-of-need, directly from stool without nucleic acid extraction or molecular amplification. The limit of detection of the method is 1 nM using synthetic DNA target substrates spiked into stool. However, due to the endogenous amplification of the 23S rRNA targets, we were able to detect the endogenous EPEC in pea-sized (5 mg) stool without labor-intensive and time-consuming nucleic acid purification or target amplification using enzymes. The significance of this method is that it is rapid (<15 minutes) and simple (without nucleic acid purification or molecular amplification) and does not require instrumentation, or access to a laboratory, cold chain or electric power. Thus, it is well-suited for point-of-need use in remote and/or resource-limited settings in the developing world where the mortality due to diarrheal diseases is especially high. The rapid testing of stool pathogens in real time at the point-of-need will decrease the loss of patients to follow-up, and enable patients to be treated earlier with the appropriate therapeutics in both the developed and developing world settings.
Collapse
Affiliation(s)
- Wendy A Henderson
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Lichen Xiang
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
- GoDx , 510 Charmany Drive, Suite 257 , Madison , WI 53719 , USA .
| | - Nicolaas H Fourie
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Sarah K Abey
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Eric G Ferguson
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Ana F Diallo
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Natnael D Kenea
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Chang Hee Kim
- GoDx , 510 Charmany Drive, Suite 257 , Madison , WI 53719 , USA .
| |
Collapse
|
62
|
Niessner R. Analytical Chemistry: Current Trends in Light of the Historic Beginnings. Angew Chem Int Ed Engl 2018; 57:14328-14336. [DOI: 10.1002/anie.201802336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/27/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Reinhard Niessner
- Institute of Hydrochemistry, Chair of Analytical Chemistry; Technical University of Munich; Germany
| |
Collapse
|
63
|
Nießner R. Analytische Chemie - aktuelle Trends im Vergleich zu den historischen Anfängen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Reinhard Nießner
- Institut für Wasserchemie & Chemische Balneologie der TU München; Lehrstuhl für Analytische Chemie; Deutschland
| |
Collapse
|
64
|
Yin HY, Fang TJ, Li YT, Fung YF, Tsai WC, Dai HY, Wen HW. Rapidly detecting major peanut allergen-Ara h2 in edible oils using a new immunomagnetic nanoparticle-based lateral flow assay. Food Chem 2018; 271:505-515. [PMID: 30236709 DOI: 10.1016/j.foodchem.2018.07.064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 06/12/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
Abstract
Ara h2 is a major peanut allergen that induces rashes, vomiting, diarrhea, and anaphylactic shock. Since peanut is a major source in producing edible oils globally, Ara h2 residues can be present in various edible oils. In this work, an immunomagnetic nanoparticle-based lateral flow assay for identifying Ara h2 in edible oils is developed. This assay exhibits high sensitivity with a visual detection limit of 0.1 mg/kg Ara h2 in oil, and favorable specificity in differentiating peanut from seeds and nuts. The calculated CV values of intra- and inter-assay were 6.73-10.21% and 4.75-8.57%, respectively, indicating high reproducibility. In an analysis of 26 oil products, Ara h2 was detected in two peanut oils as 0.122 ± 0.026 mg/kg and 0.247 ± 0.027 mg/kg. The entire method takes 5 h, including a 3.5-h sample preparation. Hence, this method has the potential to be an effective way to screen edible oils for Ara h2.
Collapse
Affiliation(s)
- Hsin-Yi Yin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tony J Fang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC; Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Yi-Ting Li
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yang-Fan Fung
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Wen-Che Tsai
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hong-Yu Dai
- Crop Science Division and Guansi Experiment Station, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung, Taiwan, ROC.
| | - Hsiao-Wei Wen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC.
| |
Collapse
|
65
|
Serebrennikova KV, Samsonova JV, Osipov AP. Enhancement of the Sensitivity of a Lateral Flow Immunoassay by Using the Biotin–Streptavidin System. ACTA ACUST UNITED AC 2018. [DOI: 10.3103/s0027131418030070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Katis IN, He PJW, Eason RW, Sones CL. Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path. Biosens Bioelectron 2018; 113:95-100. [PMID: 29738945 DOI: 10.1016/j.bios.2018.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022]
Abstract
We report on the use of a laser-direct write (LDW) technique that allows the fabrication of lateral flow devices with enhanced sensitivity and limit of detection. This manufacturing technique comprises the dispensing of a liquid photopolymer at specific regions of a nitrocellulose membrane and its subsequent photopolymerisation to create impermeable walls inside the volume of the membrane. These polymerised structures are intentionally designed to create fluidic channels which are constricted over a specific length that spans the test zone within which the sample interacts with pre-deposited reagents. Experiments were conducted to show how these constrictions alter the fluid flow rate and the test zone area within the constricted channel geometries. The slower flow rate and smaller test zone area result in the increased sensitivity and lowered limit of detection for these devices. We have quantified these via the improved performance of a C-Reactive Protein (CRP) sandwich assay on our lateral flow devices with constricted flow paths which demonstrate an improvement in its sensitivity by 62x and in its limit of detection by 30x when compared to a standard lateral flow CRP device.
Collapse
Affiliation(s)
- Ioannis N Katis
- Optoelectronics Research Centre, University of Southampton, Highfield Campus, SO17 1BJ Southampton, UK.
| | - Peijun J W He
- Optoelectronics Research Centre, University of Southampton, Highfield Campus, SO17 1BJ Southampton, UK
| | - Robert W Eason
- Optoelectronics Research Centre, University of Southampton, Highfield Campus, SO17 1BJ Southampton, UK
| | - Collin L Sones
- Optoelectronics Research Centre, University of Southampton, Highfield Campus, SO17 1BJ Southampton, UK
| |
Collapse
|
67
|
Abstract
Because multianalyte methods are highly desirable in order to keep analysis time and costs low, the biosensor development increasingly focuses on parallel analysis of several mycotoxins. Here, we describe an indirect competitive immunoassay on regenerable, reusable glass microchips for the parallel determination of aflatoxins, ochratoxin A, deoxynivalenol, and fumonisin B1 in oat extracts, using a fully automated flow-through device with chemiluminescence readout.
Collapse
|
68
|
Jacinto MJ, Trabuco JRC, Vu BV, Garvey G, Khodadady M, Azevedo AM, Aires-Barros MR, Chang L, Kourentzi K, Litvinov D, Willson RC. Enhancement of lateral flow assay performance by electromagnetic relocation of reporter particles. PLoS One 2018; 13:e0186782. [PMID: 29309424 PMCID: PMC5757911 DOI: 10.1371/journal.pone.0186782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
Lateral flow assays (LFAs) are a widely-used point-of care diagnostic format, but suffer from limited analytical sensitivity, especially when read by eye. It has recently been reported that LFA performance can be improved by using magnetic reporter particles and an external magnetic field applied at the test line. The mechanism of sensitivity/performance enhancement was suggested to be concentration/retardation of reporter particles at the test line. Here we demonstrate an additional mechanism of particle relocation where reporter particles from the lower depths of the translucent LFA strip relocate to more-visible locations nearer to the top surface, producing a more visible signal. With a magnetic field we observed an improvement in sensitivity of human chorionic gonadotropin (hCG) detection from 1.25 ng/mL to 0.31 ng/mL. We also observed an increase of the color intensity per particle in test lines when the magnetic field was present.
Collapse
Affiliation(s)
- Maria João Jacinto
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - João R. C. Trabuco
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Binh V. Vu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Gavin Garvey
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Mohammad Khodadady
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, TX, United States of America
| | - Ana M. Azevedo
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Raquel Aires-Barros
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Long Chang
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, TX, United States of America
- Department of Electrical & Computer Engineering, University of Houston, Houston, TX, United States of America
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
| | - Dmitri Litvinov
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
- Center for Integrated Bio & Nano Systems, University of Houston, Houston, TX, United States of America
- Department of Electrical & Computer Engineering, University of Houston, Houston, TX, United States of America
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- Tecnológico de Monterrey, Departamento de Biotecnología e Ingeniería de Alimentos, Centro de Biotecnología FEMSA, Monterrey, Nuevo León, Mexico
- * E-mail:
| |
Collapse
|
69
|
Thiruvengadam M, Rajakumar G, Chung IM. Nanotechnology: current uses and future applications in the food industry. 3 Biotech 2018; 8:74. [PMID: 29354385 DOI: 10.1007/s13205-018-1104-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/07/2018] [Indexed: 12/16/2022] Open
Abstract
Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.
Collapse
|
70
|
Serebrennikova K, Samsonova J, Osipov A. Hierarchical Nanogold Labels to Improve the Sensitivity of Lateral Flow Immunoassay. NANO-MICRO LETTERS 2018; 10:24. [PMID: 30393673 PMCID: PMC6199071 DOI: 10.1007/s40820-017-0180-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/23/2017] [Indexed: 05/14/2023]
Abstract
Lateral flow immunoassay (LFIA) is a widely used express method and offers advantages such as a short analysis time, simplicity of testing and result evaluation. However, an LFIA based on gold nanospheres lacks the desired sensitivity, thereby limiting its wide applications. In this study, spherical nanogold labels along with new types of nanogold labels such as gold nanopopcorns and nanostars were prepared, characterized, and applied for LFIA of model protein antigen procalcitonin. It was found that the label with a structure close to spherical provided more uniform distribution of specific antibodies on its surface, indicative of its suitability for this type of analysis. LFIA using gold nanopopcorns as a label allowed procalcitonin detection over a linear range of 0.5-10 ng mL-1 with the limit of detection of 0.1 ng mL-1, which was fivefold higher than the sensitivity of the assay with gold nanospheres. Another approach to improve the sensitivity of the assay included the silver enhancement method, which was used to compare the amplification of LFIA for procalcitonin detection. The sensitivity of procalcitonin determination by this method was 10 times better the sensitivity of the conventional LFIA with gold nanosphere as a label. The proposed approach of LFIA based on gold nanopopcorns improved the detection sensitivity without additional steps and prevented the increased consumption of specific reagents (antibodies).
Collapse
Affiliation(s)
- Kseniya Serebrennikova
- Chemistry Faculty, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia, 119991.
- National University of Science and Technology "MISiS", Leninskiy Prospect 4, Moscow, Russia, 119049.
| | - Jeanne Samsonova
- Chemistry Faculty, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia, 119991
- National University of Science and Technology "MISiS", Leninskiy Prospect 4, Moscow, Russia, 119049
| | - Alexander Osipov
- Chemistry Faculty, Lomonosov Moscow State University, Leninskiye Gory, Moscow, Russia, 119991
- National University of Science and Technology "MISiS", Leninskiy Prospect 4, Moscow, Russia, 119049
| |
Collapse
|
71
|
Banerjee R, Jaiswal A. Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 2018; 143:1970-1996. [DOI: 10.1039/c8an00307f] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in lateral flow immunoassay-based devices as a point-of-care analytical tool for the detection of infectious diseases are reviewed.
Collapse
Affiliation(s)
- Ruptanu Banerjee
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| | - Amit Jaiswal
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175005
- India
| |
Collapse
|
72
|
Hussain M, Raja NI, Iqbal M, Aslam S. Applications of Plant Flavonoids in the Green Synthesis of Colloidal Silver Nanoparticles and Impacts on Human Health. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE 2017. [DOI: 10.1007/s40995-017-0431-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
73
|
Novel preparation of Fe3O4/styrene-co-butyl acrylate composite microspheres via a phase inversion emulsion process. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4154-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
74
|
Tripathi P, Upadhyay N, Nara S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit Rev Food Sci Nutr 2017; 58:1715-1734. [PMID: 28071928 DOI: 10.1080/10408398.2016.1276048] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotechnology embraces various physical and chemical phenomena toward advancement of health diagnostics. Toward such advancement, detection of toxins plays an important role. Toxins produce severe health impacts on consumption with high mortality associated in acute cases. The most prominent route of infection and intoxication is through food matrices. Therefore, rapid detection of toxins at low concentrations is the need of modern diagnostics. Lateral flow immunoassays are one of the emergent and popularly used rapid detection technology developed for detecting various kinds of analytes. This review thus focuses on recent advancements in lateral flow immunoassays for detecting different toxins in agricultural food. Appropriate emphasis was given on how the labels, recognition elements, or detection strategy has laid an impact on improvement in immunochromatographic assays for toxins. The paper also discusses the gradual change in sensitivities and specificities of assays in accordance with the method of food processing used. The review concludes with the major challenges faced by this technology and provides an outlook and insight of ideas to improve it in the future.
Collapse
Affiliation(s)
- Pranav Tripathi
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Neha Upadhyay
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Seema Nara
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| |
Collapse
|
75
|
Abstract
Lateral flow assays (LFAs) are the technology behind low-cost, simple, rapid and portable detection devices popular in biomedicine, agriculture, food and environmental sciences. This review presents an overview of the principle of the method and the critical components of the assay, focusing on lateral flow immunoassays. This type of assay has recently attracted considerable interest because of its potential to provide instantaneous diagnosis directly to patients. The range and interpretation of results and parameters used for evaluation of the assay will also be discussed. The main advantages and disadvantages of LFAs will be summarized and relevant future improvements to testing devices and strategies will be proposed. Finally, the major recent advances and future diagnostic applications in the LFA field will be explored.
Collapse
|
76
|
Ouyang S, Zhang Z, He T, Li P, Zhang Q, Chen X, Wang D, Li H, Tang X, Zhang W. An On-Site, Ultra-Sensitive, Quantitative Sensing Method for the Determination of Total Aflatoxin in Peanut and Rice Based on Quantum Dot Nanobeads Strip. Toxins (Basel) 2017; 9:137. [PMID: 28406451 PMCID: PMC5408211 DOI: 10.3390/toxins9040137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
An on-site, ultra-sensitive, and quantitative sensing method was developed based on quantum dot nanobeads (QDNBs) and a test strip for the determination of total aflatoxins (AFTs) in rice and peanuts. The monoclonal antibody against AFT (mAbAFT) was homemade and labeled with QDNB. After the pre-coating of the AFT antigen on the test line (T line), the competitive immunoreactions were conducted between AFT and AFT antigen on the T line with QDNBs-mAbAFT. Under optimal conditions, this approach allowed a rapid response towards AFT with a considerable sensitivity of 1.4 pg/mL and 2.9 pg/mL in rice and peanut matrices, respectively. The put-in and put-out durations were within 10 min. The recoveries for AFT in rice and peanut sample matrices were recorded from 86.25% to 118.0%, with relative deviations (RSD) below 12%. The assay was further validated via the comparison between this QDNB strip and the conventional HPLC method using spiked samples. Thus, the design provided a potential alternative for on-site, ultra-sensitive, and quantitative sensing of AFT that could also be expanded to other chemical contaminants for food safety.
Collapse
Affiliation(s)
- Suiyan Ouyang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Ting He
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Xiaomei Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Hui Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
| | - Xiaoqian Tang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, Wuhan 430062, China.
| |
Collapse
|
77
|
Linyu W, Manwen Y, Chengzhi F, Xi Y. A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe3O4@SiO2magnetic nanoparticles. LUMINESCENCE 2017; 32:1039-1044. [DOI: 10.1002/bio.3288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Wang Linyu
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Yao Manwen
- Tongji University; Shanghai People's Republic of China
| | - Fang Chengzhi
- High School Affiliated to Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Yao Xi
- Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering; Xi'an Jiaotong University; Xi'an People's Republic of China
| |
Collapse
|
78
|
Zhu X, Sarwar M, Yue Q, Chen C, Li CZ. Biosensing of DNA oxidative damage: a model of using glucose meter for non-glucose biomarker detection. Int J Nanomedicine 2017; 12:979-987. [PMID: 28203077 PMCID: PMC5298300 DOI: 10.2147/ijn.s125437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-glucose biomarker-DNA oxidative damage biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG) has been successfully detected using a smartphone-enabled glucose meter. Through a series of immune reactions and enzymatic reactions on a solid lateral flow platform, 8-OHdG concentration has been converted to a relative amount of glucose, and therefore can be detected by conventional glucose meter directly. The device was able to detect 8-OHdG concentrations in phosphate buffer saline as low as 1.73 ng mL−1 with a dynamic range of 1–200 ng mL−1. Considering the inherent advantages of the personal glucose meter, the demonstration of this device, therefore, should provide new opportunities for the monitoring of a wide range of biomarkers and various target analytes in connection with different molecular recognition events.
Collapse
Affiliation(s)
- Xuena Zhu
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Mehenur Sarwar
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Qiaoli Yue
- Department of Chemistry, College of Chemistry and Chemical Engineering, Liao Chen University, Shandong
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing
| | - Chen-Zhong Li
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
79
|
D’Souza AA, Kumari D, Banerjee R. Nanocomposite biosensors for point-of-care—evaluation of food quality and safety. NANOBIOSENSORS 2017. [PMCID: PMC7149521 DOI: 10.1016/b978-0-12-804301-1.00015-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanosensors have wide applications in the food industry. Nanosensors based on quantum dots for heavy metal and organophosphate pesticides detection, and nanocomposites as indicators for shelf life of fish/meat products, have served as important tools for food quality and safety assessment. Luminescent labels consisting of NPs conjugated to aptamers have been popular for rapid detection of infectious and foodborne pathogens. Various detection technologies, including microelectromechanical systems for gas analytes, microarrays for genetically modified foods, and label-free nanosensors using nanowires, microcantilevers, and resonators are being applied extensively in the food industry. An interesting aspect of nanosensors has also been in the development of the electronic nose and electronic tongue for assessing organoleptic qualities, such as, odor and taste of food products. Real-time monitoring of food products for rapid screening, counterfeiting, and tracking has boosted ingenious, intelligent, and innovative packaging of food products. This chapter will give an overview of the contribution of nanotechnology-based biosensors in the food industry, ongoing research, technology advancements, regulatory guidelines, future challenges, and industrial outlook.
Collapse
|
80
|
Yu L, Li P, Ding X, Zhang Q. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays. Talanta 2016; 165:167-175. [PMID: 28153237 DOI: 10.1016/j.talanta.2016.12.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/05/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Graphene oxide (GO) and carboxylated GO were used as labels for lateral flow immunoassays, instead of the conventionally used colloidal gold and colored latex labels. A sensor is demonstrated that enables fast screening for aflatoxin B1 (AFB1) as a model analyte using the antibody-GO complex as the recognition element. The visual limit of detection and cut-off value for AFB1 are 0.3 and 1ng/mL, respectively. It is shown that GO and carboxylated GO are viable black labels for use in lateral flow assays, one typical advantage being the saving cost (compared to the use of colloidal gold). Qualitative results are achieved within 15min, and the analytical results were in good agreement with the reference LC MS/MS method. The method was successfully applied to the on-site determination of AFB1 in agricultural products. In our perception, it opens new possibilities for the screening of other toxins by lateral flow immunoassays using GO and carboxylated GO as labels.
Collapse
Affiliation(s)
- Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, PR China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062, PR China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture, Wuhan 430062, PR China
| | - Xiaoxia Ding
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture, 430062, PR China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China
| |
Collapse
|
81
|
Raeisossadati MJ, Danesh NM, Borna F, Gholamzad M, Ramezani M, Abnous K, Taghdisi SM. Lateral flow based immunobiosensors for detection of food contaminants. Biosens Bioelectron 2016; 86:235-246. [DOI: 10.1016/j.bios.2016.06.061] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
|
82
|
Zhao Y, Huang Y, Zhao X, McClelland JF, Lu M. Nanoparticle-based photoacoustic analysis for highly sensitive lateral flow assays. NANOSCALE 2016; 8:19204-19210. [PMID: 27834971 DOI: 10.1039/c6nr05312b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper demonstrates a photoacoustics-based lateral flow test that takes advantage of the strong interaction of light and gold nanoparticles to quantitatively detect a disease biomarker. For a commercially available lateral flow test strip, the photoacoustic analysis improved the detection limit by two orders of magnitude compared to colorimetric measurements.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Yin Huang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA.
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| | | | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, USA. and Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
83
|
Abstract
The problems associated with different groups or ‘families’ of mycotoxins have been known for some time, and for many years certain groups of mycotoxins have been known to co-occur in commodities and foods. Until fairly recently commodities and foods were analysed for individual toxins or groups of related toxins and attempts to measure multiple groups of toxins required significant investments in terms of time, effort, and expense. Analytical technologies using both the instrument-intensive techniques, such as mass spectrometry, and screening techniques, such as immunoassays, have progressed significantly in recent years. This has led to the proliferation of techniques capable of detecting multiple groups of mycotoxins using a variety of approaches. Despite considerable progress, the challenges for routine monitoring of multiple toxins continue. Certain of these challenges, such as the need for co-extraction of multiple analytes with widely different polarities and the potential for carry-over of matrix components that can influence the results, are independent of the analytical technique (MS or immunoassay) used. Because of the wide variety of analytical platforms used for multi-toxin analysis, there are also specific challenges that arise amongst the analytical platforms. We showed that chromatographic methods with optical detection for aflatoxins maintain stable response factors over rather long periods. This offers the potential to reduce the analytical burden, provided the use of a single signal receives general acceptance once shown in practise as working approach. This must however be verified by a larger community of laboratories. For immunosensors the arising challenges include the reusability of sensors and, for chromatography-based assays they include the selection of appropriate calibration systems. In this article we seek to further describe the challenges associated with multi-toxin analysis and articulate how such challenges have recently been addressed.
Collapse
Affiliation(s)
- J. Stroka
- Joint Research Centre, European Commission, Retieseweg 111, 2440 Geel, Belgium
| | - C.M. Maragos
- Agricultural Research Service, National Center for Agricultural Utilization Research, United States Department of Agriculture, 1815 N. University St., Peoria, IL 61604, USA
| |
Collapse
|
84
|
Yao M, Wang L, Fang C. The chemiluminescence immunoassay for aflatoxin B1 based on functionalized magnetic nanoparticles with two strategies of antigen probe immobilization. LUMINESCENCE 2016; 32:661-665. [DOI: 10.1002/bio.3235] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Manwen Yao
- Functional Materials Research Laboratory; Tongji University; Shanghai People's Republic of China
| | - Linyu Wang
- School of Electronic and Information Engineering; Xi'an Jiaotong University; Xi'an People's Republic of China
| | - Chengzhi Fang
- High School Affiliated to Xi'an Jiaotong University; Xi'an People's Republic of China
| |
Collapse
|
85
|
Yao Y, Guo W, Zhang J, Wu Y, Fu W, Liu T, Wu X, Wang H, Gong X, Liang XJ, Chang J. Reverse Fluorescence Enhancement and Colorimetric Bimodal Signal Readout Immunochromatography Test Strip for Ultrasensitive Large-Scale Screening and Postoperative Monitoring. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22963-22970. [PMID: 27547984 DOI: 10.1021/acsami.6b08445] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrasensitive and quantitative fast screening of cancer biomarkers by immunochromatography test strip (ICTS) is still challenging in clinic. The gold nanoparticles (NPs) based ICTS with colorimetric readout enables a quick spectrum screening but suffers from nonquantitative performance; although ICTS with fluorescence readout (FICTS) allows quantitative detection, its sensitivity still deserves more efforts and attentions. In this work, by taking advantages of colorimetric ICTS and FICTS, we described a reverse fluorescence enhancement ICTS (rFICTS) with bimodal signal readout for ultrasensitive and quantitative fast screening of carcinoembryonic antigen (CEA). In the presence of target, gold NPs aggregation in T line induced colorimetric readout, allowing on-the-spot spectrum screening in 10 min by naked eye. Meanwhile, the reverse fluorescence enhancement signal enabled more accurately quantitative detection with better sensitivity (5.89 pg/mL for CEA), which is more than 2 orders of magnitude lower than that of the conventional FICTS. The accuracy and stability of the rFICTS were investigated with more than 100 clinical serum samples for large-scale screening. Furthermore, this rFICTS also realized postoperative monitoring by detecting CEA in a patient with colon cancer and comparing with CT imaging diagnosis. These results indicated this rFICTS is particularly suitable for point-of-care (POC) diagnostics in both resource-rich and resource-limited settings.
Collapse
Affiliation(s)
- Yingyi Yao
- School of Materials Science and Engineering, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Weisheng Guo
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jian Zhang
- School of Materials Science and Engineering, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Yudong Wu
- School of Materials Science and Engineering, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin 300052, China
| | - Tingting Liu
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin 300052, China
| | - Xiaoli Wu
- School of Materials Science and Engineering, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Hanjie Wang
- School of Materials Science and Engineering, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Xiaoqun Gong
- School of Materials Science and Engineering, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jin Chang
- School of Materials Science and Engineering, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University , Tianjin 300072, China
| |
Collapse
|
86
|
|
87
|
López-Marzo AM, Merkoçi A. Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. LAB ON A CHIP 2016; 16:3150-76. [PMID: 27412239 DOI: 10.1039/c6lc00737f] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This review shows the recent advances and state of the art in paper-based analytical devices (PADs) through the analysis of their integration with microfluidics and LOC micro- and nanotechnologies, electrochemical/optical detection and electronic devices as the convergence of various knowledge areas. The important role of the paper design/architecture in the improvement of the performance of sensor devices is discussed. The discussion is fundamentally based on μPADs as the new generation of paper-based (bio)sensors. Data about the scientific publication ranking of PADs, illustrating their increase as an experimental research topic in the past years, are supplied. In addition, an analysis of the simultaneous evolution of PADs in academic lab research and industrial commercialization highlighting the parallelism of the technological transfer from academia to industry is displayed. A general overview of the market behaviour, the leading industries in the sector and their commercialized devices is given. Finally, personal opinions of the authors about future perspectives and tendencies in the design and fabrication technology of PADs are disclosed.
Collapse
Affiliation(s)
- Adaris M López-Marzo
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain.
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain. and Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
88
|
|
89
|
Hori F, Harada Y, Kuretake T, Uno S. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay. ANAL SCI 2016; 32:355-9. [PMID: 26960618 DOI: 10.2116/analsci.32.355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A detection method of gold nanoparticles in chromatography paper has been developed for a simple, cost-effective and reliable quantitation of immunochromatographic strip test. The time courses of the solution resistance in chromatography paper with the gold nanoparticles solution are electrochemically measured by chrono-impedimetry. The dependence of the solution resistance on the concentration of gold nanoparticles has been successfully observed. The main factor to increase the solution resistance may be obstruction of the ion transport due to the presence of gold nanoparticles. The existence of gold nanoparticles with 1.92 × 10(9) particles/mL in an indistinctly-colored chromatography paper is also identified by a solution resistance measurement. This indicates that the solution resistance assay has the potential to lower the detection limit of the conventional qualitative assay.
Collapse
Affiliation(s)
- Fumitaka Hori
- Department of Electrical Systems, Graduate School of Science and Engineering, Ritsumeikan University
| | | | | | | |
Collapse
|
90
|
Qu H, Zhang Y, Qu B, Kong H, Qin G, Liu S, Cheng J, Wang Q, Zhao Y. Rapid lateral-flow immunoassay for the quantum dot-based detection of puerarin. Biosens Bioelectron 2016; 81:358-362. [PMID: 26991602 DOI: 10.1016/j.bios.2016.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/26/2015] [Accepted: 01/26/2016] [Indexed: 01/01/2023]
Abstract
In this study, a rapid (within 10min) quantitative lateral-flow immunoassay using a quantum dots (QDs)-antibody probe was developed for the analysis of puerarin (PUE) in water and biological samples. The competitive immunoassay was based on anti-PUE monoclonal antibody conjugated with QDs (detection reagent). Secondary antibody was immobilized on one end of a nitrocellulose membrane (control line) and PUE-bovine serum albumin conjugate was immobilized on the other end (test line). In the quantitative experiment, the detection results were scanned using a membrane strip reader and a detection curve (regression equation: y=-0.11ln(x)+0.979, R(2)=0.9816) representing the averages of the scanned data was obtained. This curve was linear from 1 to 10μg/mL. The IC50 value was 75.58ng/mL and the qualitative detection limit of PUE was 5.8ng/mL. The recovery of PUE added to phosphate-buffered saline and biological samples was in the range of 97.38-116.56%. To our knowledge, this is the first report of the quantitative detection of a natural product by QDs-based immunochromatography, which represents a powerful tool for rapidly screening PUE in plant materials and other biological samples.
Collapse
Affiliation(s)
- Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, China
| | - Yue Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Baoping Qu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Gaofeng Qin
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Shuchen Liu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China.
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, China.
| |
Collapse
|
91
|
Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 2016; 912:10-23. [DOI: 10.1016/j.aca.2016.01.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
|
92
|
Shirazi H, Ahmadi A, Darzianiazizi M, Kashanian S, Kashanian S, Omidfar K. Signal amplification strategy using gold/N-trimethyl chitosan/iron oxide magnetic composite nanoparticles as a tracer tag for high-sensitive electrochemical detection. IET Nanobiotechnol 2016; 10:20-7. [PMID: 26766869 PMCID: PMC8676129 DOI: 10.1049/iet-nbt.2015.0022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/19/2015] [Accepted: 06/26/2015] [Indexed: 11/09/2023] Open
Abstract
This study presents a novel signal amplification method for high-sensitive electrochemical immunosensing. Gold (Au)/N-trimethyl chitosan (TMC)/iron oxide (Fe3O4) (shell/shell/core) nanocomposite was used as a tracing tag to label antibody. The tag was shown to be capable of amplifying the recognition signal by high-density assembly of Au nanoparticles (NPs) on TMC/Fe3O4 particles. The remarkable conductivity of AuNPs provides a feasible pathway for electron transfer. The method was found to be simple, reliable and capable of high-sensitive detection of human serum albumin as a model, down to 0.2 pg/ml in the range of 0.25-1000 pg/ml. Findings of the present study would create new opportunities for sensitive and rapid detection of various analytes.
Collapse
Affiliation(s)
- Hanieh Shirazi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Anita Ahmadi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Maedeh Darzianiazizi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Susan Kashanian
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, IR, Iran
| | - Soheila Kashanian
- Department of Chemistry, Sensor and Biosensor Research Center (SBRC) and Nanoscience and Nanotechnology Research Center (NNRC), Faculty of Science, Razi University, Kermanshah, IR, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
93
|
Nanotechnological Applications in Food Packaging, Sensors and Bioactive Delivery Systems. SUSTAINABLE AGRICULTURE REVIEWS 2016. [DOI: 10.1007/978-3-319-39306-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
94
|
Li J, Duan H, Xu P, Huang X, Xiong Y. Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay. RSC Adv 2016. [DOI: 10.1039/c6ra03695c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of immunochromatographic assay.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Hong Duan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Peng Xu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| |
Collapse
|
95
|
Hwang J, Kwon D, Lee S, Jeon S. Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters. RSC Adv 2016. [DOI: 10.1039/c6ra05446c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A novel method was developed for the detection of Salmonella bacteria using gold-coated magnetic nanoparticle clusters (Au/MNCs) and lateral flow filters.
Collapse
Affiliation(s)
- Jeongin Hwang
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Donghoon Kwon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sanghee Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| | - Sangmin Jeon
- Department of Chemical Engineering
- Pohang University of Science and Technology (POSTECH)
- Pohang
- Republic of Korea
| |
Collapse
|
96
|
Huang X, Aguilar ZP, Xu H, Lai W, Xiong Y. Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: A review. Biosens Bioelectron 2016; 75:166-80. [DOI: 10.1016/j.bios.2015.08.032] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 01/30/2023]
|
97
|
Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S. Facets of Nanotechnology as Seen in Food Processing, Packaging, and Preservation Industry. BIOMED RESEARCH INTERNATIONAL 2015; 2015:365672. [PMID: 26613082 PMCID: PMC4646997 DOI: 10.1155/2015/365672] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/30/2015] [Indexed: 12/29/2022]
Abstract
Nanotechnology has proven its competence in almost all possible fields we are aware of. However, today nanotechnology has evolved in true sense by contributing to a very large extent to the food industry. With the growing number of mouths to feed, production of food is not adequate. It has to be preserved in order to reach to the masses on a global scale. Nanotechnology made the idea a reality by increasing the shelf life of different kinds of food materials. It is not an entirely full-proof measure; however it has brought down the extent of wastage of food due to microbial infestation. Not only fresh food but also healthier food is being designed with the help of nano-delivery systems which act as a carrier for the food supplements. There are regulations to follow however as several of them pose serious threats to the wellbeing of the population. In coming days, newer modes of safeguarding food are going to be developed with the help of nanotechnology. In this paper, an overview has been given of the different methods of food processing, packaging, and preservation techniques and the role nanotechnology plays in the food processing, packaging, and preservation industry.
Collapse
Affiliation(s)
- Neha Pradhan
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Surjit Singh
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Nupur Ojha
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Anamika Shrivastava
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Anil Barla
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| | - Vivek Rai
- Institute of Life Sciences (An Autonomous Institute of the Department of Biotechnology), Nalco Square, Bhubaneswar, Odisha 751 023, India
| | - Sutapa Bose
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741 246, India
| |
Collapse
|
98
|
Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 2015; 73:47-63. [DOI: 10.1016/j.bios.2015.05.050] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/15/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
|
99
|
Rodríguez MO, Covián LB, García AC, Blanco-López MC. Silver and gold enhancement methods for lateral flow immunoassays. Talanta 2015; 148:272-8. [PMID: 26653449 DOI: 10.1016/j.talanta.2015.10.068] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/12/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
Abstract
Sensitivity is the main concern at the development of rapid test by lateral flow immunoassays. On the other hand, low limits of detection are often required at medical diagnostics and other field of analysis. To overcome this drawback, several enhancement protocols have been described. In this paper, we have selected different silver enhancement methods and one dual gold conjugation, and we critically compared the amplification produced when applied to a gold-nanoparticle based lateral flow immunoassay for the detection of prostate specific antigen (PSA). The highest amplification was obtained by using an immersion method based on a solution of silver nitrate and hydroquinone/citrate buffer in proportion 1:1. Under these conditions, the system is capable of detecting PSA within 20 min at levels as low as 0.1 ng/mL, with a 3-fold sensitivity improvement.
Collapse
Affiliation(s)
- Myriam Oliveira Rodríguez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Lucía Blanco Covián
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Agustín Costa García
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain
| | - Maria Carmen Blanco-López
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo, Spain.
| |
Collapse
|
100
|
Turner NW, Bramhmbhatt H, Szabo-Vezse M, Poma A, Coker R, Piletsky SA. Analytical methods for determination of mycotoxins: An update (2009-2014). Anal Chim Acta 2015; 901:12-33. [PMID: 26614054 DOI: 10.1016/j.aca.2015.10.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 12/25/2022]
Abstract
Mycotoxins are a problematic and toxic group of small organic molecules that are produced as secondary metabolites by several fungal species that colonise crops. They lead to contamination at both the field and postharvest stages of food production with a considerable range of foodstuffs affected, from coffee and cereals, to dried fruit and spices. With wide ranging structural diversity of mycotoxins, severe toxic effects caused by these molecules and their high chemical stability the requirement for robust and effective detection methods is clear. This paper builds on our previous review and summarises the most recent advances in this field, in the years 2009-2014 inclusive. This review summarises traditional methods such as chromatographic and immunochemical techniques, as well as newer approaches such as biosensors, and optical techniques which are becoming more prevalent. A section on sampling and sample treatment has been prepared to highlight the importance of this step in the analytical methods. We close with a look at emerging technologies that will bring effective and rapid analysis out of the laboratory and into the field.
Collapse
Affiliation(s)
- Nicholas W Turner
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| | - Heli Bramhmbhatt
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | - Monika Szabo-Vezse
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Alessandro Poma
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK; Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Raymond Coker
- Toximet Ltd., ToxiMet Limited, 130 Abbott Drive, Kent Science Park, Sittingbourne, Kent, ME9 8AZ, UK
| | - Sergey A Piletsky
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| |
Collapse
|