51
|
Bonding of synthetic hydrogels with fibrin as the glue to engineer hydrogel-based biodevices. J Biosci Bioeng 2014; 118:94-7. [DOI: 10.1016/j.jbiosc.2013.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/25/2013] [Accepted: 12/25/2013] [Indexed: 11/22/2022]
|
52
|
Sadeghi M, Atefyekta R, Azimaraghi O, Marashi SM, Aghajani Y, Ghadimi F, Spahn DR, Movafegh A. Estudo randômico e duplo‐cego de profilaxia com fibrinogênio para reduzir o sangramento em cirurgia cardíaca. Braz J Anesthesiol 2014; 64:253-7. [DOI: 10.1016/j.bjan.2013.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022] Open
|
53
|
Ceccarelli J, Putnam AJ. Sculpting the blank slate: how fibrin's support of vascularization can inspire biomaterial design. Acta Biomater 2014; 10:1515-23. [PMID: 23933102 DOI: 10.1016/j.actbio.2013.07.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/19/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Fibrin is the primary extracellular constituent of blood clots, and plays an important role as a provisional matrix during wound healing and tissue remodeling. Fibrin-based biomaterials have proven their utility as hemostatic therapies, scaffolds for tissue engineering, vehicles for controlled release, and platforms for culturing and studying cells in three dimensions. Nevertheless, fibrin presents a complex milieu of signals to embedded cells, many of which are not well understood. Synthetic extracellular matrices (ECMs) provide a blank slate that can ostensibly be populated with specific bioactive cues, including growth factors, growth factor binding motifs, adhesive peptides and peptide crosslinks susceptible to proteases, thereby enabling a degree of customization for specific applications. However, the continued evolution and improvement of synthetic ECMs requires parallel efforts to deconstruct native ECMs and decipher the cues they provide to constituent cells. The objective of this review is to reintroduce fibrin, a protein with a well-characterized structure and biochemistry, and its ability to support angiogenesis specifically. Although fibrin's structure-function relationships have been studied for decades, opportunities to engineer new and improved synthetic hydrogels can be realized by further exploiting fibrin's inspiring design.
Collapse
Affiliation(s)
- Jacob Ceccarelli
- Department of Biomedical Engineering, University of Michigan, 2154 Lurie Biomedical Engineering Building, 1101 Beal Ave, Ann Arbor, MI 48109, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, 2154 Lurie Biomedical Engineering Building, 1101 Beal Ave, Ann Arbor, MI 48109, USA.
| |
Collapse
|
54
|
Malagón-Romero D, Hernández N, Cardozo C, Godoy-Silva RD. Rheological characterization of a gel produced using human blood plasma and alginate mixtures. J Mech Behav Biomed Mater 2014; 34:171-80. [PMID: 24603213 DOI: 10.1016/j.jmbbm.2014.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 01/11/2023]
Abstract
Human blood plasma is a material used to generate tissue equivalents due to presence of fibrinogen. However, gels formed using human blood plasma has weak mechanical properties. In this study, different mixtures of sodium alginate and blood plasma were performed and evaluated. By determining ζ potential can be established the stability of the plasma-alginate mixture and by dynamic rheology can determine the most suitable parameters for the gelation of the above mixtures, when calcium chloride is used as a crosslinker. Experimental results evidence an increment in ζ potential at alginate concentrations of 0.8% and 1.6% with a resulting pseudoplastic behavior of evaluated mixtures, which described the homogenization of the mixture. On the other hand, mixtures were gelled by using aspersion of calcium chloride and characterized by dynamic rheology. Solid behavior is dominant in all range of frequency sweep test between 0.1Hz and 100Hz. Finally, the ultimate tensile strength of a gel reach 6.36938±0.24320kPa, which is enough for manual handling of the gel. Between the tasks of the gel would be used for cell entrapment, for controlled release of drugs or in the manufacture of wound dressings.
Collapse
Affiliation(s)
- Dionisio Malagón-Romero
- Universidad Nacional de Colombia, Bogotá, Colombia; Universidad Santo Tomás, Bogotá, Colombia.
| | | | | | | |
Collapse
|
55
|
Polkinghorne VR, Standeven KF, Schroeder V, Carter AM. Role of proteomic technologies in understanding risk of arterial thrombosis. Expert Rev Proteomics 2014; 6:539-50. [DOI: 10.1586/epr.09.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
56
|
Sadeghi M, Atefyekta R, Azimaraghi O, Marashi SM, Aghajani Y, Ghadimi F, Spahn DR, Movafegh A. A randomized, double blind trial of prophylactic fibrinogen to reduce bleeding in cardiac surgery. Braz J Anesthesiol 2013; 64:253-7. [PMID: 24998109 DOI: 10.1016/j.bjane.2013.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/30/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Postoperative bleeding has a great clinical importance and can contribute to increased mortality and morbidity in patients undergoing coronary artery bypass graft surgery. In this prospective, randomized, double-blind study, we evaluated the effect of prophylactic administration of fibrinogen concentrate on post-coronary artery bypass graft surgery bleeding. METHODS A total of 60 patients undergoing coronary artery bypass surgery were randomly divided into two groups. Patients in the fibrinogen group received 1g of fibrinogen concentrate 30 min prior to the operation, while patients in the control group received placebo. Post-operative bleeding volumes, prothrombin time, partial thromboplastin time, INR, hemoglobin and transfused blood products in both groups were recorded. A strict red blood cell transfusion protocol was used in all patients. RESULTS There were no significant differences between intra-operative packed red blood cells infusion in the studied groups (1.0±1.4 in fibrinogen group, and 1.3±1.1 in control group). Less postoperative bleeding was observed in the fibrinogen group (477±143 versus 703±179, p=0.0001). Fifteen patients in the fibrinogen group and 21 in the control group required post-op packed red blood cells infusion (p=0.094). No thrombotic event was observed through 72 h after surgery. CONCLUSION Prophylactic fibrinogen reduces post-operative bleeding in patients undergoing coronary artery bypass graft.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donat R Spahn
- Management University and University Hospital Zurich, Zurich, Switzerland
| | - Ali Movafegh
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
57
|
MAKIN JOSEPHG, NARAYANAN SRINI. A HYBRID-SYSTEM MODEL OF THE COAGULATION CASCADE: SIMULATION, SENSITIVITY, AND VALIDATION. J Bioinform Comput Biol 2013; 11:1342004. [DOI: 10.1142/s0219720013420043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The process of human blood clotting involves a complex interaction of continuous-time/continuous-state processes and discrete-event/discrete-state phenomena, where the former comprise the various chemical rate equations and the latter comprise both threshold-limited behaviors and binary states (presence/absence of a chemical). Whereas previous blood-clotting models used only continuous dynamics and perforce addressed only portions of the coagulation cascade, we capture both continuous and discrete aspects by modeling it as a hybrid dynamical system. The model was implemented as a hybrid Petri net, a graphical modeling language that extends ordinary Petri nets to cover continuous quantities and continuous-time flows. The primary focus is simulation: (1) fidelity to the clinical data in terms of clotting-factor concentrations and elapsed time; (2) reproduction of known clotting pathologies; and (3) fine-grained predictions which may be used to refine clinical understanding of blood clotting. Next we examine sensitivity to rate-constant perturbation. Finally, we propose a method for titrating between reliance on the model and on prior clinical knowledge. For simplicity, we confine these last two analyses to a critical purely-continuous subsystem of the model.
Collapse
Affiliation(s)
- JOSEPH G. MAKIN
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, USA
- International Computer Science Institute, Berkeley, CA 94720, USA
| | - SRINI NARAYANAN
- International Computer Science Institute, Division of Cognitive Science and Institute of Cognitive and Brain Sciences, University of California, 1947 Center Street, Suite 600, Berkeley, CA 94704, USA
| |
Collapse
|
58
|
Chiu WC, Huang CC. Combining Fibrinogen-Conjugated Gold Nanoparticles with a Cellulose Membrane for the Mass Spectrometry-Based Detection of Fibrinolytic-Related Proteins. Anal Chem 2013; 85:6922-9. [DOI: 10.1021/ac4013418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Chih-Ching Huang
- School of Pharmacy,
College of
Pharmacy, Kaohsiung Medical University,
Kaohsiung 80708, Taiwan
| |
Collapse
|
59
|
Kononova O, Litvinov RI, Zhmurov A, Alekseenko A, Cheng CH, Agarwal S, Marx KA, Weisel JW, Barsegov V. Molecular mechanisms, thermodynamics, and dissociation kinetics of knob-hole interactions in fibrin. J Biol Chem 2013; 288:22681-92. [PMID: 23720752 DOI: 10.1074/jbc.m113.472365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs 'A' and 'B' in the central nodule of fibrin monomer to complementary holes 'a' and 'b' in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob 'A' mimetic) and GHRP (knob 'B' mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5-7) and temperature (T = 25-37 °C). There were similar structural changes in holes 'a' and 'b' during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an "all-or-none" transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.
Collapse
Affiliation(s)
- Olga Kononova
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Bijak M, Saluk J, Antosik A, Ponczek MB, Żbikowska HM, Borowiecka M, Nowak P. Aronia melanocarpa as a protector against nitration of fibrinogen. Int J Biol Macromol 2013; 55:264-8. [PMID: 23357800 DOI: 10.1016/j.ijbiomac.2013.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 12/18/2012] [Accepted: 01/13/2013] [Indexed: 12/17/2022]
Abstract
Fibrinogen (Fg) also known as coagulation factor I represents about 4% of the total human plasma proteins. The main function of Fg is its involvement in last phase of blood coagulation cascade, when thrombin-induced conversion of dissolved plasma fibrinogen into an insoluble fibrin clot occurs. The reaction of fibrinogen with peroxynitrite causes both structural modifications and changes of the biological properties of this plasma glycoprotein. Recently, there is an increased interest in the screening of natural products present in fruits, vegetables and herbs for their possible antioxidative activities. Therefore, the aim of our study was to estimate the effect of extract from berries of Aronia melanocarpa against nitrative and oxidative damage induced by peroxynitrite. The extract from A. melanocarpa (0.5-50 μg/ml) added to Fg 10 min before peroxynitrite (100 μM) significantly inhibited both the formation of the high molecular weight protein aggregates and nitration of Fg molecule. The extract also abolished peroxynitrite-induced inhibition of fibrinogen polymerization (by 95% at 50 μg/ml). The obtained results indicate that natural extract from berries of A. melanocarpa has protective effects against peroxynitrite-induced nitrative damage of plasma fibrinogen, and therefore may contribute in the prevention of peroxynitrite-related cardiovascular or inflammatory diseases.
Collapse
Affiliation(s)
- Michał Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | | | | | | | | | | | | |
Collapse
|
61
|
Grint T, Riley AM, Mills SJ, Potter BV, Safrany ST. Fibrinogen - a possible extracellular target for inositol phosphates. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2012; 1:160-166. [PMID: 24749013 PMCID: PMC3988617 DOI: 10.1166/msr.2012.1014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A potential extracellular target for inositol phosphates and analogues with anticancer properties is identified. Proteins from detergent-solubilised HeLa cell lysates bound to a novel affinity column of myo-inositol 1,3,4,5,6-pentakisphosphate (InsP5) coupled to Affigel-10. One high-affinity ligand was fibrinogen Bβ. Inositol phosphates and analogues were able to elute purified fibrinogen from this matrix. InsP5 and the inositol phosphate mimic biphenyl 2,3',4,5',6-pentakisphosphate (BiPhP5) bind fibrinogen in vitro, and block the effects of fibrinogen in A549 cell-based assays of proliferation and migration. They are also able to prevent the fibrinogen-mediated activation of phosphatidylinositol 3-kinase. These effects of fibrinogen appear to be mediated through the intercellular adhesion molecule-1 (ICAM-1), as cells not expressing ICAM-1 fail to respond. In contrast, myo-inositol hexakisphosphate and the epimeric scyllo-inositol 1,2,3,4,5-pentakisphosphate were without effect. These findings are consistent with earlier reports that higher inositol phosphates have anticancer properties. This new mechanism of action and target for these extracellular inositol phosphates to have their effects allows a re-evaluation of earlier data.
Collapse
Affiliation(s)
- Thomas Grint
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Andrew M. Riley
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology University of Bath, Bath BA2 7AY, UK
| | - Stephen J. Mills
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology University of Bath, Bath BA2 7AY, UK
| | - Barry V.L. Potter
- Wolfson Laboratory of Medicinal Chemistry, Department of Pharmacy and Pharmacology University of Bath, Bath BA2 7AY, UK
| | - Stephen T. Safrany
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Department of Pharmacy, School of Applied Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
62
|
Abstract
FXIII (Factor XIII) is a Ca2+-dependent enzyme which forms covalent ϵ-(γ-glutamyl)lysine cross-links between the γ-carboxy-amine group of a glutamine residue and the ϵ-amino group of a lysine residue. FXIII was originally identified as a protein involved in fibrin clot stabilization; however, additional extracellular and intracellular roles for FXIII have been identified which influence thrombus resolution and tissue repair. The present review discusses the substrates of FXIIIa (activated FXIII) involved in thrombosis and wound healing with a particular focus on: (i) the influence of plasma FXIIIa on the formation of stable fibrin clots able to withstand mechanical and enzymatic breakdown through fibrin–fibrin cross-linking and cross-linking of fibrinolysis inhibitors, in particular α2-antiplasmin; (ii) the role of intracellular FXIIIa in clot retraction through cross-linking of platelet cytoskeleton proteins, including actin, myosin, filamin and vinculin; (iii) the role of intracellular FXIIIa in cross-linking the cytoplasmic tails of monocyte AT1Rs (angiotensin type 1 receptors) and potential effects on the development of atherosclerosis; and (iv) the role of FXIIIa on matrix deposition and tissue repair, including cross-linking of extracellular matrix proteins, such as fibronectin, collagen and von Willebrand factor, and the effects on matrix deposition and cell–matrix interactions. The review highlights the central role of FXIIIa in the regulation of thrombus stability, thrombus regulation, cell–matrix interactions and wound healing, which is supported by observations in FXIII-deficient humans and animals.
Collapse
|
63
|
Fish RJ, Neerman-Arbez M. Fibrinogen gene regulation. Thromb Haemost 2012; 108:419-26. [PMID: 22836683 DOI: 10.1160/th12-04-0273] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression.
Collapse
Affiliation(s)
- Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva Medical Centre, Geneva, Switzerland.
| | | |
Collapse
|
64
|
Carter AM. Complement activation: an emerging player in the pathogenesis of cardiovascular disease. SCIENTIFICA 2012; 2012:402783. [PMID: 24278688 PMCID: PMC3820556 DOI: 10.6064/2012/402783] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/06/2012] [Indexed: 05/08/2023]
Abstract
A wealth of evidence indicates a fundamental role for inflammation in the pathogenesis of cardiovascular disease (CVD), contributing to the development and progression of atherosclerotic lesion formation, plaque rupture, and thrombosis. An increasing body of evidence supports a functional role for complement activation in the pathogenesis of CVD through pleiotropic effects on endothelial and haematopoietic cell function and haemostasis. Prospective and case control studies have reported strong relationships between several complement components and cardiovascular outcomes, and in vitro studies and animal models support a functional effect. Complement activation, in particular, generation of C5a and C5b-9, influences many processes involved in the development and progression of atherosclerosis, including promotion of endothelial cell activation, leukocyte infiltration into the extracellular matrix, stimulation of cytokine release from vascular smooth muscle cells, and promotion of plaque rupture. Complement activation also influences thrombosis, involving components of the mannose-binding lectin pathway, and C5b-9 in particular, through activation of platelets, promotion of fibrin formation, and impairment of fibrinolysis. The participation of the complement system in inflammation and thrombosis is consistent with the physiological role of the complement system as a rapid effector system conferring protection following vessel injury. However, in the context of CVD, these same processes contribute to development of atherosclerosis, plaque rupture, and thrombosis.
Collapse
Affiliation(s)
- Angela M. Carter
- Division of Epidemiology, Leeds Institute of Genetics, Health and Therapeutics, Faculty of Medicine and Health and the Multidisciplinary Cardiovascular Research Centre, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
- *Angela M. Carter:
| |
Collapse
|
65
|
Buys AV, Pretorius E. Comparing different preparation methods to study human fibrin fibers and platelets using TEM. Microsc Res Tech 2011; 75:801-6. [PMID: 22213217 DOI: 10.1002/jemt.21129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 10/31/2011] [Indexed: 11/08/2022]
Abstract
For the study of cellular ultrastructure, the sample needs to be stabilized by fixation, with the ultimate aim to preserve the native tissue organization and to protect the tissue against later stages of preparation. Chemical and freezing fixation are most used, and chemical fixation employs agents that permeate tissues and cells by diffusion and covalently bind with their major biochemical constituents to fix them. Most widely used chemical fixatives are aldehydes, e.g., formaldehyde and glutaraldehyde, which are noncoagulating, crosslinking agents. Cryofixation methods for ultrastructural studies are also popular, and high-pressure freezing immobilizes all cell constituents and arrests biological activity by removing the thermal energy from the system. In the current research, we used platelet-rich plasma (PRP) to study expansive fibrin fibers and platelet ultrastructure to compare the two fixation techniques. We also used thrombin and calcium chloride as a clotting agent to determine the technique most suitable for the formation of extensive fibrin networks. Chemically fixated fibrin fibers were more compact and condensed and also showed a banding pattern on longitudinal sections. High-pressure frozen samples were more dispersed while platelets fixated showed better preserved cellular membranes and organelle structure. PRP coagulated by addition of CaCl(2) showed blood platelets that are noticeably more activated compared with PRP; however, with thrombin, a sharp ultrastructure was seen. We conclude that PRP mixed with thrombin, and freeze substituted, is the most suitable method for the study of extensive fibrin fibers as well as platelets.
Collapse
Affiliation(s)
- Antoinette V Buys
- Unit of Microscopy and Microanalysis, University of Pretoria, Arcadia, South Africa
| | | |
Collapse
|
66
|
Tei L, Mazooz G, Shellef Y, Avni R, Vandoorne K, Barge A, Kalchenko V, Dewhirst MW, Chaabane L, Miragoli L, Longo D, Neeman M, Aime S. Novel MRI and fluorescent probes responsive to the Factor XIII transglutaminase activity. CONTRAST MEDIA & MOLECULAR IMAGING 2011; 5:213-22. [PMID: 20812289 DOI: 10.1002/cmmi.392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transglutaminases, including factor XIII and tissue transglutaminase, participate in multiple extracellular processes associated with remodeling of the extracellular matrix during wound repair, blood clotting, tumor progression and fibrosis of ischemic injuries. The aim of this work was to evaluate a novel substrate analog for transglutaminase optimized by molecular modeling calculations (DCCP16), which can serve for molecular imaging of transglutaminase activity by magnetic resonance imaging and by near-infrared imaging. Experimental data showed covalent binding of Gd-DCCP16 and DCCP16-IRIS Blue to human clots, to basement membrane components and to casein in purified systems as well as in three-dimensional multicellular spheroids. In vivo, DCCP16 showed enhancement with a prolonged retention in clots and tumors, demonstrating the ability to detect both factor XIII and tissue transglutaminase mediated covalent binding of the contrast material.
Collapse
Affiliation(s)
- Lorenzo Tei
- Dipartimento di Scienze dell'Ambiente e della Vita, Università del Piemonte Orientale, Viale T. Michel 11, I-15121, Alessandria, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Breen A, O'Brien T, Pandit A. Fibrin as a delivery system for therapeutic drugs and biomolecules. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:201-14. [PMID: 19249942 DOI: 10.1089/ten.teb.2008.0527] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fibrin is a natural biopolymer involved in the coagulation cascade. It acts as a reservoir for growth factors, cells, and enzymes during wound healing and provides a scaffold for the synthesis of extracellular matrix. Thus, the use of fibrin has expanded in recent years from traditional use as a sealant for surgical applications, to a tissue engineering scaffold capable of providing nature's cues for tissue regeneration. This paper reviews the advantageous biological aspects of fibrin, the history of the scaffold material, and its present role in the delivery of drugs, growth factors, cells, and gene vectors. Examples are given of studies where the structure and form of the scaffold have been manipulated for optimal release of the therapeutic agent, optimal cellular activity, and investigation into stem cell differentiation. It is evident from the body of literature presented that the benefits of fibrin are being exploited for a vast range of tissue engineering applications and that fibrin remains a key scaffold material for the delivery of drugs and biomolecules.
Collapse
Affiliation(s)
- Ailish Breen
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | | | | |
Collapse
|
68
|
Miller I, Gianazza E, Gemeiner M. Any use in proteomics for low-tech approaches? Detecting fibrinogen chains of different animal species in two-dimensional electrophoresis patterns. J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2314-8. [DOI: 10.1016/j.jchromb.2010.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
69
|
Macasev D, Diorio JP, Gugerell A, Goppelt A, Gulle H, Bittner M. Cell Compatibility of Fibrin Sealants: In Vitro Study with Cells Involved in Soft Tissue Repair. J Biomater Appl 2010; 26:129-49. [DOI: 10.1177/0885328210369574] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibrin sealants can be used to support tissue regeneration or as vehicles for delivery of cells in tissue engineering. Differences in the composition of fibrin sealants, however, could determine the success of such applications. The results presented in this article show clear differences between Fibrin sealant A (FS A) clots and Fibrin sealant B (FS B) clots with respect to their compatibility with primary human cells involved in soft tissue repair. FS A clots, which are characterized by a physiological coarse fibrin structure, promoted attachment, spreading, and proliferation of keratinocytes, fibroblasts, and endothelial cells. In contrast, FS B clots displaying a fine to medium clot structure failed to support spreading of all three cell types. Adhesion of keratinocytes was decreased on FS B clots compared to FS A clots after 3 h incubation, whereas number of attached fibroblasts and endothelial cells was initially comparable between the two fibrin sealants. However, all three cell types proliferated on FS A clots but no sustained proliferation was detected on FS B clots. We further demonstrate that the observed differences between FS A and B clots are partly based upon 1 M sodium chloride extractable constituents, like thrombin, and partly on nonextractable constituents or the fibrin structure. In conclusion, our in vitro results demonstrate that FS A clots serve as a provisional matrix that encourages adhesion and growth of keratinocytes, fibroblasts, and endothelial cells. Therefore, FS A seems to be well suited for applications in tissue engineering.
Collapse
Affiliation(s)
- Diana Macasev
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - James P. Diorio
- Baxter Healthcare Corporation Inc. Technology Resources Round Lake, Illinois, USA
| | - Alfred Gugerell
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - Andreas Goppelt
- Baxter Innovations GmbH, Biosurgery Division, Wagramerstrasse 17-19, A-1221 Vienna, Austria
| | - Heinz Gulle
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria
| | - Michaela Bittner
- Baxter Innovations GmbH, Biosurgery Division Industriestrasse 131, A-1220 Vienna, Austria,
| |
Collapse
|
70
|
Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, Yarmush ML. Mesenchymal stem cells: Mechanisms of immunomodulation and homing. Cell Transplant 2010; 19:667-79. [PMID: 20525442 DOI: 10.3727/096368910x508762] [Citation(s) in RCA: 522] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation has been explored as a new clinical approach to repair injured tissue. A growing corpus of studies have highlighted two important aspects of MSC therapy: 1) MSCs can modulate T-cell-mediated immunological responses, and (2) systemically administered MSCs home to sites of ischemia or injury. In this review, we describe the known mechanisms of immunomodulation and homing of MSCs. First, we examine the low immunogenicity of MSCs and their antigen presentation capabilities. Next, we discuss the paracrine interactions between MSCs and innate [dendritic cells (DC)] and adaptive immune cells (T lymphocytes) with a focus on prostaglandin E(2) (PGE(2)), indoleamine 2,3-dioxygenase (IDO), and toll-like receptor (TLR) signaling pathways. We transition to outline the steps of activation, rolling/adhesion, and transmigration of MSCs into target tissues during inflammatory or ischemic conditions. These aspects of MSC grafts--immunomodulation and homing--are contextualized to understand a reported side effect of MSC therapy, cancer development.
Collapse
Affiliation(s)
- Hiroshi Yagi
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospitals for Children and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Piechocka IK, Bacabac RG, Potters M, MacKintosh FC, Koenderink GH. Structural hierarchy governs fibrin gel mechanics. Biophys J 2010; 98:2281-9. [PMID: 20483337 PMCID: PMC2872216 DOI: 10.1016/j.bpj.2010.01.040] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/18/2009] [Accepted: 01/08/2010] [Indexed: 11/16/2022] Open
Abstract
Fibrin gels are responsible for the mechanical strength of blood clots, which are among the most resilient protein materials in nature. Here we investigate the physical origin of this mechanical behavior by performing rheology measurements on reconstituted fibrin gels. We find that increasing levels of shear strain induce a succession of distinct elastic responses that reflect stretching processes on different length scales. We present a theoretical model that explains these observations in terms of the unique hierarchical architecture of the fibers. The fibers are bundles of semiflexible protofibrils that are loosely connected by flexible linker chains. This architecture makes the fibers 100-fold more flexible to bending than anticipated based on their large diameter. Moreover, in contrast with other biopolymers, fibrin fibers intrinsically stiffen when stretched. The resulting hierarchy of elastic regimes explains the incredible resilience of fibrin clots against large deformations.
Collapse
Affiliation(s)
- Izabela K. Piechocka
- Biological Soft Matter Group, Foundation for Fundamental Research on Matter, Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | - Rommel G. Bacabac
- Biological Soft Matter Group, Foundation for Fundamental Research on Matter, Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| | - Max Potters
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - Fred C. MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gijsje H. Koenderink
- Biological Soft Matter Group, Foundation for Fundamental Research on Matter, Institute for Atomic and Molecular Physics, Amsterdam, The Netherlands
| |
Collapse
|
72
|
Karsaj I, Humphrey JD. A mathematical model of evolving mechanical properties of intraluminal thrombus. Biorheology 2010; 46:509-27. [PMID: 20164633 DOI: 10.3233/bir-2009-0556] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Quantifying mechanical properties of blood clots is fundamental to understanding many aspects of cardiovascular disease and its treatment. Nevertheless, there has been little attention to quantifying the evolving composition, structure and properties when a clot transforms from an initial fibrin-based mesh to a predominantly collagenous mass. Although more data are needed to formulate a complete mathematical model of the evolution of clot properties, we propose a general constrained mixture model based on diverse data available from in vitro tests on fibrinogenesis, the stiffness of fibrin gels, and fibrinolysis as well as histological and mechanical data from clots retrieved from patients at surgery or autopsy. In particular, albeit resulting from complex kinetics involving many clotting factors, we show that the rapid (minutes) in vitro production of fibrin from fibrinogen can be modeled well by an Avrami-type relation and similarly that the fast (tens of minutes) in vitro degradation of fibrin in response to different concentrations of plasmin can be captured via a single "master function" parameterized by appropriate half-times that can be inferred from laboratory or clinical data. Accounting simultaneously for the production and removal of fibrin as well as chemo-mechano-stimulated production of fibrillar collagens yields predictions of changing mass fractions and bulk mechanical properties that correspond well to experimentally available data. Constrained mixture models thus hold considerable promise for modeling the biomechanics of clot evolution and can guide the design and interpretation of needed experiments and stress analyses.
Collapse
Affiliation(s)
- I Karsaj
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
73
|
Conjugation of nattokinase and lumbrukinase with magnetic nanoparticles for the assay of their thrombolytic activities. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
74
|
Fibrinogen regulates the cytotoxicity of mycobacterial trehalose dimycolate but is not required for cell recruitment, cytokine response, or control of mycobacterial infection. Infect Immun 2009; 78:1004-11. [PMID: 20028811 DOI: 10.1128/iai.00451-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
During inflammatory responses and wound healing, the conversion of soluble fibrinogen to fibrin, an insoluble extracellular matrix, long has been assumed to create a scaffold for the migration of leukocytes and fibroblasts. Previous studies concluded that fibrinogen is a necessary cofactor for mycobacterial trehalose 6,6'-dimycolate-induced responses, because trehalose dimycolate-coated beads, to which fibrinogen was adsorbed, were more inflammatory than those to which other plasma proteins were adsorbed. Herein, we investigate roles for fibrin(ogen) in an in vivo model of mycobacterial granuloma formation and in infection with Mycobacterium tuberculosis, the causative agent of tuberculosis. In wild-type mice, the subcutaneous injection of trehalose dimycolate-coated polystyrene microspheres, suspended within Matrigel, elicited a pyogranulomatous response during the course of 12 days. In fibrinogen-deficient mice, neutrophils were recruited but a more suppurative lesion developed, with the marked degradation and disintegration of the matrix. Compared to that in wild-type mice, the early formation of granulation tissue in fibrinogen-deficient mice was edematous, hypocellular, and disorganized. These deficiencies were complemented by the addition of exogenous fibrinogen. The absence of fibrinogen had no effect on cell recruitment or cytokine production in response to trehalose dimycolate, nor was there a difference in lung histopathology or overall bacterial burden in mice infected with Mycobacterium tuberculosis. In this model, fibrin(ogen) was not required for cell recruitment, cytokine response, or response to infection, but it promoted granulation tissue formation and suppressed leukocyte necrosis.
Collapse
|
75
|
Magnetic resonance imaging study of the cold-set gelation of meat systems containing plasma powder. Food Res Int 2009. [DOI: 10.1016/j.foodres.2009.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Stroncek JD, Bell N, Reichert WM. Instructional PowerPoint presentations for cutaneous wound healing and tissue response to sutures. J Biomed Mater Res A 2009; 90:1230-8. [DOI: 10.1002/jbm.a.32158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
77
|
Sheffield WP, Eltringham-Smith LJ, Gataiance S, Bhakta V. Addition of a sequence from alpha2-antiplasmin transforms human serum albumin into a blood clot component that speeds clot lysis. BMC Biotechnol 2009; 9:15. [PMID: 19257897 PMCID: PMC2654442 DOI: 10.1186/1472-6750-9-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 03/03/2009] [Indexed: 11/21/2022] Open
Abstract
Background The plasma protein α2-antiplasmin (α2AP) is cross-linked to fibrin in blood clots by the transglutaminase factor XIIIa, and in that location retards clot lysis. Competition for this effect could be clinically useful in patients with thrombosis. We hypothesized that fusion of N-terminal portions of α2-antiplasmin to human serum albumin (HSA) and production of the chimeric proteins in Pichia pastoris yeast would produce a stable and effective competitor protein. Results Fusion protein α2AP(13-42)-HSA was efficiently secreted from transformed yeast and purified preparations contained within a mixed population the full-length intact form, while fusions with longer α2AP moieties were inefficiently secreted and/or degraded. The α2AP(13-42)-HSA protein, but not recombinant HSA, was cross-linked to both chemical lysine donors and fibrin or fibrinogen by factor XIIIa, although with less rapid kinetics than native α2AP. Excess α2AP(13-42)-HSA competed with α2AP for cross-linking to chemical lysine donors more effectively than a synthetic α2AP(13-42) peptide, and reduced the α2AP-dependent resistance to fibrinolysis of plasma clots equally effectively as the peptide. Native α2AP was found in in vivo clots in rabbits to a greater extent than α2AP(13-42), however. Conclusion In this first report of transfer of transglutamination substrate status from one plasma protein to another, fusion protein α2AP(13-42)-HSA was shown to satisfy initial requirements for a long-lasting, well-tolerated competitive inhibitor of α2-antiplasmin predicted to act in a clot-localized manner.
Collapse
Affiliation(s)
- William P Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada.
| | | | | | | |
Collapse
|
78
|
MWCNT/Fibrin Bionanocomposites by in situ Enzymatic Polymerization. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.2.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
Wheeler DS, Wong HR, Shanley TP. Genetic Polymorphisms in Critical Care and Illness. SCIENCE AND PRACTICE OF PEDIATRIC CRITICAL CARE MEDICINE 2009. [PMCID: PMC7123127 DOI: 10.1007/978-1-84800-921-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Derek S. Wheeler
- Medical Center, Div. of Critical Care Medicine, Cincinnati Children's Hospital, Burnet Avenue 3333, Cincinnati, 45229 U.S.A
| | - Hector R. Wong
- Medical Center, Div. of Critical Care Medicine, Cincinnati Children's Hospital, Burnet Avenue 3333, Cincinnati, 45229 U.S.A
| | - Thomas P. Shanley
- C.S. Mott Children's Hospital , Pediatric Critical Care Medicine , University of Michigan, E. Medical Center Drive 1500, Ann Arbor, 48109-0243 U.S.A
| |
Collapse
|
80
|
Karlsson M, Ternström L, Hyllner M, Baghaei F, Nilsson S, Jeppsson A. Plasma fibrinogen level, bleeding, and transfusion after on-pump coronary artery bypass grafting surgery: a prospective observational study. Transfusion 2008; 48:2152-8. [DOI: 10.1111/j.1537-2995.2008.01827.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
HILL M, DOLAN G. Diagnosis, clinical features and molecular assessment of the dysfibrinogenaemias. Haemophilia 2008; 14:889-97. [DOI: 10.1111/j.1365-2516.2008.01795.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
82
|
Abstract
Atherothrombotic disease remains a major cause of mortality worldwide, and family clustering suggests an important contribution of genetic factors to disease pathogenesis. Thrombus formation represents the final step in atherothrombosis, a process influenced by genetic and environmental factors. A major difficulty of investigating the genetic regulation of thrombotic conditions is the complexity of the phenotype and the relatively modest effects of individual genetic variations. We address in this review genetic aspects involved in regulating thrombosis potential and their impact on the development of atherothrombotic disease. The effects of common genetic polymorphisms in clotting factors are discussed and examples of complex gene-gene and gene-environment interactions are highlighted. Understanding the effects of genetic factors on predisposition to thrombotic disease and unravelling the complex gene-environment interactions will help to better understand the pathophysiology of this complex condition, which will enable the development of new preventative and treatment strategies.
Collapse
Affiliation(s)
- R A Ajjan
- Division of Diabetes and Cardiovascular Research, Leeds Institute for Genetics, Health and Therapeutics, LIGHT Laboratories, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
83
|
Picard J, Giraudier S, Larreta-Garde V. Influence of Enzymatic Specificity on the Behavior of Ephemeral Gels. Biomacromolecules 2007; 9:13-20. [DOI: 10.1021/bm700601n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julien Picard
- Laboratoire ERRMECe UFR Sciences et Techniques Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin BP222 95302, Pontoise cedex, France
| | - Sébastien Giraudier
- Laboratoire ERRMECe UFR Sciences et Techniques Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin BP222 95302, Pontoise cedex, France
| | - Véronique Larreta-Garde
- Laboratoire ERRMECe UFR Sciences et Techniques Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin BP222 95302, Pontoise cedex, France
| |
Collapse
|
84
|
Herrero AM, Cambero MI, Ordóñez JA, Castejón D, Romero de Avila MD, de la Hoz L. Magnetic resonance imaging, rheological properties, and physicochemical characteristics of meat systems with fibrinogen and thrombin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9357-9364. [PMID: 17937480 DOI: 10.1021/jf072132i] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Magnetic resonance imaging (MRI) and textural and physicochemical analyses were carried out to evaluate the effect of fibrinogen and thrombin (Fibrimex) addition to meat systems formulated with and without NaCl. For this purpose, different model systems were elaborated: fibrinogen and thrombin (FT), meat emulsion (ME), and meat emulsion with fibrinogen and thrombin (MEFT), with 0, 1, and 2% of NaCl. The addition of fibrinogen-thrombin to meat emulsions results in a gel network with modified physicochemical and textural characteristics, increasing the hardness and springiness. The addition of NaCl at 2% to FT and MEFT systems reduced the gel hardness. MRI parameters (T2, T1, and apparent diffusion coefficient) indicated that systems with fibrinogen and thrombin (FT and MEFT) presented a structure with many and large pores, bulk water, and higher translational motion of water. Significant correlations were found between MRI, texture, and physicochemical parameters.
Collapse
Affiliation(s)
- A M Herrero
- Departamento Nutrición, Bromatología y Tecnología de los Alimentos, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
85
|
Zbikowska HM, Nowak P, Wachowicz B. The role of ascorbate and histidine in fibrinogen protection against changes following exposure to a sterilizing dose of γ-irradiation. Blood Coagul Fibrinolysis 2007; 18:669-76. [PMID: 17890955 DOI: 10.1097/mbc.0b013e3282ced113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sodium ascorbate and histidine were employed to protect fibrinogen against modifications followed by a gamma-irradiation process that could potentially inactivate the blood-borne viruses in plasma-derived products. Fibrinogen was irradiated (50 kGy total dose, on dry ice) using a 60Co source. Samples were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot. Carbonyl groups were measured by the 2,4-dinitrophenylhydrazine-coupled method, and the fibrinogen clotting activity was assessed by different functional assays. In irradiated fibrinogen, the carbonyl group concentration was elevated three-fold versus control; and moderate fragmentation of largely Aalpha and Bbeta chains was revealed. The rate of thrombin-catalyzed fibrinogen polymerization was inhibited (average 50%) with normal fibrinopeptide release and with a minor decrease of total clottable fibrinogen and alpha-polymer formation. Ascorbate reduced the incorporation of carbonyls to the fibrinogen molecule (by > 50% at 50 mmol/l; P < 0.001). Contrary to ascorbate, which alone delayed the fibrinogen polymerization rate, histidine abolished irradiation-induced inhibition of fibrinogen polymerization (by 80% at 50 mmol/l; P < 0.001). In conclusion, even though ascorbate effectively protects fibrinogen from oxidation due to its adverse effects on fibrinogen function, it may not serve as a suitable radioprotective. On the contrary, the first definite evidence is provided that radiation-sterilized fibrinogen in the presence of histidine greatly retains its clotting capability.
Collapse
|
86
|
Rauch BH, Müschenborn B, Braun M, Weber AA, Schrör K. ICAM-1 and p38 MAPK mediate fibrinogen-induced migration of human vascular smooth muscle cells. Eur J Pharmacol 2007; 577:54-7. [PMID: 17904546 DOI: 10.1016/j.ejphar.2007.08.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/15/2007] [Accepted: 08/28/2007] [Indexed: 11/25/2022]
Abstract
Fibrinogen deposition in the vessel wall represents an independent atherogenic risk factor. In Boyden-chamber assays, fibrinogen concentration-dependently (1-100 microM) induced migration of human vascular smooth muscle cells (SMC). This was inhibited by antibodies to intercellular adhesion molecule-1 (ICAM-1, 10 microg/ml), and by inhibitors of PI3-kinase (LY294002, 10 microM) and MAPK (mitogen-activated protein kinase) p38 (SB203580, 10 microM). The MEK (MAP kinase kinase) inhibitor PD98059 (10 muM) and the GPIIb/IIIa antagonist abciximab (10 mug/ml) had no effect. ICAM-1 antibodies inhibited fibrinogen-induced Akt and p38 phosphorylation. Thus fibrinogen stimulates human SMC migration through binding to ICAM-1 and activation of Akt and p38.
Collapse
Affiliation(s)
- Bernhard H Rauch
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum, Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
87
|
Gong R, Liu Z, Li L. Epistatic effect of plasminogen activator inhibitor 1 and beta-fibrinogen genes on risk of glomerular microthrombosis in lupus nephritis: interaction with environmental/clinical factors. ACTA ACUST UNITED AC 2007; 56:1608-17. [PMID: 17469143 DOI: 10.1002/art.22598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Glomerular microthrombosis (GMT) is not uncommon in lupus nephritis and has been associated with active renal injury and progressive kidney destruction. We undertook this study to determine whether genetic variations of hemostasis factors, such as plasminogen activator inhibitor 1 (PAI-1) and fibrinogen, affect the risk of GMT. METHODS A cross-sectional cohort of 101 lupus nephritis patients with or without GMT was genotyped for PAI-1 -675 4G/5G and beta-fibrinogen (FGB) -455 G/A gene polymorphisms and analyzed. RESULTS PAI-1 4G/4G homozygotes and FGB A allele carriers were both at increased risk for GMT. When the data were stratified for both gene polymorphisms, an epistatic effect was detected. The PAI-1 4G/4G genotype was found to predispose to GMT not equally in all lupus nephritis patients, but only in FGB A allele carriers. Likewise, the association between the FGB A allele and GMT was restricted to lupus nephritis patients homozygous for the PAI-1 4G allele. This epistatic effect was revalidated by the multifactor dimensionality reduction (MDR) analysis and further assessed by incorporating a variety of environmental and clinical factors into the MDR analysis. The most parsimonious model that had a cross-validation consistency of 100% included joint effects of PAI-1 and FGB gene polymorphisms and anticardiolipin antibody (aCL) status and yielded the best prediction of GMT, with 66.6% accuracy. CONCLUSION Our findings suggest that risk of GMT in lupus nephritis is attributable, at least in part, to an epistatic effect of PAI-1 and FGB genes, likely via an interaction with environmental/clinical factors, such as aCL.
Collapse
Affiliation(s)
- Rujun Gong
- Research Institute of Nephrology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | | |
Collapse
|
88
|
Valnickova Z, Thøgersen IB, Potempa J, Enghild JJ. The intrinsic enzymatic activity of procarboxypeptidase U (TAFI) does not significantly influence the fibrinolytic rate: reply to a rebuttal. J Thromb Haemost 2007; 5:1336-7. [PMID: 17445090 DOI: 10.1111/j.1538-7836.2007.02593.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Silveira A, Hamsten A. Fibrin Gel Architecture Influences Endogenous Fibrinolysis and May Promote Coronary Artery Disease. Arterioscler Thromb Vasc Biol 2006; 26:2419-20. [PMID: 17053173 DOI: 10.1161/01.atv.0000245798.26855.88] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
90
|
Eyrich D, Brandl F, Appel B, Wiese H, Maier G, Wenzel M, Staudenmaier R, Goepferich A, Blunk T. Long-term stable fibrin gels for cartilage engineering. Biomaterials 2006; 28:55-65. [PMID: 16962167 DOI: 10.1016/j.biomaterials.2006.08.027] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
It is essential that hydrogel scaffold systems maintain long-term shape stability and mechanical integrity for applications in cartilage tissue engineering. Within this study, we aimed at the improvement of a commercially available fibrin gel in order to develop a long-term stable fibrin gel and, subsequently, investigated the suitability of the optimized gel for in vitro cartilage engineering. Only fibrin gels with a final fibrinogen concentration of 25mg/ml or higher, a Ca(2+) concentration of 20mm and a pH between 6.8 and 9 were transparent and stable for three weeks, the duration of the experiment. In contrast, when preparing fibrin gels with concentrations out of these ranges, turbid gels were obtained that shrank and completely dissolved within a few weeks. In rheological characterization experiments, the optimized gels showed a broad linear viscoelastic region and withstood mechanical loadings of up to 10,000 Pa. Bovine chondrocytes suspended in the optimized fibrin gels proliferated well and produced the extracellular matrix (ECM) components glycosaminoglycans and collagen type II. When initially seeding 3 million cells or more per construct (5mm diameter, 2mm thick), after 5 weeks of culture, a coherent cartilaginous ECM was obtained that was homogenously distributed throughout the whole construct. The developed fibrin gels are suggested also for other tissue engineering applications in which long-term stable hydrogels appear desirable.
Collapse
Affiliation(s)
- Daniela Eyrich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93051 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Atherothrombotic disease arises secondary to a complex gene-environment interaction. In the initial stages, the condition is clinically silent but with more advanced disease, an occlusive thrombus is formed resulting in the classical clinical manifestations. Both environmental factors and genetic variations in elements of the clotting cascade influence thrombosis risk by inducing quantitative and qualitative changes in the mature protein, which may affect the final structure of the clot and determine its resistance to lysis. Understanding the fine details of gene-environment interactions in relation to thrombus formation will help to shed more light on disease pathogenesis. Consequently, this will allow the development of more efficacious treatment strategies and will also help to identify subjects at risk, thereby enabling the introduction of early preventative measures.
Collapse
Affiliation(s)
- Ramzi Ajjan
- Academic Unit of Molecular Vascular Medicine, Leeds Institute of Genetics Health and Therapeutics, Faculty of Medicine and Health, The LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
92
|
Abstract
Fibrinogen and fibrin play an important role in blood clotting, fibrinolysis, cellular and matrix interactions, inflammation, wound healing, angiogenesis, and neoplasia. The contribution of fibrin(ogen) to these processes largely depends not only on the characteristics of the fibrin(ogen) itself, but also on interactions between specific-binding sites on fibrin(ogen), pro-enzymes, clotting factors, enzyme inhibitors, and cell receptors. In this review, the molecular and cellular biology of fibrin(ogen) is reviewed in the context of cutaneous wound repair. The outcome of wound healing depends largely on the fibrin structure, such as the thickness of the fibers, the number of branch points, the porosity, and the permeability. The binding of fibrin(ogen) to hemostasis proteins and platelets as well as to several different cells such as endothelial cells, smooth muscle cells, fibroblasts, leukocytes, and keratinocytes is indispensable during the process of wound repair. High-molecular-weight and low-molecular-weight fibrinogen, two naturally occurring variants of fibrin, are important determinants of angiogenesis and differ in their cell growth stimulation, clotting rate, and fibrin polymerization characteristics. Fibrin sealants have been investigated as matrices to promote wound healing. These sealants may also be an ideal delivery vehicle to deliver extra cells for the treatment of chronic wounds.
Collapse
Affiliation(s)
- N Laurens
- Department of Biomedical Research, TNO-Quality of Life, Gaubius Laboratory, Leiden, the Netherlands
| | | | | |
Collapse
|
93
|
Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K. Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA. J Biol Chem 2006; 281:17699-706. [PMID: 16636049 DOI: 10.1074/jbc.m513538200] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian transglutaminase (TGase) catalyzes covalent cross-linking of peptide-bound lysine residues or incorporation of primary amines to limited glutamine residues in substrate proteins. Using an unbiased M13 phage display random peptide library, we developed a screening system to elucidate primary structures surrounding reactive glutamine residue(s) that are preferred by TGase. Screening was performed by selecting phage clones expressing peptides that incorporated biotin-labeled primary amine by the catalytic reactions of TGase 2 and activated Factor XIII (Factor XIIIa). We identified several amino acid sequences that were preferred as glutamine donor substrates, most of which have a marked tendency for individual TGases: TGase 2, QxPphiD(P), QxPphi, and QxxphiDP; Factor XIIIa, QxxphixWP (where x and phi represent a non-conserved and a hydrophobic amino acid, respectively). We further confirmed that the sequences were favored for transamidation using modified glutathione S-transferase (GST) for recombinant peptide-GST fusion proteins. Most of the fusion proteins exhibited a considerable increase in incorporation of primary amines over that of modified GST alone. Furthermore, we identified the amino acid sequences that demonstrated higher specificity and inhibitory activity in the cross-linking reactions by TGase 2 and Factor XIIIa.
Collapse
Affiliation(s)
- Yoshiaki Sugimura
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Inflammation plays a central role in the pathogenesis of acute coronary syndromes, the prevalence of which is increased in individuals with diabetes. Monocytes and macrophages, T cells and mast cells contribute to the initiation, development and rupture of atherosclerotic plaques by synthesising a variety of pro-inflammatory cytokines, including interleukin 1beta, interleukin 6 and tumour necrosis factor alpha. Cytokines upregulate endothelial cell adhesion molecules, recruit leukocytes and induce smooth muscle cell migration and proliferation. Cytokines act systemically to initiate the acute phase response, up-regulating proteins involved in inflammation and haemostasis and resulting in a pro-inflammatory and pro-thrombotic state. Expression of tissue factor by inflammatory cells potently induces thrombus formation upon plaque rupture, leading to acute coronary syndromes. Inflammatory biomarkers, including C-reactive protein, complement proteins, interleukin 6 and white blood cell count, predict development of acute coronary syndromes. C-reactive protein has been widely studied and consistently predicts future acute coronary syndrome events.
Collapse
Affiliation(s)
- Angela M Carter
- Academic Unit of Molecular Vascular Medicine, The LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|