51
|
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. Chembiochem 2020; 21:730-738. [PMID: 32022370 PMCID: PMC7162020 DOI: 10.1002/cbic.202000047] [Citation(s) in RCA: 515] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Indexed: 11/08/2022]
Abstract
With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. Although little is known about the virus, an examination of the genome sequence shows strong homology with its better-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations that might hamper the efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RNA-dependent RNA polymerase and coronavirus main proteinase (3CLpro), share a strikingly high (>95 %) homology to SARS-CoV. Herein, we suggest four potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that could be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad-spectrum anti-coronaviral agents for future epidemics.
Collapse
Affiliation(s)
- Jared S. Morse
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Tyler Lalonde
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery LaboratoryDepartment of ChemistryTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
52
|
Morse JS, Lalonde T, Xu S, Liu W. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020. [PMID: 32511285 DOI: 10.26434/chemrxiv.11728983.v1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. While little is known about the virus, an examination of the genome sequence shows strong homology with its more well-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations which may hamper efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RdRp and 3CLpro, share a strikingly high (>95%) homology to SARS-CoV. Herein, we suggest 4 potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that can be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad spectrum anti-coronaviral agents for future epidemics.
Collapse
|
53
|
Morse JS, Lalonde T, Xu S, Liu WR. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:11728983. [PMID: 32511285 PMCID: PMC7251965 DOI: 10.26434/chemrxiv.11728983] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 01/27/2020] [Indexed: 01/06/2023]
Abstract
With the current trajectory of the 2019-nCoV outbreak unknown, public health and medicinal measures will both be needed to contain spreading of the virus and to optimize patient outcomes. While little is known about the virus, an examination of the genome sequence shows strong homology with its more well-studied cousin, SARS-CoV. The spike protein used for host cell infection shows key nonsynonymous mutations which may hamper efficacy of previously developed therapeutics but remains a viable target for the development of biologics and macrocyclic peptides. Other key drug targets, including RdRp and 3CLpro, share a strikingly high (>95%) homology to SARS-CoV. Herein, we suggest 4 potential drug candidates (an ACE2-based peptide, remdesivir, 3CLpro-1 and a novel vinylsulfone protease inhibitor) that can be used to treat patients suffering with the 2019-nCoV. We also summarize previous efforts into drugging these targets and hope to help in the development of broad spectrum anti-coronaviral agents for future epidemics.
Collapse
Affiliation(s)
- Jared S. Morse
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Tyler Lalonde
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| | - Wenshe R. Liu
- The Texas A&M Drug Discovery Laboratory, Department of
Chemistry, Texas A&M University, College Station, Texas 77843, United
States
| |
Collapse
|
54
|
Varun, Sonam, Kakkar R. Isatin and its derivatives: a survey of recent syntheses, reactions, and applications. MEDCHEMCOMM 2019; 10:351-368. [PMID: 30996856 PMCID: PMC6438150 DOI: 10.1039/c8md00585k] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Isatin (1H-indole-2,3-dione) and its derivatives represent an important class of heterocyclic compounds that can be used as precursors for drug synthesis. Since its discovery, a lot of research work has been done regarding the synthesis, chemical properties, and biological and industrial applications of isatin. In this review, we have reported several novel methods for the synthesis of N-, C2-, and C3-substituted and spiro derivatives of isatin. The isatin moiety also shows important chemical reactions such as oxidation, ring expansion, Friedel-Crafts reaction and aldol condensation. These reactions, in turn, produce several biologically viable compounds like 2-oxindoles, tryptanthrin, indirubins, and many more. We have also summarized some recently reported biological activities exhibited by isatin derivatives, like anti-cancer, anti-bacterial, anti-diabetic and others. Special attention has been paid to their anti-cancer activity, and various anti-cancer targets such as histone deacetylase, carbonic anhydrase, tyrosine kinase, and tubulin have been discussed in detail. Other applications of isatin derivatives, such as in the dye industry and in corrosion prevention, have also been discussed.
Collapse
Affiliation(s)
- Varun
- Department of Chemistry , University of Delhi , India .
| | - Sonam
- Department of Chemistry , University of Delhi , India .
| | - Rita Kakkar
- Department of Chemistry , University of Delhi , India .
| |
Collapse
|
55
|
Mudithanapelli C, Vasam CS, Vadde R, Kim MH. Highly Efficient and Practical N-Heterocyclic Carbene Organocatalyzed Chemoselective N 1/C 3-Functionalization of Isatins with Green Chemistry Principles. ACS OMEGA 2018; 3:17646-17655. [PMID: 31458364 PMCID: PMC6643579 DOI: 10.1021/acsomega.8b02361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 06/10/2023]
Abstract
Ecofriendly N-heterocyclic carbene (NHC) organocatalysis can control the N1-functionalization (aza-Michael addition) and C3-functionalization (Morita-Baylis-Hillman reaction, MBH) of isatins in the absence of (1) a protecting group, (2) a stoichiometric reagent, and (3) heat energy. The challengeable N1-functionalization of N-unsubstituted isatins into N-substituted (NS) isatins was realized through 10 mol % NHC and 10 mol % 1,8-diazabicyclo[5.4.0]undec-7-ene catalysts within 10 min with up to 98% isolation yield. The subsequent MBH adducts of as-synthesized NS-isatins (N1/C3-functionalization) was perfectly acquired in 10 mol % NHC and 10 mol % 1,4-diazabicyclo[2.2.2]octane catalysis within 30 min with superiority to C3/N1-functionalization (MBH/aza-Michael). For guiding the application to a versatile druggable isatin library, the NHC catalysis was compared with reported functionalization of isatins in view of green chemistry principles including solvent scoring of ACS GCI pharmaceutical roundtable, E-factor, atom economy, and so on.
Collapse
Affiliation(s)
- Chandrashekar Mudithanapelli
- Gachon
Institute of Pharmaceutical Science & Department of Pharmacy,
College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
- Department
of Chemistry, Kakatiya University, Warangal 506009, India
| | - Chandra Sekhar Vasam
- Department
of Pharmaceutical Chemistry, Telangana University, Nizamabad 503322, India
| | - Ravinder Vadde
- Department
of Chemistry, Kakatiya University, Warangal 506009, India
| | - Mi-hyun Kim
- Gachon
Institute of Pharmaceutical Science & Department of Pharmacy,
College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
56
|
Zhang Q, Teng Y, Yuan Y, Ruan T, Wang Q, Gao X, Zhou Y, Han K, Yu P, Lu K. Synthesis and cytotoxic studies of novel 5-phenylisatin derivatives and their anti-migration and anti-angiogenic evaluation. Eur J Med Chem 2018; 156:800-814. [PMID: 30055465 PMCID: PMC7115506 DOI: 10.1016/j.ejmech.2018.07.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 01/06/2023]
Abstract
A number of 5-arylisatin derivatives were synthesized in 5–6 steps from readily available starting materials. Their structures were confirmed by 1H NMR and 13C NMR as well as LC/MS. The cytotoxicity of these novel isatins against human leukemia K562 cells were evaluated by MTT assay in vitro. SAR studies indicated that the N-substituted benzyl and C-5 substituted phenyl groups greatly enhance their cytotoxic activity, whereas an intact carbonyl functionality on C-3 present in the parent ring is required to maintain such a potency. Particularly, N-(p-methoxybenzyl)-5-(p-methoxyphenyl)isatin (compound 2m) showed the highest antitumor activity against K562 cell lines (IC50 = 0.03 μM). Moreover, treatment with compound 2m significantly inhibited liver cancer HepG2 cells proliferation and migration, which could also reduce the human umbilical vein endothelial cells (HUVEC) tube formation. In conclusion, compound 2m exhibited very good cancer cells proliferation inhibition by angiogenesis responses in vitro, and 2m might be a promising angiogenesis inhibitor for cancer treatment. The antitumor SAR studies of novel 5-phenylisatin derivatives were performed. The methoxyl groups of C-5 and N-substitution may enhance their cytotoxicy. Compound 2m displayed the most potent cytotoxic activity (IC50 = 0.03 μM) against K562 cell lines. 2m inhibited the proliferation of tumor cells by decreasing migration and angiogenesis.
Collapse
Affiliation(s)
- Qian Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuou Teng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Yuan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tingting Ruan
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qi Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xing Gao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yao Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Kailin Han
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
57
|
Wang L, Bao BB, Song GQ, Chen C, Zhang XM, Lu W, Wang Z, Cai Y, Li S, Fu S, Song FH, Yang H, Wang JG. Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. Eur J Med Chem 2017. [PMID: 28624700 PMCID: PMC7115414 DOI: 10.1016/j.ejmech.2017.05.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The worldwide outbreak of severe acute respiratory syndrome (SARS) in 2003 had caused a high rate of mortality. Main protease (Mpro) of SARS-associated coronavirus (SARS-CoV) is an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. During the course of screening new anti-SARS agents, we have identified that a series of unsymmetrical aromatic disulfides inhibited SARS-CoV Mpro significantly for the first time. Herein, 40 novel unsymmetrical aromatic disulfides were synthesized chemically and their biological activities were evaluated in vitro against SARS-CoV Mpro. These novel compounds displayed excellent IC50 data in the range of 0.516–5.954 μM. Preliminary studies indicated that these disulfides are reversible and mpetitive inhibitors. A possible binding mode was generated via molecular docking simulation and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationships. The present research therefore has provided some meaningful guidance to design and identify anti-SARS drugs with totally new chemical structures. 40 novel unsymmetrical aromatic disulfides were synthesized. The synthesized disulfide compounds are potent inhibitors of SARS main protease. Possible binding mode and structure-activity relationships of the compounds were established.
Collapse
Affiliation(s)
- Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Bo Bao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China.
| | - Xu-Meng Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Lu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yan Cai
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shuang Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Sheng Fu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Fu-Hang Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
58
|
Konno H, Onuma T, Nitanai I, Wakabayashi M, Yano S, Teruya K, Akaji K. Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor. Bioorg Med Chem Lett 2017; 27:2746-2751. [PMID: 28454669 PMCID: PMC7127027 DOI: 10.1016/j.bmcl.2017.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 02/05/2023]
Abstract
Synthesis and evaluation of new scaffold phenylisoserine derivatives connected with the essential functional groups against SARS CoV 3CL protease are described. The phenylisoserine backbone was found by simulation on GOLD software and the structure activity relationship study of phenylisoserine derivatives gave SK80 with an IC50 value of 43μM against SARS CoV 3CL R188I mutant protease.
Collapse
Affiliation(s)
- Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| | - Takumi Onuma
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Ikumi Nitanai
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Masaki Wakabayashi
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Kenta Teruya
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai 980-8575, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
59
|
Adhikari N, Baidya SK, Saha A, Jha T. Structural Insight Into the Viral 3C-Like Protease Inhibitors: Comparative SAR/QSAR Approaches. VIRAL PROTEASES AND THEIR INHIBITORS 2017. [PMCID: PMC7150231 DOI: 10.1016/b978-0-12-809712-0.00011-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Severe acute respiratory syndrome (SARS), caused by SARS-coronavirus (SARS-CoV), is a dreadful infection worldwide having economic and medical importance and a global threat for health. It was turned into an epidemic in South China followed by a chain of infections across three generations. A number of pathogeneses in human may occur due to the virus. This infection has not been taken into account before the SARS outbreak, and still it is a neglected one. Therefore, there is an urgent need to develop small molecule antivirals to combat the SARS-CoV. No vaccines are available till date though a number of SARS-CoV 3C-like and 3C protease inhibitors were reported. In this chapter, quantitative structure–activity relationship technique is used for development of anti-SARS and anti-HRV drugs and outcome discussed in details. This approach may be a useful strategy to design novel and potential anti-SARS drugs to combat these dreadful viral diseases.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
60
|
Jiang X, Zhang F, Yang J, Yu P, Yi P, Sun Y, Wang Y. Synthesis of 3,3-Dihalo-2-oxindoles from 2-Substituted Indoles via
Halogenation-Decarboxylation/Desulfonamidation-Oxidation Process. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaojian Jiang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University College of Pharmacy; Guangzhou 510632 People's Republic of China
| | - Feng Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University College of Pharmacy; Guangzhou 510632 People's Republic of China
| | - Junjie Yang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University College of Pharmacy; Guangzhou 510632 People's Republic of China
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University College of Pharmacy; Guangzhou 510632 People's Republic of China
| | - Peng Yi
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University College of Pharmacy; Guangzhou 510632 People's Republic of China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University College of Pharmacy; Guangzhou 510632 People's Republic of China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases; Jinan University College of Pharmacy; Guangzhou 510632 People's Republic of China
| |
Collapse
|
61
|
Teruya K, Hattori Y, Shimamoto Y, Kobayashi K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Structural basis for the development of SARS 3CL protease inhibitors from a peptide mimic to an aza-decaline scaffold. Biopolymers 2016; 106:391-403. [PMID: 26572934 PMCID: PMC7159131 DOI: 10.1002/bip.22773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/22/2015] [Accepted: 11/02/2015] [Indexed: 02/03/2023]
Abstract
Design of inhibitors against severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro) ) is a potentially important approach to fight against SARS. We have developed several synthetic inhibitors by structure-based drug design. In this report, we reveal two crystal structures of SARS 3CL(pro) complexed with two new inhibitors based on our previous work. These structures combined with six crystal structures complexed with a series of related ligands reported by us are collectively analyzed. To these eight complexes, the structural basis for inhibitor binding was analyzed by the COMBINE method, which is a chemometrical analysis optimized for the protein-ligand complex. The analysis revealed that the first two latent variables gave a cumulative contribution ratio of r(2) = 0.971. Interestingly, scores using the second latent variables for each complex were strongly correlated with root mean square deviations (RMSDs) of side-chain heavy atoms of Met(49) from those of the intact crystal structure of SARS-3CL(pro) (r = 0.77) enlarging the S2 pocket. The substantial contribution of this side chain (∼10%) for the explanation of pIC50 s was dependent on stereochemistry and the chemical structure of the ligand adapted to the S2 pocket of the protease. Thus, starting from a substrate mimic inhibitor, a design for a central scaffold for a low molecular weight inhibitor was evaluated to develop a further potent inhibitor. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 391-403, 2016.
Collapse
Affiliation(s)
- Kenta Teruya
- Department of NeurochemistryTohoku University Graduate School of MedicineAoba‐Ku Sendai980‐8575Japan
| | - Yasunao Hattori
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Yasuhiro Shimamoto
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | - Kazuya Kobayashi
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| | | | - Atsushi Nakagawa
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka UniversitySuitaOsaka565‐0871Japan
| | - Kenichi Akaji
- Department of Medicinal ChemistryKyoto Pharmaceutical UniversityYamashina‐KuKyoto607‐8412Japan
| |
Collapse
|
62
|
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem 2016; 59:6595-628. [PMID: 26878082 PMCID: PMC7075650 DOI: 10.1021/acs.jmedchem.5b01461] [Citation(s) in RCA: 524] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Manoj Manickam
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Vigneshwaran Namasivayam
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Sang-Hun Jung
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
63
|
Konno H, Wakabayashi M, Takanuma D, Saito Y, Akaji K. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease. Bioorg Med Chem 2016; 24:1241-54. [PMID: 26879854 PMCID: PMC7111485 DOI: 10.1016/j.bmc.2016.01.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 01/19/2023]
Abstract
Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity.
Collapse
Affiliation(s)
- Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| | - Masaki Wakabayashi
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Daiki Takanuma
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Yota Saito
- Department of Biological Engineering, Graduate School of Science and Technology, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
64
|
Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virol Sin 2016; 31:24-30. [PMID: 26920707 PMCID: PMC7090653 DOI: 10.1007/s12250-015-3711-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/22/2016] [Indexed: 12/20/2022] Open
Abstract
Coronaviruses (CoVs) can cause highly prevalent diseases in humans and animals. The fatal outbreak of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) highlights the threat posed by this unique virus subfamily. However, no specific drugs have been approved to treat CoV-associated diseases to date. The CoV proteases, which play pivotal roles in viral gene expression and replication through a highly complex cascade involving the proteolytic processing of replicase polyproteins, are attractive targets for drug design. This review summarizes the recent advances in biological and structural studies, together with the development of inhibitors targeting CoV proteases, particularly main proteases (M(pro)s), which could help develop effective treatments to prevent CoV infection.
Collapse
|
65
|
F. Mohamed S, A. Ibrahie A, E. Amr AEG, M. Abdalla M. SARS-CoV 3C-Like Protease Inhibitors of some Newly Synthesized Substituted Pyrazoles and Substituted Pyrimidines Based on 1-(3-Aminophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.749.756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
66
|
Synthesis of 3,3-dichloro-2-oxindoles from isatin-3-p-tosylhydrazones and (dichloroiodo)benzene. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.06.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Coffey KE, Moreira R, Abbas FZ, Murphy GK. Synthesis of 3,3-dichloroindolin-2-ones from isatin-3-hydrazones and (dichloroiodo)benzene. Org Biomol Chem 2015; 13:682-5. [PMID: 25425196 DOI: 10.1039/c4ob02213k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aryl- and N-substituted isatins were converted to isatin-3-hydrazones and subjected to a dichlorination reaction with PhICl2. Lewis base-catalysis was key to the reaction occurring rapidly and chemoselectively, providing 3,3-dichloroindolin-2-ones in 49-99% yield, and offering a new approach to the deoxygenative dihalogenation reaction.
Collapse
Affiliation(s)
- Keith E Coffey
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, ON, CanadaN2L3G1.
| | | | | | | |
Collapse
|
68
|
Shimamoto Y, Hattori Y, Kobayashi K, Teruya K, Sanjoh A, Nakagawa A, Yamashita E, Akaji K. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg Med Chem 2015; 23:876-90. [PMID: 25614110 PMCID: PMC7111320 DOI: 10.1016/j.bmc.2014.12.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 01/07/2023]
Abstract
The design and evaluation of a novel decahydroisoquinolin scaffold as an inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CL(pro)) are described. Focusing on hydrophobic interactions at the S2 site, the decahydroisoquinolin scaffold was designed by connecting the P2 site cyclohexyl group of the substrate-based inhibitor to the main-chain at the α-nitrogen atom of the P2 position via a methylene linker. Starting from a cyclohexene enantiomer obtained by salt resolution, trans-decahydroisoquinolin derivatives were synthesized. All decahydroisoquinolin inhibitors synthesized showed moderate but clear inhibitory activities for SARS 3CL(pro), which confirmed the fused ring structure of the decahydroisoquinolin functions as a novel scaffold for SARS 3CL(pro) inhibitor. X-ray crystallographic analyses of the SARS 3CL(pro) in a complex with the decahydroisoquinolin inhibitor revealed the expected interactions at the S1 and S2 sites, as well as additional interactions at the N-substituent of the inhibitor.
Collapse
Affiliation(s)
- Yasuhiro Shimamoto
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Yasunao Hattori
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kazuya Kobayashi
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Kenta Teruya
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Sakyo-ku, Kyoto 606-0823, Japan
| | - Akira Sanjoh
- R&D Center, Protein Wave Co., Nara 631-0006, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
69
|
Li P, Jia J, Fang M, Zhang L, Guo M, Xie J, Xia Y, Zhou L, Wei D. In vitro and in vivo ACE inhibitory of pistachio hydrolysates and in silico mechanism of identified peptide binding with ACE. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|