51
|
Abdelhameed RFA, Elhady SS, Sirwi A, Samir H, Ibrahim EA, Thomford AK, El Gindy A, Hadad GM, Badr JM, Nafie MS. Thonningia sanguinea Extract: Antioxidant and Cytotoxic Activities Supported by Chemical Composition and Molecular Docking Simulations. PLANTS (BASEL, SWITZERLAND) 2021; 10:2156. [PMID: 34685963 PMCID: PMC8539418 DOI: 10.3390/plants10102156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/09/2022]
Abstract
The current study was designed to investigate the antioxidant and cytotoxic activities of Thonningia sanguinea whole-plant extract. The total phenolic content was determined using Folin-Ciocalteu reagent and found to be 980.1 mg/g, calculated as gallic acid equivalents. The antioxidant capacity was estimated for the crude extract and the phenolic portion of T. sanguinea, whereupon both revealed a dose-dependent scavenging rate of DPPH• with EC50 values of 36.33 and 11.14 µg/mL, respectively. Chemical profiling of the plant extract was achieved by LC-ESI-TOF-MS/MS analysis, where 17 compounds were assigned, including ten compounds detected in the negative mode and seven detected in the positive mode. The phenolic portion exhibited promising cytotoxic activity against MCF-7 and HepG2 cells, with IC50 values of 16.67 and 13.51 μg/mL, respectively. Phenolic extract treatment caused apoptosis in MCF-7 cells, with total apoptotic cell death 18.45-fold higher compared to untreated controls, arresting the cell cycle at G2/M by increasing the G2 population by 39.7%, compared to 19.35% for the control. The apoptotic investigation was further validated by the upregulation of proapoptotic genes of P53, Bax, and caspases-3,8 9, and the downregulation of Bcl-2 as the anti-apoptotic gene. Bcl-2 inhibition was also virtualized by good binding interactions through a molecular docking study. Taken together, phenolic extract exhibited promising cytotoxic activity in MCF-7 cells through apoptosis induction and antioxidant activation, so further fractionation studies are recommended for the phenolic extract for specifying the most active compound to be developed as a novel anti-cancer agent.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.S.E.); (A.S.)
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.S.E.); (A.S.)
| | - Hanan Samir
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
- Medical Administration, Student’s Hospital, Zagazig University, Zagazig 44519, Egypt
| | - Elsayed A. Ibrahim
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
| | - Ama Kyeraa Thomford
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, Cape Coast PMB TF0494, Ghana;
| | - Alaa El Gindy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
| | - Ghada M. Hadad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (H.S.); (E.A.I.); (A.E.G.); (G.M.H.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
52
|
Aggarwal R, Kumar S, Sadana R, Guzman A, Kumar V. Multicomponent synthesis, in vitro cytotoxic evaluation and molecular modelling studies of polyfunctionalized pyrazolo[3,4-b]pyridine derivatives against three human cancer cell lines. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1968908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ranjana Aggarwal
- CSIR-National Institute of Science Communication and Policy Research (CSIR-NIScPR), Pusa Gate, K.S. Krishnan Marg, New Delhi, India
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Rachna Sadana
- Department of Natural Sciences, University of Houston, Houston, USA
| | - Andrea Guzman
- Department of Natural Sciences, University of Houston, Houston, USA
| | - Virender Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
53
|
Dawood KM, Raslan MA, Abbas AA, Mohamed BE, Abdellattif MH, Nafie MS, Hassan MK. Novel Bis-Thiazole Derivatives: Synthesis and Potential Cytotoxic Activity Through Apoptosis With Molecular Docking Approaches. Front Chem 2021; 9:694870. [PMID: 34458233 PMCID: PMC8397418 DOI: 10.3389/fchem.2021.694870] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
A series of bis-thiazoles 5a-g were synthesized from bis-thiosemicarbazone 3 with hydrazonoyl chlorides 4a-g. Reaction of 3 with two equivalents of α-halocarbonyl compounds 6-8, 10, and 12a-d afforded the corresponding bis-thiazolidines 9, 11, and 13a-d, respectively. Condensation of bis-thiazolidin-4-one 9 with different aromatic aldehydes furnished bis-thiazolidin-4-ones 14a-d. Compounds 5a-g, 9, and 13a,c,d were screened in vitro for their cytotoxic activities in a panel of cancer cell lines. Compounds 5a-c, 5f-g, and 9 exhibited remarkable cytotoxic activities, especially compound 5c with potent IC50 value 0.6 nM (against cervical cancer, Hela cell line) and compound 5f with high IC50 value 6 nM (against ovarian cancer, KF-28 cell line). Compound 5f-induced appreciated apoptotic cell death was measured as 82.76% associated with cell cycle arrest at the G1 phase. The apoptotic pathways activated in KF-28 cells treated with 5a, 5b, and 5f were further investigated. The upregulation of some pro-apoptotic genes, bax and puma, and the downregulation of some anti-apoptotic genes including the Bcl-2 gene were observed, indicating activation of the mitochondrial-dependent apoptosis. Together with the molecular docking studies of compounds 5a and 5b, our data revealed potential Pim-1 kinase inhibition through their high binding affinities indicated by inhibition of phosphorylated C-myc as a downstream target for Pim-1 kinase. Our study introduces a set of bis-thiazoles with potent anti-cancer activities, in vitro.
Collapse
Affiliation(s)
- Kamal M. Dawood
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed A. Raslan
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | - Ashraf A. Abbas
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Belal E. Mohamed
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohamed K. Hassan
- Biotechnology Program, Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
- Center for Genomics, Helmy Institute, Zewail City for Science and Technology, Giza, Egypt
| |
Collapse
|
54
|
ElZahabi HSA, Nafie MS, Osman D, Elghazawy NH, Soliman DH, El-Helby AAH, Arafa RK. Design, synthesis and evaluation of new quinazolin-4-one derivatives as apoptotic enhancers and autophagy inhibitors with potent antitumor activity. Eur J Med Chem 2021; 222:113609. [PMID: 34119830 DOI: 10.1016/j.ejmech.2021.113609] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
This work presents the design and synthesis of a series of new quinazolin-4-one derivatives, based on the established effectiveness of quinazoline-based small molecules as anticancer agents. Synthesized compounds were more potent against MCF-7 than A-549 with low to submicromolar IC50s. Compound 17 exhibited the best IC50 being equipotent with the positive control doxorubicin (IC50 = 0.06 μM) and better than 5-fluorouracil (IC50 = 2.13 μM). Compound 17 was further tested against MDA-MB-231 and MCF-10A and was found to be > 2 folds more cytotoxic on MCF-7. Significant apoptotic activity was elicited by 17 on MCF-7 where it increased apoptotic cell death along with induction of pre-G1 and G1-phase cell cycle arrest. Similarly, 17 was able to induce apoptosis in MD-MB-231 treated cells associated with a disruption of the cell cycle causing arrest at the pre-G1 and S phases. Investigation of gene expression in MCF-7 demonstrated an increased expression of the proapoptotic genes P53, PUMA, Bax, caspases 3, 8 and 9 and a decrease of the anti-apoptotic gene Bcl2. Also, 17 reduced autophagy giving way for apoptosis to induce cancer cells death. This latter observation was associated with downregulation of EGFR and its downstream effectors PI3K, AKT and mTor. As its biomolecular target, 17 also inhibited EGFR similar to erlotinib (IC50 = 0.072 and 0.087 μM, respectively). Additionally, in vivo testing in a mouse model of breast cancer affirmed the anti-tumor efficacy of 17. Finally, docking of 17 against EGFR ATP binding site demonstrated its ability to bind with EGFR resembling erlotinib.
Collapse
Affiliation(s)
- Heba S A ElZahabi
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Girls Branch, Cairo, Egypt
| | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Dina Osman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, MSA University, Egypt
| | - Nehal H Elghazawy
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt
| | - Dalia H Soliman
- Department of Medicinal and Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Girls Branch, Cairo, Egypt
| | - Abdelghany Ali H El-Helby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Boys Branch, Cairo, Egypt
| | - Reem K Arafa
- Drug Design and Discovery Lab, Zewail City of Science and Technology, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12578, Egypt.
| |
Collapse
|
55
|
Eltamany EE, Elhady SS, Nafie MS, Ahmed HA, Abo-Elmatty DM, Ahmed SA, Badr JM, Abdel-Hamed AR. The Antioxidant Carrichtera annua DC. Ethanolic Extract Counteracts Cisplatin Triggered Hepatic and Renal Toxicities. Antioxidants (Basel) 2021; 10:825. [PMID: 34064100 PMCID: PMC8224350 DOI: 10.3390/antiox10060825] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is a powerful anti-neoplastic drug that displays multi-organ toxicity, especially to the liver and kidneys. Consumption of phytomedicines is a promising strategy to overcome the side effects of chemotherapy. Carrichtera annua extract proved to possess potent antioxidant activity. Its protective potential against cisplatin-induced hepato-nephrotoxicity was scrutinized. Moreover, a phytochemical study was conducted on C. annua ethyl acetate fraction which led to the isolation of five known phenolic compounds. Structure determination was achieved utilizing 1H- and 13C-NMR spectral analyses. The isolated phytochemicals were trans-ferulic acid (1), kaempferol (2), p-coumaric acid (3), luteolin (4) and quercetin (5). Regarding our biological study, C. annua has improved liver and kidney deteriorated functions caused by cisplatin administration and attenuated the histopathological injury in their tissues. Serum levels of ALT, AST, blood urea nitrogen and creatinine were significantly decreased. C. annua has modulated the oxidative stress mediated by cisplatin as it lowered MDA levels while enhanced reduced-GSH concentrations. More importantly, the plant has alleviated cisplatin triggered inflammation, apoptosis via reduction of INFγ, IL-1β and caspase-3 production. Moreover, mitochondrial injury has been ameliorated as remarkable increase of mtDNA was noted. Furthermore, the MTT assay proved the combination of cisplatin-C. annua extract led to growth inhibition of MCF-7 cells in a notable additive way. Additionally, we have investigated the binding affinity of C. annua constituents with caspase-3 and IFN-γ proteins using molecular simulation. All the isolated compounds exhibited good binding affinities toward the target proteins where quercetin possessed the most auspicious caspase-3 and IFN-γ inhibition activities. Our results put forward that C. annua is a promising candidate to counteract chemotherapy side effects and the observed activity could be attributed to the synergism between its phytochemicals.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Haidy A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
- Ismailia Health Affairs Directorate, Ismailia 41525, Egypt
| | - Dina M. Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (D.M.A.-E.); (A.R.A.-H.)
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (S.A.A.)
| | - Asmaa R. Abdel-Hamed
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (D.M.A.-E.); (A.R.A.-H.)
| |
Collapse
|
56
|
Synthesis of new substituted pyridine derivatives as potent anti-liver cancer agents through apoptosis induction: In vitro, in vivo, and in silico integrated approaches. Bioorg Chem 2021; 111:104877. [PMID: 33839579 DOI: 10.1016/j.bioorg.2021.104877] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 01/28/2023]
Abstract
Liver cancer is the most common type of cancer in many countries. New studies and statistics show rising liver cancer worldwide, so it is essential to seek new agents for this type of cancer. PIM1 has an attractive target in the discovery of cancer medications as it is very much expressed in a variety of malignancies and influences such as tumorigenesis, cell cycle progression, cellular proliferation, apoptosis, and cell migration. Accordingly, a series of pyridones and pyridine-amides were synthesized and tested for anti-liver cancer activity. In the synthetic strategy 4,6-diaryl-3-cyano-2-pyridones 3a-n were synthesized using one-pot four component synthetic method. Structural modifications were done on 4,6-diphenyl-3-cayno-2-pyridone 3a to enhance the activity. Alkylation in the presence of K2CO3 afforded the O-alkylated products 4-6. The acetoxy hydrazide 7 was synthesized and cyclized into 1,3,4-oxadiazolethione 8 which alkylated on sulfur to give 10. Azide-coupling method was used to couple the 2-(pyridin-2-yloxy)acetohydrazide 7 to different amines and amino acid esters to furnish the products 12a-e and 13a-b. The synthesized derivatives were subjected to cytotoxic screening against HepG2 and THLE-2 cells, Compounds 10, 12e and 13a have a remarkable cytotoxic activity with IC50 values (10.7-13.9 µM). Compound 7 was found to be more cytotoxic by showing the lowest IC50 value of 7.26 compared to 5-FU (IC50 = 6.98 µM). It inhibited cell growth by 76.76%. Additionally, it significantly stimulated apoptotic liver cancer cell death with 49.78-fold (22.90% compared to 0.46% for the control) arresting cell cycle Pre-G1 with 35.16% of a cell population, compared to 1.57% for the control. Moreover, it validated the intrinsic apoptosis through upregulation of P53, and other related genes, with inhibition of anti-apoptotic genes through PIM-1 inhibition.
Collapse
|
57
|
Abdelhameed RFA, Habib ES, Ibrahim AK, Yamada K, Abdel-Kader MS, Ahmed SA, Ibrahim AK, Badr JM, Nafie MS. Chemical Constituent Profiling of Phyllostachys heterocycla var. Pubescens with Selective Cytotoxic Polar Fraction through EGFR Inhibition in HepG2 Cells. Molecules 2021; 26:940. [PMID: 33578916 PMCID: PMC7916669 DOI: 10.3390/molecules26040940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022] Open
Abstract
Different extracts of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens were screened against panel of cancer cell lines and normal one. The cell viability results exhibited that the ethyl acetate extract showed the least vitality percentage of 2.14% of HepG2 cells. Accordingly, it was subjected to chromatographic separation, which resulted in the isolation of a new natural product; 7-hydroxy, 5-methoxy, methyl cinnamate (1), together with four known compounds. The structures of the pure isolated compounds were deduced based on different spectroscopic data. The new compound (1) was screened against the HepG2 and MCF-7 cells and showed IC50 values of 7.43 and 10.65 µM, respectively. It induced apoptotic cell death in HepG2 with total apoptotic cell death of 58.6% (12.44-fold) compared to 4.71% in control by arresting cell cycle progression at the G1 phase. Finally, compound 1 was validated as EGFR tyrosine kinase inhibitor in both enzymatic levels (IC50 = 98.65 nM compared to Erlotinib (IC50 = 78.65 nM). Finally, in silico studies of compound 1 through the molecular docking indicated its high binding affinity towards EGFR protein and the ADME pharmacokinetics indicated it as a drug-like.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (A.K.I.); (S.A.A.); (A.K.I.); (J.M.B.)
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (A.K.I.); (S.A.A.); (A.K.I.); (J.M.B.)
| | - Ahmed K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (A.K.I.); (S.A.A.); (A.K.I.); (J.M.B.)
| | - Koji Yamada
- Garden for Medicinal Plants, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852–8521, Japan;
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University 173, Al-Kharj 11942, Saudi Arabia
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (A.K.I.); (S.A.A.); (A.K.I.); (J.M.B.)
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (A.K.I.); (S.A.A.); (A.K.I.); (J.M.B.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (E.S.H.); (A.K.I.); (S.A.A.); (A.K.I.); (J.M.B.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
58
|
Elhady SS, Abdelhameed RFA, El-Ayouty MM, Ibrahim AK, Habib ES, Elgawish MS, Hassanean HA, Safo MK, Nafie MS, Ahmed SA. New Antiproliferative Triflavanone from Thymelaea hirsuta-Isolation, Structure Elucidation and Molecular Docking Studies. Molecules 2021; 26:molecules26030739. [PMID: 33572651 PMCID: PMC7867015 DOI: 10.3390/molecules26030739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
In this study isolates from Thymelaea hirsuta, a wild plant from the Sinai Peninsula of Egypt, were identified and their selective cytotoxicity levels were evaluated. Phytochemical examination of the ethyl acetate (EtOAc) fraction of the methanolic (MeOH) extract of the plant led to the isolation of a new triflavanone compound (1), in addition to the isolation of nine previously reported compounds. These included five dicoumarinyl ethers found in Thymelaea: daphnoretin methyl ether (2), rutamontine (3), neodaphnoretin (4), acetyldaphnoretin (5), and edgeworthin (6); two flavonoids: genkwanin (7) and trans-tiliroside (8); p-hydroxy benzoic acid (9) and β sitosterol glucoside (10). Eight of the isolated compounds were tested for in vitro cytotoxicity against Vero and HepG2 cell lines using a sulforhodamine-B (SRB) assay. Compounds 1, 2 and 5 exhibited remarkable cytotoxic activities against HepG2 cells, with IC50 values of 8.6, 12.3 and 9.4 μM, respectively, yet these compounds exhibited non-toxic activities against the Vero cells. Additionally, compound 1 further exhibited promising cytotoxic activity against both MCF-7 and HCT-116 cells, with IC50 values of 4.26 and 9.6 μM, respectively. Compound 1 significantly stimulated apoptotic breast cancer cell death, resulting in a 14.97-fold increase and arresting 40.57% of the cell population at the Pre-G1 stage of the cell cycle. Finally, its apoptosis-inducing activity was further validated through activation of BAX and caspase-9, and inhibition of BCL2 levels. In silico molecular docking experiments revealed a good binding mode profile of the isolates towards Ras activation/pathway mitogen-activated protein kinase (Ras/MAPK); a common molecular pathway in the development and progression of liver tumors.
Collapse
Affiliation(s)
- Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (M.M.E.-A.); (A.K.I.); (E.S.H.); (H.A.H.)
| | - Mayada M. El-Ayouty
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (M.M.E.-A.); (A.K.I.); (E.S.H.); (H.A.H.)
- Department of Pharmacognosy, Faculty of Pharmacy, Sinai University, El-Arish 45511, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (M.M.E.-A.); (A.K.I.); (E.S.H.); (H.A.H.)
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (M.M.E.-A.); (A.K.I.); (E.S.H.); (H.A.H.)
| | - Mohamed S. Elgawish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Hashim A. Hassanean
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (M.M.E.-A.); (A.K.I.); (E.S.H.); (H.A.H.)
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA;
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (M.M.E.-A.); (A.K.I.); (E.S.H.); (H.A.H.)
- Correspondence: or ; Tel.: +20-010-92638387; Fax: +20-064-3230741
| |
Collapse
|
59
|
Eltamany EE, Elhady SS, Ahmed HA, Badr JM, Noor AO, Ahmed SA, Nafie MS. Chemical Profiling, Antioxidant, Cytotoxic Activities and Molecular Docking Simulation of Carrichtera annua DC. (Cruciferae). Antioxidants (Basel) 2020; 9:E1286. [PMID: 33339242 PMCID: PMC7766671 DOI: 10.3390/antiox9121286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Our investigation intended to analyze the chemical composition and the antioxidant activity of Carrichtera annua and to evaluate the antiproliferative effect of C. annua crude and phenolics extracts by MTT assay on a panel of cancerous and non-cancerous breast and liver cell lines. The total flavonoid and phenolic contents of C. annua were 47.3 ± 17.9 mg RE/g and 83.8 ± 5.3 mg respectively. C. annua extract exhibited remarkable antioxidant capacity (50.92 ± 5.64 mg GAE/g) in comparison with BHT (74.86 ± 3.92 mg GAE/g). Moreover, the extract exhibited promising reduction ability (1.17 mMol Fe+2/g) in comparison to the positive control (ascorbic acid with 2.75 ± 0.91) and it displayed some definite radical scavenging effect on DPPH (IC50 values of 211.9 ± 3.7 µg/mL). Chemical profiling of C. annua extract was achieved by LC-ESI-TOF-MS/MS analysis. Forty-nine hits mainly polyphenols were detected. Flavonoid fraction of C. annua was more active than the crude extract. It demonstrated selective cytotoxicity against the MCF-7 and HepG2 cells (IC50 = 13.04 and 19.3 µg/mL respectively), induced cell cycle arrest at pre-G1 and G2/M-phases and displayed apoptotic effect. Molecular docking studies supported our findings and revealed that kaempferol-3,7-O-bis-α-L-rhamnoside and kaempferol-3-rutinoside were the most active inhibitors of Bcl-2. Therefore, C. annua herb seems to be a promising candidate to further advance anticancer research. In extrapolation, the intake of C. annua phenolics might be adventitious for alleviating breast and liver malignancies and tumoral proliferation in humans.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Haidy A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
- Ismailia Health Affairs Directorate, Ismailia 41525, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
| | - Ahmad O. Noor
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (H.A.A.); (J.M.B.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
60
|
Abdelhameed RFA, Nafie MS, Ibrahim AK, Yamada K, Abdel-Kader MS, Ibrahim AK, Ahmed SA, Badr JM, Habib ES. Cytotoxic, Apoptosis-Inducing Activities, and Molecular Docking of a New Sterol from Bamboo Shoot Skin Phyllostachys heterocycla var. pubescens. Molecules 2020; 25:E5650. [PMID: 33266171 PMCID: PMC7731115 DOI: 10.3390/molecules25235650] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/17/2022] Open
Abstract
Phytochemical screening of nonpolar fractions from the methanol extract of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens resulted in the isolation of a new sterol-glucoside-fatty acid derivative (6'-O-octadeca-8'',11''-dienoyl)-sitosterol-3-O-β-d-glucoside (1), together with six known compounds. The chemical structures of the pure isolated compounds were deduced based on different spectral data. The isolated compounds were assessed to determine their cytotoxic activity, and the results were confirmed by determining their apoptotic activity. Compound 1 was more cytotoxic against the MCF-7 cells (IC50 = 25.8 µM) compared to Fluorouracil (5-FU) (26.98 µM), and it significantly stimulated apoptotic breast cancer cell death with 32.6-fold (16.63% compared to 0.51 for the control) at pre-G1 and G2/M-phase cell cycle arrest and blocked the progression of MCF-7 cells. Additionally, RT-PCR results further confirmed the apoptotic activity of compound 1 by the upregulation of proapoptotic genes (P53; Bax; and caspases 3, 8, and 9) and downregulation of the antiapoptotic genes (BCL2). Finally, the identified compounds, especially 1, were found to have high binding affinity towards both tyrosine-specific protein kinase (TPK) and vascular endothelial growth factor receptor (VEGFR-2) through the molecular docking studies that highlight its mode of action.
Collapse
Affiliation(s)
- Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (A.K.I.); (A.K.I.); (S.A.A.); (J.M.B.); (E.S.H.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Ahmed K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (A.K.I.); (A.K.I.); (S.A.A.); (J.M.B.); (E.S.H.)
| | - Koji Yamada
- Garden for Medicinal Plants, Graduate School of Biomedical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan;
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University 173, Al-Kharj 11942, Saudi Arabia
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (A.K.I.); (A.K.I.); (S.A.A.); (J.M.B.); (E.S.H.)
| | - Safwat A. Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (A.K.I.); (A.K.I.); (S.A.A.); (J.M.B.); (E.S.H.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (A.K.I.); (A.K.I.); (S.A.A.); (J.M.B.); (E.S.H.)
| | - Eman S. Habib
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (R.F.A.A.); (A.K.I.); (A.K.I.); (S.A.A.); (J.M.B.); (E.S.H.)
| |
Collapse
|