51
|
Konstantinidou M, Gkermani A, Hadjipavlou-Litina D. Synthesis and Pharmacochemistry of New Pleiotropic Pyrrolyl Derivatives. Molecules 2015; 20:16354-74. [PMID: 26378503 PMCID: PMC6332026 DOI: 10.3390/molecules200916354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Within the framework of our attempts to synthesize pleiotropic anti-inflammatory agents, we have synthesized some chalcones and their corresponding 3,4-pyrrolyl derivatives. Chalcones constitute a class of compounds with high biological impact. They are known for a number of biological activities, including anti-inflammatory and free radical scavenging activities. They inhibit several enzymes implicated in the inflammatory process, such as lipoxygenase, cyclooxygenase (COX) and lysozymes. The synthesized pyrroles have been studied for: (1) their in vitro inhibition of lipoxygenase; (2) their in vitro inhibition of COX; (3) their in vitro inhibition of lipid peroxidation; (4) their interaction with the stable, N-centered, free radical, 2,2-diphenyl-1-picrylhydrazyl (DPPH); (5) their inhibition on interleukin-6 (IL-6); (6) their anti-proteolytic activity; and (7) their in vivo anti-inflammatory activity using carrageenan-induced rat paw edema. Their physicochemical properties were determined to explain the biological results. Lipophilicity was experimentally determined. 2i and 2v were found to be promising multifunctional molecules with high antiproteolytic and anti-inflammatory activities in combination with anti-interleukin-6 activity.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Alice Gkermani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
52
|
Chingwaru W, Vidmar J, Kapewangolo PT. The Potential of Sub-Saharan African Plants in the Management of Human Immunodeficiency Virus Infections: A Review. Phytother Res 2015; 29:1452-87. [PMID: 26337608 DOI: 10.1002/ptr.5433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/09/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022]
Abstract
Acquired immunodeficiency syndrome, caused by human immunodeficiency virus (HIV), is a leading cause of mortality and morbidity in Sub-Saharan Africa, particularly in Southern Africa. Phytomedicines are an integral part of African health care. The Southern African flora is composed of at least 23 400 taxa. Despite this richness, only a handful of botanical products have been assessed for activities against HIV. This study aimed to summarize the potential of Sub-Saharan African plants, based on their composition and the established bioactivities, as sources of agents to manage HIV symptoms and as retroviral therapy. At least 109 plant species from 42 families and 94 genera that are found in Southern Africa were shown to have potential or actual activities against HIV. Only 12 of these plant species from 6 families and 10 genera were shown to harbour anti-HIV properties. Phytochemicals that include β-sitosterols, terpenoids, glycosides, saponins, flavonoids, triterpenoids, tannins and alkaloids, which harbour anti-HIV properties, were found to have a near cosmopolitan presence across the plant families in the region. Bioactivities of multiple phytochemicals are comparable to those for standard allopathic antiretroviral drugs. Research to determine the anti-HIV activities of the identified and other plants, including clinical trials, is long overdue.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| |
Collapse
|
53
|
Abstract
Natural or synthetic chalcones with different substituents have revealed a variety of biological activities that may benefit human health. The underlying mechanisms of action, particularly with respect to the direct cellular targets and the modes of interaction with the targets, have not been rigorously characterized, which imposes challenges to structure-guided rational development of therapeutic agents or chemical probes with acceptable target-selectivity profile. This review summarizes literature evidence on chalcones’ direct molecular targets in the context of their biological activities.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, USA
| |
Collapse
|
54
|
Chalcone scaffolds as anti-infective agents: structural and molecular target perspectives. Eur J Med Chem 2015; 101:496-524. [PMID: 26188621 DOI: 10.1016/j.ejmech.2015.06.052] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/27/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
In recent years, widespread outbreak of numerous infectious diseases across the globe has created havoc among the population. Particularly, the inhabitants of tropical and sub-tropical regions are mainly affected by these pathogens. Several natural and (semi) synthetic chalcones deserve the credit of being potential anti-infective candidates that inhibit various parasitic, malarial, bacterial, viral, and fungal targets like cruzain-1/2, trypanopain-Tb, trans-sialidase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, falcipain-1/2, β-hematin, topoisomerase-II, plasmepsin-II, lactate dehydrogenase, protein kinases (Pfmrk and PfPK5), and sorbitol-induced hemolysis, DEN-1 NS3, H1N1, HIV (Integrase/Protease), protein tyrosine phosphatase A/B (Ptp-A/B), FtsZ, FAS-II, lactate/isocitrate dehydrogenase, NorA efflux pump, DNA gyrase, fatty acid synthase, chitin synthase, and β-(1,3)-glucan synthase. In this review, a comprehensive study (from Jan. 1982 to May 2015) of the structural features of anti-infective chalcones, their mechanism of actions (MOAs) and structure activity relationships (SARs) have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-infective agents.
Collapse
|
55
|
Synthesis, characterization and antiamoebic activity of chalcones bearing N-substituted ethanamine tail. Eur J Med Chem 2015; 98:179-89. [PMID: 26021707 DOI: 10.1016/j.ejmech.2015.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 01/20/2023]
Abstract
A series of chalcones (4-21) possessing N-substituted ethanamine were synthesized by the aldol condensation reaction of 1-(4-(2-substituted ethoxy)phenyl)ethanones with different aldehydes preceded by the reaction of 2-chloro N-substituted ethanamine hydrochloride and 4-hydroxy acetophenone. The structure of all the synthesized compounds was elucidated by various spectral and X-ray diffraction studies. The compounds were screened against HM1: IMSS strain of Entamoeba histolytica and cytotoxicity was performed on A549 (non-small cell lung cancer cell line) cells by MTT assay. Out of eighteen compounds twelve showed better activity then the standard drug metronidazole. The compound 9, 14 and 19 showed good cell viability, hence were least toxic.
Collapse
|
56
|
Matos MJ, Vazquez-Rodriguez S, Uriarte E, Santana L. Potential pharmacological uses of chalcones: a patent review (from June 2011 – 2014). Expert Opin Ther Pat 2015; 25:351-66. [DOI: 10.1517/13543776.2014.995627] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
57
|
Dong M, Ren Y. Molecular modeling studies of dihydro-alkyloxy-benzyl-oxopyrimidines (DABOs) as non-nucleoside inhibitors of HIV-1 reverse transcriptase using 3D-QSAR, Topomer CoMFA and molecular docking simulations. RSC Adv 2015. [DOI: 10.1039/c4ra15397a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is generally regarded as a target for the treatment of acquired immune deficiency syndrome (AIDS).
Collapse
Affiliation(s)
- Minghui Dong
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| | - Yujie Ren
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- P. R. China
| |
Collapse
|
58
|
Singh G, Singh J, Mangat SS, Singh J, Rani S. Chalcomer assembly of optical chemosensors for selective Cu2+ and Ni2+ ion recognition. RSC Adv 2015. [DOI: 10.1039/c4ra14329a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The o-, m- and p-isomeric units of chalconyl triazole-based, caged organosilicon complexes were efficiently synthesized and explored for their cationic chemosensing activities.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Jandeep Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | | | - Jasbhinder Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Sunita Rani
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| |
Collapse
|
59
|
Kong Y, Xuan S, Yan A. Computational models on quantitative prediction of bioactivity of HIV-1 integrase 3' processing inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:729-746. [PMID: 25121566 DOI: 10.1080/1062936x.2014.942695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, four computational quantitative structure-activity relationship (QSAR) models were built to predict the bioactivity of 3' processing (3'P) inhibitors of HIV-1 integrase. Some 453 inhibitors whose bioactivity values were detected by the radiolabelling method were collected. The molecular structures were represented with MOE descriptors. In total, 21 descriptors were selected for modelling. All inhibitors were divided into a training set and a test set with two methods: (1) by a Kohonen's self-organizing map (SOM); (2) by a random selection. For every training set and test set, a multilinear regression (MLR) analysis and a support vector machine (SVM) were used to establish models, respectively. For the training/test set divided by SOM, the correlation coefficients (r) were over 0.84, and for the training/test set split randomly, the r values were over 0.86. Some molecular properties such as hydrogen bond donor capacity, atomic partial charge properties, molecular refractivity, the number of aromatic bonds and molecular surface area, volume and shape properties played important roles for inhibiting 3' processing step of HIV-1 integrase.
Collapse
Affiliation(s)
- Y Kong
- a State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , Beijing , China
| | | | | |
Collapse
|
60
|
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 2014; 85:758-77. [PMID: 25137491 DOI: 10.1016/j.ejmech.2014.08.033] [Citation(s) in RCA: 455] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
Chalcones represent key structural motif in the plethora of biologically active molecules including synthetic and natural products. Synthetic manipulations of chalcones or their isolation from natural sources are being investigated worldwide for the development of more potent and efficient drugs for the treatment of several dreadful diseases such as cancer, diabetes, HIV, tuberculosis, malaria etc. Over the past few years, a large volume of research papers and review articles highlighting the significance of chalcone derivatives has been compiled in the literature. The present review article focuses on the recent developments (2010-2014) on various pharmacological and medicinal aspects of chalcones and their analogues.
Collapse
Affiliation(s)
- Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
61
|
Srivastav VK, Tiwari M. k-nearest neighbor molecular field analysis based 3D-QSAR and in silico ADME/T studies of cinnamoyl derivatives as HIV-1 integrase inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1183-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
62
|
Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives. Eur J Med Chem 2014; 73:73-82. [DOI: 10.1016/j.ejmech.2013.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022]
|
63
|
Yu S, Wang P, Li Y, Liu Y, Zhao G. Docking-based CoMFA and CoMSIA study of azaindole carboxylic acid derivatives as promising HIV-1 integrase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:819-839. [PMID: 23988186 DOI: 10.1080/1062936x.2013.820792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q (2) = 0.655, non-cross validation r (2) = 0.989 and predictive r (2) pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q (2) = 0.719, non-cross validation r (2) = 0.992 and predictive r (2) pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.
Collapse
Affiliation(s)
- S Yu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , China
| | | | | | | | | |
Collapse
|
64
|
Sharma H, Sanchez TW, Neamati N, Detorio M, Schinazi RF, Cheng X, Buolamwini JK. Synthesis, docking, and biological studies of phenanthrene β-diketo acids as novel HIV-1 integrase inhibitors. Bioorg Med Chem Lett 2013; 23:6146-51. [PMID: 24091080 DOI: 10.1016/j.bmcl.2013.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 11/18/2022]
Abstract
In the present study we report the synthesis of halogen-substituted phenanthrene β-diketo acids as new HIV-1 integrase inhibitors. The target phenanthrenes were obtained using both standard thermal- and microwave-assisted synthesis. 4-(6-Chlorophenanthren-2-yl)-2,4-dioxobutanoic acid (18) was the most active compound of the series, inhibiting both 3'-end processing (3'-P) and strand transfer (ST) with IC50 values of 5 and 1.3 μM, respectively. Docking studies revealed two predominant binding modes that were distinct from the binding modes of raltegravir and elvitegravir, and suggest a novel binding region in the IN active site. Moreover, these compounds are predicted not to interact significantly with some of the key amino acids (Q148 and N155) implicated in viral resistance. Therefore, this series of compounds can further be investigated for a possible chemotype to circumvent resistance to clinical HIV-1 IN inhibitors.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, Suite 327, Memphis 38163, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Xuan S, Wang M, Kang H, Kirchmair J, Tan L, Yan A. Support Vector Machine (SVM) Models for Predicting Inhibitors of the 3′ Processing Step of HIV-1 Integrase. Mol Inform 2013; 32:811-26. [DOI: 10.1002/minf.201300107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023]
|
66
|
Sangeetha B, Muthukumaran R, Amutha R. Pharmacophore modelling and electronic feature analysis of hydroxamic acid derivatives, the HIV integrase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:753-771. [PMID: 23710969 DOI: 10.1080/1062936x.2013.792870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydroxamic acid derivatives with metal ion binding properties were collected from the literature to generate a pharmacophore and 3D-QSAR model for HIV strand transfer inhibition. The derived pharmacophore model (AAAHRR) recognizes both metal ion binding site and hydrophobic group. The QSAR model generated using this hypothesis expressed statistical significance (r(2) = 0.971 for the training set and q(2) = 0.913 for the test set). The ability of this pharmacophore model to retrieve other metal ion binding inhibitors was examined by screening the ChemBank database (ligandinfo) incorporated with 10 known strand transfer inhibitors. The studied favourable and unfavourable contours of chemical features (H-bond donor, acceptor and hydrophobic sites) revealed the role of hydrophobic substitution at the fluorobenzene ring and cyclization of the metal ion binding hydroxamic acid in effective integrase inhibition. Analysis of the frontier orbitals, HOMO and LUMO revealed that the nucleophilic / electrophilic interactions depend on the significant overlapping observed at the azaindole and hydroxamic acid groups. In essence, the generated pharmacophore model is competent enough to disclose the essential site-specific interactions involved in the inhibition of HIV integrase, and hence can be used in virtual screening to identify novel scaffolds as leads with increased anti-viral potency.
Collapse
Affiliation(s)
- B Sangeetha
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | | | | |
Collapse
|
67
|
Ardakani A, Ghasemi JB. Identification of novel inhibitors of HIV-1 integrase using pharmacophore-based virtual screening combined with molecular docking strategies. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0545-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
68
|
Synthesis and Antifungal Studies of (2E)-N-Benzyl-N′-phenylbut-2-enediamide and (2E)-N,N′-Dibenzylbut-2-enediamide Analogues. J CHEM-NY 2013. [DOI: 10.1155/2013/281341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of eleven butanediamine analogues, of which nine were new, were synthesized by the nucleophilic substitution of aromatic amines and benzylamines with maleic anhydride and tested on four yeast strains ofCandidaspecies using the broth microdilution method. Compounds3aand3cwith an unsubstituted phenyl ring and a 3-methoxyphenyl ring, respectively, are the most active against the fungal species with MIC values ranging from 20.2 to 80.6 μM forC. albicansandC. parapsilosisand 178.5 and 161.2 μM forC. krusei, respectively.
Collapse
|
69
|
Kitawat BS, Singh M, Kathalupant Kale R. Solvent free synthesis, characterization, anticancer, antibacterial, antifungal, antioxidant and SAR studies of novel (E)-3-aryl-1-(3-alkyl-2-pyrazinyl)-2-propenone. NEW J CHEM 2013. [DOI: 10.1039/c3nj00308f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
70
|
Bharate SB, Singh B, Bharate JB, Jain SK, Meena S, Vishwakarma RA. QSAR and pharmacophore modeling of N-acetyl-2-aminobenzothiazole class of phosphoinositide-3-kinase-α inhibitors. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0081-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
71
|
de Oliveira GR, de Oliveira HCB, Silva WA, da Silva VHC, Sabino JR, Martins FT. Structure and theoretical approaches to a chalcone derivative. Struct Chem 2012. [DOI: 10.1007/s11224-012-9972-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
72
|
Sharma H, Cheng X, Buolamwini JK. Homology Model-Guided 3D-QSAR Studies of HIV-1 Integrase Inhibitors. J Chem Inf Model 2012; 52:515-44. [DOI: 10.1021/ci200485a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Tennessee Health Science
Center, Memphis, Tennessee 38163, United States
| | - Xiaolin Cheng
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory,
Oak Ridge,
Tennessee 37831, United States
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - John K. Buolamwini
- Department of Pharmaceutical
Sciences, College of Pharmacy, University of Tennessee Health Science
Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
73
|
Resende DISP, Silva EMP, Barros C, Domingues MRM, Silva AMS, Cavaleiro JAS. Tandem mass spectrometry based investigation of cinnamylideneacetophenone derivatives: valuable tool for the differentiation of positional isomers. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:3185-3195. [PMID: 21953975 DOI: 10.1002/rcm.5207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cinnamylideneacetophenones have been extensively used as versatile starting materials in numerous different transformations. The structural characterization of this type of compounds is, therefore, of crucial importance since it can give information on the chemistry, reactivity and also the potential biological activity of this type of compounds. Thus, 24 derivatives were systematically studied by tandem mass spectrometry (MS(2)) with electrospray ionization (ESI), in positive ion mode. The protonated molecules, [M + H](+), formed under ESI conditions were induced to dissociate and the fragmentation patterns were studied. The information collected provided important structural information on the type of substituents present and constitute an important database concerning this family of compounds. Overall, it was found that the substitution pattern of the cinnamylideneacetophenone derivatives changes the ESI-MS(2) fragmentation considerably. These results indicate that ESI-MS(2) is a useful technique for distinguishing positional isomers of these cinnamylideneacetophenone derivatives.
Collapse
|
74
|
Monserrat JP, Al-Safi RI, Tiwari KN, Quentin L, Chabot GG, Vessières A, Jaouen G, Neamati N, Hillard EA. Ferrocenyl chalcone difluoridoborates inhibit HIV-1 integrase and display low activity towards cancer and endothelial cells. Bioorg Med Chem Lett 2011; 21:6195-7. [PMID: 21889342 DOI: 10.1016/j.bmcl.2011.07.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/01/2022]
Abstract
We report here the discovery of a potent series of HIV-1 integrase (IN) inhibitors based on the ferrocenyl chalcone difluoridoborate structure. Ten new compounds have been synthesized and were generally found to have similar inhibitory activities against the IN 3' processing and strand transfer (ST) processes. IC(50) values were found to be in the low micromolar range, and significantly lower than those found for the non-coordinated ferrocenyl chalcones and other ferrocene molecules. The ferrocenyl chalcone difluoridoborates furthermore exhibited low cytotoxicity against cancer cells and low morphological activity against epithelial cells.
Collapse
|
75
|
de Carvalho Tavares L, Johann S, Maria de Almeida Alves T, Guerra JC, Maria de Souza-Fagundes E, Cisalpino PS, Bortoluzzi AJ, Caramori GF, de Mattos Piccoli R, Braibante HTS, Braibante MEF, Pizzolatti MG. Quinolinyl and quinolinyl N-oxide chalcones: synthesis, antifungal and cytotoxic activities. Eur J Med Chem 2011; 46:4448-56. [PMID: 21816519 DOI: 10.1016/j.ejmech.2011.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/28/2011] [Accepted: 07/10/2011] [Indexed: 10/18/2022]
Abstract
A series of new 6-quinolinyl and quinolinyl N-oxide chalcones were efficiently prepared. All chalcones were tested by minimal inhibitory concentration (MIC) against three species of Candida, Cryptococcus gattii and Paracoccidioides brasiliensis. The effect of these compounds was also tested on the survival and growth of the human cancer cell lines UACC-62 (melanoma), MCF-7 (breast), TK-10 (renal) and leukemic cells, Jurkat and HL60. The compounds tested presented strong activity against P. brasiliensis, most importantly compound 4e. C. gattii also presented interesting susceptibility for compounds 5b and 5f. The cytotoxic activity showed that compounds 3c and 4e, presented the best activity against MCF-7 and TK-10. For leukemic cells the compounds 4f, 3g, 4g and 5g have shown the best activity.
Collapse
|