51
|
Abstract
The cranial base is a central and integral component of the cranioskeleton, yet little is known about its growth. Despite the dissimilarities between human and murine cranioskeletal form, mouse models are proving instrumental in studying craniofacial growth. The objectives of this review are to summarize recent findings from numerous mouse models that display growth defects in one or more cranial base synchondroses, with accompanying changes in chondrocyte cellular zones. Many of these models also display altered growth of the cranial vault and/or the facial region. FGFR, PTHrP, Ihh, BMP and Wnt/β-catenin, as well as components of primary cilia, are the major genes and signalling pathways identified in cranial base synchondroses. Together, these models are helping to uncover specific genetic influences and signalling pathways operational at the cranial base synchondroses. Many of these genes are in common with those of importance in the cranial vault and the facial skeleton, emphasizing the molecular integration of growth between the cranial base and other cranial regions. Selected models are also being utilized in testing therapeutic agents to correct defective craniofacial and cranial base growth.
Collapse
Affiliation(s)
- S R Vora
- Oral Health Sciences, Orthodontics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
52
|
Greene SL, Mamaeva O, Crossman DK, Lu C, MacDougall M. Gene-Expression Analysis Identifies IGFBP2 Dysregulation in Dental Pulp Cells From Human Cleidocranial Dysplasia. Front Genet 2018; 9:178. [PMID: 29875795 PMCID: PMC5974155 DOI: 10.3389/fgene.2018.00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/30/2018] [Indexed: 12/04/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is an autosomal dominant disorder affecting osteoblast differentiation, chondrocyte maturation, skeletal morphogenesis, and tooth formation. Dental phenotype in CCD include over-retained primary teeth, failed eruption of permanent teeth, and supernumerary teeth. The underlying mechanism is unclear. We previously reported one CCD patient with allelic RUNX2 deletion (CCD-011). In the current study, we determined the transcriptomic profiles of dental pulp cells from this patient compared to one sex-and-age matched non-affected individual. Next Generation RNA sequencing revealed that 60 genes were significantly dysregulated (63% upregulated and 27% downregulated). Among them, IGFBP2 (insulin-like growth factor binding protein-2) was found to be upregulated more than twofold in comparison to control cells. Stable overexpression of RUNX2 in CCD-011 pulp cells resulted in the reduction of IGFBP2. Moreover, ALPL expression was up-regulated in CCD-011 pulp cells after introduction of normal RUNX2. Promoter analysis revealed that there are four proximal putative RUNX2 binding sites in -1.5 kb IGFBP2 promoter region. Relative luciferase assay confirmed that IGFBP2 is a direct target of RUNX2. Immunohistochemistry demonstrated that IGFBP2 was expressed in odontoblasts but not ameloblasts. This report demonstrated the importance of RUNX2 in the regulation of gene profile related to dental pulp cells and provided novel insight of RUNX2 into the negative regulation of IGFBP2.
Collapse
Affiliation(s)
- Stephen L. Greene
- Department of Pediatric Dentistry, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- Institute of Oral Health Research, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Olga Mamaeva
- Institute of Oral Health Research, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - David K. Crossman
- Department of Genetics, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Changming Lu
- Institute of Oral Health Research, School of Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary MacDougall
- Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
53
|
Ultrastructure and biological function of matrix vesicles in bone mineralization. Histochem Cell Biol 2018; 149:289-304. [DOI: 10.1007/s00418-018-1646-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
|
54
|
Moor MB, Ramakrishnan SK, Legrand F, Dolder S, Siegrist M, Durussel F, Centeno G, Firsov D, Hynes NE, Hofstetter W, Bonny O. Redox-Dependent Bone Alkaline Phosphatase Dysfunction Drives Part of the Complex Bone Phenotype in Mice Deficient for Memo1. JBMR Plus 2018; 2:195-205. [PMID: 30038965 DOI: 10.1002/jbm4.10034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mediator of ErbB2-driven cell Motility 1 (MEMO1) is an intracellular redox protein that integrates growth factors signaling with the intracellular redox state. We have previously reported that mice lacking Memo1 displayed higher plasma calcium levels and other alterations of mineral metabolism, but the underlying mechanism was unresolved and the bone phenotype was not described. Here, we show that Cre/lox-mediated MEMO1 deletion in the whole body of C57Bl/6 mice (Memo cKO) leads to severely altered trabecular bone and lower mineralization, with preserved osteoblast and osteoclast number and activity, but altered osteoblast response to epidermal growth factor (EGF) and FGF2. More strikingly, Memo cKO mice display decreased alkaline phosphatase (ALP) activity in serum and in bone, while ALPL expression level is unchanged. Bone intracellular redox state is significantly altered in Memo cKO mice and we inferred that ALP dimerization was reduced in Memo cKO mice. Indeed, despite similar ALP oxidation, we found increased ALP sensitivity to detergent in Memo cKO bone leading to lower ALP dimerization capability. Thus, we report a severe bone phenotype and dysfunctional bone ALP with local alteration of the redox state in Memo cKO mice that partially mimics hypophosphatasia, independent of ALPL mutations. These findings reveal Memo as a key player in bone homeostasis and underline a role of bone redox state in controlling ALP activity.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Suresh K Ramakrishnan
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Finola Legrand
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Silvia Dolder
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Mark Siegrist
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Fanny Durussel
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Gabriel Centeno
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Dmitri Firsov
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Willy Hofstetter
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
55
|
Park CS, Ha TH, Kim M, Raja N, Yun HS, Sung MJ, Kwon OS, Yoon H, Lee CS. Fast and sensitive near-infrared fluorescent probes for ALP detection and 3d printed calcium phosphate scaffold imaging in vivo. Biosens Bioelectron 2018; 105:151-158. [PMID: 29412939 DOI: 10.1016/j.bios.2018.01.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 11/27/2022]
Abstract
Alkaline phosphatase (ALP) is a critical biological marker for osteoblast activity during early osteoblast differentiation, but few biologically compatible methods are available for its detection. Here, we describe the discovery of highly sensitive and rapidly responsive novel near-infrared (NIR) fluorescent probes (NIR-Phos-1, NIR-Phos-2) for the fluorescent detection of ALP. ALP cleaves the phosphate group from the NIR skeleton and substantially alters its photophysical properties, therefore generating a large "turn-on" fluorescent signal resulted from the catalytic hydrolysis on fluorogenic moiety. Our assay quantified ALP activity from 0 to 1.0UmL-1 with a 10-5-10-3UmL-1 limit of detection (LOD), showing a response rate completed within 1.5min. A potentially powerful approach to probe ALP activity in biological systems demonstrated real-time monitoring using both concentration- and time-dependent variations of endogenous ALP in live cells and animals. Based on high binding affinity to bone tissue of phosphate moiety, bone-like scaffold-based ALP detection in vivo was accessed using NIR probe-labeled three-dimensional (3D) calcium deficient hydroxyapatite (CDHA) scaffolds. They were subcutaneously implanted into mice and monitored ALP signal changes using a confocal imaging system. Our results suggest the possibility of early-stage ALP detection during neo-bone formation inside a bone defect, by in vivo fluorescent evaluation using 3D CDHA scaffolds.
Collapse
Affiliation(s)
- Chul Soon Park
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Tai Hwan Ha
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Moonil Kim
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea
| | - Naren Raja
- University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Powder and Ceramics Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, South Korea
| | - Hui-Suk Yun
- University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Powder and Ceramics Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon 51508, South Korea
| | - Mi Jeong Sung
- University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea; Metabolism and Nutrition Research Group, Korea Food Research Institute (KFRI), 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, South Korea
| | - Oh Seok Kwon
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea.
| | - Chang-Soo Lee
- Hazards Monitoring Bionano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, South Korea.
| |
Collapse
|
56
|
Wei X, Thomas N, Hatch NE, Hu M, Liu F. Postnatal Craniofacial Skeletal Development of Female C57BL/6NCrl Mice. Front Physiol 2017; 8:697. [PMID: 28959213 PMCID: PMC5603710 DOI: 10.3389/fphys.2017.00697] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/30/2017] [Indexed: 12/18/2022] Open
Abstract
The craniofacial skeleton is a complex and unique structure. The perturbation of its development can lead to craniofacial dysmorphology and associated morbidities. Our ability to prevent or mitigate craniofacial skeletal anomalies is at least partly dependent on our understanding of the unique physiological development of the craniofacial skeleton. Mouse models are critical tools for the study of craniofacial developmental abnormalities. However, there is a lack of detailed normative data of mouse craniofacial skeletal development in the literature. In this report, we employed high-resolution micro-computed tomography (μCT) in combination with morphometric measurements to analyze the postnatal craniofacial skeletal development from day 7 (P7) through day 390 (P390) of female C57BL/6NCrl mice, a widely used mouse strain. Our data demonstrates a unique craniofacial skeletal development pattern in female C57BL/6NCrl mice, and differentiates the early vs. late craniofacial growth patterns. Additionally, our data documents the complex and differential changes in bone parameters (thickness, bone volume, bone volume/tissue volume, bone mineral density, and tissue mineral density) of various craniofacial bones with different embryonic origins and ossification mechanisms during postnatal growth, which underscores the complexity of craniofacial bone development and provides a reference standard for future quantitative analysis of craniofacial bones.
Collapse
Affiliation(s)
- Xiaoxi Wei
- Department of Orthodontics, Jilin University School and Hospital of StomatologyChangchun, China.,Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of DentistryAnn Arbor, MI, United States
| | - Neil Thomas
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of DentistryAnn Arbor, MI, United States
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of DentistryAnn Arbor, MI, United States
| | - Min Hu
- Department of Orthodontics, Jilin University School and Hospital of StomatologyChangchun, China
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of DentistryAnn Arbor, MI, United States
| |
Collapse
|
57
|
Nam HK, Sharma M, Liu J, Hatch NE. Tissue Nonspecific Alkaline Phosphatase (TNAP) Regulates Cranial Base Growth and Synchondrosis Maturation. Front Physiol 2017; 8:161. [PMID: 28377728 PMCID: PMC5359511 DOI: 10.3389/fphys.2017.00161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/02/2017] [Indexed: 12/27/2022] Open
Abstract
Hypophosphatasia is a rare heritable disorder caused by inactivating mutations in the gene (Alpl) that encodes tissue nonspecific alkaline phosphatase (TNAP). Hypophosphatasia with onset in infants and children can manifest as rickets. How TNAP deficiency leads to bone hypomineralization is well explained by TNAP's primary function of pyrophosphate hydrolysis when expressed in differentiated bone forming cells. How TNAP deficiency leads to abnormalities within endochondral growth plates is not yet known. Previous studies in hypophosphatemic mice showed that phosphate promotes chondrocyte maturation and apoptosis via MAPK signaling. Alpl-/- mice are not hypophosphatemic but TNAP activity does increase local levels of inorganic phosphate. Therefore, we hypothesize that TNAP influences endochondral bone development via MAPK. In support of this premise, here we demonstrate cranial base bone growth deficiency in Alpl-/- mice, utilize primary rib chondrocytes to show that TNAP influences chondrocyte maturation, apoptosis, and MAPK signaling in a cell autonomous manner; and demonstrate that similar chondrocyte signaling and apoptosis abnormalities are present in the cranial base synchondroses of Alpl-/- mice. Micro CT studies revealed diminished anterior cranial base bone and total cranial base lengths in Alpl-/- mice, that were prevented upon injection with mineral-targeted recombinant TNAP (strensiq). Histomorphometry of the inter-sphenoidal synchondrosis (cranial base growth plate) demonstrated significant expansion of the hypertrophic chondrocyte zone in Alpl-/- mice that was minimized upon treatment with recombinant TNAP. Alpl-/- primary rib chondrocytes exhibited diminished chondrocyte proliferation, aberrant mRNA expression, diminished hypertrophic chondrocyte apoptosis and diminished MAPK signaling. Diminished apoptosis and VEGF expression were also seen in 15 day-old cranial base synchondroses of Alpl-/- mice. MAPK signaling was significantly diminished in 5 day-old cranial base synchondroses of Alpl-/- mice. Together, our data suggests that TNAP is essential for the later stages of endochondral bone development including hypertrophic chondrocyte apoptosis and VEGF mediated recruitment of blood vessels for replacement of cartilage with bone. These changes may be mediated by diminished MAPK signaling in TNAP deficient chondrocytes due to diminished local inorganic phosphate production.
Collapse
Affiliation(s)
- Hwa K Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| | - Monika Sharma
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| | - Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
58
|
Rao SR, Snaith AE, Marino D, Cheng X, Lwin ST, Orriss IR, Hamdy FC, Edwards CM. Tumour-derived alkaline phosphatase regulates tumour growth, epithelial plasticity and disease-free survival in metastatic prostate cancer. Br J Cancer 2017; 116:227-236. [PMID: 28006818 PMCID: PMC5243990 DOI: 10.1038/bjc.2016.402] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/04/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Recent evidence suggests that bone-related parameters are the main prognostic factors for overall survival in advanced prostate cancer (PCa), with elevated circulating levels of alkaline phosphatase (ALP) thought to reflect the dysregulated bone formation accompanying distant metastases. We have identified that PCa cells express ALPL, the gene that encodes for tissue nonspecific ALP, and hypothesised that tumour-derived ALPL may contribute to disease progression. METHODS Functional effects of ALPL inhibition were investigated in metastatic PCa cell lines. ALPL gene expression was analysed from published PCa data sets, and correlated with disease-free survival and metastasis. RESULTS ALPL expression was increased in PCa cells from metastatic sites. A reduction in tumour-derived ALPL expression or ALP activity increased cell death, mesenchymal-to-epithelial transition and reduced migration. Alkaline phosphatase activity was decreased by the EMT repressor Snail. In men with PCa, tumour-derived ALPL correlated with EMT markers, and high ALPL expression was associated with a significant reduction in disease-free survival. CONCLUSIONS Our studies reveal the function of tumour-derived ALPL in regulating cell death and epithelial plasticity, and demonstrate a strong association between ALPL expression in PCa cells and metastasis or disease-free survival, thus identifying tumour-derived ALPL as a major contributor to the pathogenesis of PCa progression.
Collapse
Affiliation(s)
- S R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - A E Snaith
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - D Marino
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - X Cheng
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - S T Lwin
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| | - I R Orriss
- Royal Veterinary College, University of London, London NW1 0TU, UK
| | - F C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - C M Edwards
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 7LD, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
59
|
Fakhry M, Roszkowska M, Briolay A, Bougault C, Guignandon A, Diaz-Hernandez JI, Diaz-Hernandez M, Pikula S, Buchet R, Hamade E, Badran B, Bessueille L, Magne D. TNAP stimulates vascular smooth muscle cell trans-differentiation into chondrocytes through calcium deposition and BMP-2 activation: Possible implication in atherosclerotic plaque stability. Biochim Biophys Acta Mol Basis Dis 2016; 1863:643-653. [PMID: 27932058 DOI: 10.1016/j.bbadis.2016.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/12/2016] [Accepted: 12/04/2016] [Indexed: 01/15/2023]
Abstract
Atherosclerotic plaque calcification varies from early, diffuse microcalcifications to a bone-like tissue formed by endochondral ossification. Recently, a paradigm has emerged suggesting that if the bone metaplasia stabilizes the plaques, microcalcifications are harmful. Tissue-nonspecific alkaline phosphatase (TNAP), an ectoenzyme necessary for mineralization by its ability to hydrolyze inorganic pyrophosphate (PPi), is stimulated by inflammation in vascular smooth muscle cells (VSMCs). Our objective was to determine the role of TNAP in trans-differentiation of VSMCs and calcification. In rodent MOVAS and A7R5 VSMCs, addition of exogenous alkaline phosphatase (AP) or TNAP overexpression was sufficient to stimulate the expression of several chondrocyte markers and induce mineralization. Addition of exogenous AP to human mesenchymal stem cells cultured in pellets also stimulated chondrogenesis. Moreover, TNAP inhibition with levamisole in mouse primary chondrocytes dropped mineralization as well as the expression of chondrocyte markers. VSMCs trans-differentiated into chondrocyte-like cells, as well as primary chondrocytes, used TNAP to hydrolyze PPi, and PPi provoked the same effects as TNAP inhibition in primary chondrocytes. Interestingly, apatite crystals, associated or not to collagen, mimicked the effects of TNAP on VSMC trans-differentiation. AP and apatite crystals increased the expression of BMP-2 in VSMCs, and TNAP inhibition reduced BMP-2 levels in chondrocytes. Finally, the BMP-2 inhibitor noggin blocked the rise in aggrecan induced by AP in VSMCs, suggesting that TNAP induction in VSMCs triggers calcification, which stimulates chondrogenesis through BMP-2. Endochondral ossification in atherosclerotic plaques may therefore be induced by crystals, probably to confer stability to plaques with microcalcifications.
Collapse
Affiliation(s)
- Maya Fakhry
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France; Lebanese University, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Hadath-Beirut, Lebanon
| | - Monika Roszkowska
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France; Laboratory of Biochemistry of Lipids, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anne Briolay
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - Carole Bougault
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - Alain Guignandon
- Univ Lyon, Université Jean Monnet Saint-Etienne, LBTO, UMR INSERM 1059, F-42023 Saint-Etienne, France
| | - Juan Ignacio Diaz-Hernandez
- Universidad Complutense de Madrid, Facultad de Veterinaria, Dpt. Bioquimica y Biologia Molecular IV, Madrid, Spain
| | - Miguel Diaz-Hernandez
- Universidad Complutense de Madrid, Facultad de Veterinaria, Dpt. Bioquimica y Biologia Molecular IV, Madrid, Spain
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - René Buchet
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France
| | - Eva Hamade
- Lebanese University, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Hadath-Beirut, Lebanon
| | - Bassam Badran
- Lebanese University, Laboratory of Cancer Biology and Molecular Immunology, EDST-PRASE, Hadath-Beirut, Lebanon
| | | | - David Magne
- Univ Lyon, University Lyon 1, ICBMS, UMR CNRS 5246, F-69622 Lyon, France.
| |
Collapse
|
60
|
Sun C, Yuan H, Wang L, Wei X, Williams L, Krebsbach PH, Guan JL, Liu F. FAK Promotes Osteoblast Progenitor Cell Proliferation and Differentiation by Enhancing Wnt Signaling. J Bone Miner Res 2016; 31:2227-2238. [PMID: 27391080 PMCID: PMC5642940 DOI: 10.1002/jbmr.2908] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/03/2023]
Abstract
Decreased bone formation is often associated with increased bone marrow adiposity. The molecular mechanisms that are accountable for the negative correlation between bone mass and bone marrow adiposity are incompletely understood. Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types; however, its roles in osteoblast lineage cells are largely unknown. We show herein that mice lacking FAK in Osterix-expressing cells exhibited decreased osteoblast number and low bone mass as well as increased bone marrow adiposity. The decreased bone mass in FAK-deficient mice was accounted for by decreased proliferation, compromised osteogenic differentiation, and increased adipogenic differentiation of bone marrow Osterix-expressing cells resulting from downregulation of Wnt/β-catenin signaling due to the reduced expression of canonical Wnt ligands. In contrast, FAK loss in calvarial preosteoblasts had no adverse effect on their proliferation and osteogenic differentiation and these cells had intact Wnt/β-catenin signaling. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chunhui Sun
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Hebao Yuan
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Li Wang
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Xiaoxi Wei
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Orthodontics, Jilin University School and Hospital of Stomatology, Changchun, Jilin, China
| | - Linford Williams
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences and Division of Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
61
|
Park E, Kim MC, Choi CW, Kim J, Jin HS, Lee R, Lee JW, Park JH, Huh D, Jeong SY. Effects of Dihydrophaseic Acid 3'-O-β-d-Glucopyranoside Isolated from Lycii radicis Cortex on Osteoblast Differentiation. Molecules 2016; 21:molecules21091260. [PMID: 27657033 PMCID: PMC6274582 DOI: 10.3390/molecules21091260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/26/2022] Open
Abstract
Our previous study showed that ethanol extract of Lyciiradicis cortex (LRC) prevented the loss of bone mineral density in ovariectomized mice by promoting the differentiation of osteoblast linage cells. Here, we performed fractionation and isolation of the bioactive compound(s) responsible for the bone formation–enhancing effect of LRC extract. A known sesquiterpene glucoside, (1′R,3′S,5′R,8′S,2Z,4E)-dihydrophaseic acid 3′-O-β-d-glucopyranoside (abbreviated as DPA3G), was isolated from LRC extract and identified as a candidate constituent. We investigated the effects of DPA3G on osteoblast and osteoclast differentiation, which play fundamental roles in bone formation and bone resorption, respectively, during bone remodeling. The DPA3G fraction treatment in mesenchymal stem cell line C3H10T1/2 and preosteoblast cell line MC3T3-E1 significantly enhanced cell proliferation and alkaline phosphatase activity in both cell lines compared to the untreated control cells. Furthermore, DPA3G significantly increased mineralized nodule formation and the mRNA expression of osteoblastogenesis markers, Alpl, Runx2, and Bglap, in MC3T3-E1 cells. The DPA3G treatment, however, did not influence osteoclast differentiation in primary-cultured monocytes of mouse bone marrow. Because osteoblastic and osteoclastic precursor cells coexist in vivo, we tested the DPA3G effects under the co-culture condition of MC3T3-E1 cells and monocytes. Remarkably, DPA3G enhanced not only osteoblast differentiation of MC3T3-El cells but also osteoclast differentiation of monocytes, indicating that DPA3G plays a role in the maintenance of the normal bone remodeling balance. Our results suggest that DPA3G may be a good candidate for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Eunkuk Park
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Mun-Chang Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
| | - Chun Whan Choi
- Bio-Center, Gyeonggi Institute of Science & Technology Promotion, Suwon 16229, Korea.
| | - Jeonghyun Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan 31499, Korea.
| | - Ryunjin Lee
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| | - Ji-Won Lee
- Korea Food Research Institute, Seongnam 13539, Korea.
| | - Jin-Hyok Park
- Dongwoodang Pharmacy Co., Ltd., Yeongchen 38819, Korea.
| | - Dam Huh
- Dongwoodang Pharmacy Co., Ltd., Yeongchen 38819, Korea.
| | - Seon-Yong Jeong
- Department of Medical Genetics, Ajou University School of Medicine, Suwon 16499, Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
62
|
Sebastián-Serrano Á, Engel T, de Diego-García L, Olivos-Oré LA, Arribas-Blázquez M, Martínez-Frailes C, Pérez-Díaz C, Millán JL, Artalejo AR, Miras-Portugal MT, Henshall DC, Díaz-Hernández M. Neurodevelopmental alterations and seizures developed by mouse model of infantile hypophosphatasia are associated with purinergic signalling deregulation. Hum Mol Genet 2016; 25:4143-4156. [PMID: 27466191 PMCID: PMC5291194 DOI: 10.1093/hmg/ddw248] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/14/2016] [Accepted: 07/17/2016] [Indexed: 01/14/2023] Open
Abstract
Hypomorphic mutations in the gene encoding the tissue-nonspecific alkaline phosphatase (TNAP) enzyme, ALPL in human or Akp2 in mice, cause hypophosphatasia (HPP), an inherited metabolic bone disease also characterized by spontaneous seizures. Initially, these seizures were attributed to the impairment of GABAergic neurotransmission caused by altered vitamin B6 (vit-B6) metabolism. However, clinical cases in human newborns and adults whose convulsions are refractory to pro-GABAergic drugs but controlled by the vit-B6 administration, suggest that other factors are involved. Here, to evaluate whether neurodevelopmental alterations are underlying the seizures associated to HPP, we performed morphological and functional characterization of postnatal homozygous TNAP null mice, a model of HPP. These analyses revealed that TNAP deficient mice present an increased proliferation of neural precursors, an altered neuronal morphology, and an augmented neuronal activity. We found that these alterations were associated with a partial downregulation of the purinergic P2X7 receptor (P2X7R). Even though deficient P2X7R mice present similar neurodevelopmental alterations, they do not develop neonatal seizures. Accordingly, we found that the additional blockage of P2X7R prevent convulsions and extend the lifespan of mice lacking TNAP. In agreement with these findings, we also found that exogenous administration of ATP or TNAP antagonists induced seizures in adult wild-type mice by activating P2X7R. Finally, our results also indicate that the anticonvulsive effects attributed to vit-B6 may be due to its capacity to block P2X7R. Altogether, these findings suggest that the purinergic signalling regulates the neurodevelopmental alteration and the neonatal seizures associated to HPP.
Collapse
Affiliation(s)
- Álvaro Sebastián-Serrano
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Laura de Diego-García
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Luis A Olivos-Oré
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - Marina Arribas-Blázquez
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - Carlos Martínez-Frailes
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Carmen Pérez-Díaz
- Department of Medicine and Animal Surgery, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Antonio R Artalejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain and
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain
| | - David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork, Ireland
| | - Miguel Díaz-Hernández
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Avda. Puerta de Hierro S/N, Madrid, Spain .,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| |
Collapse
|
63
|
Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016; 87:147-58. [PMID: 27072517 DOI: 10.1016/j.bone.2016.04.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 12/16/2022]
Abstract
The importance of matrix vesicles (MVs) has been repeatedly highlighted in the formation of cartilage, bone, and dentin since their discovery in 1967. These nano-vesicular structures, which are found in the extracellular matrix, are believed to be one of the sites of mineral nucleation that occurs in the organic matrix of the skeletal tissues. In the more recent years, there have been numerous reports on the observation of MV-like particles in calcified vascular tissues that could be playing a similar role. Therefore, here, we review the characteristics MVs possess that enable them to participate in mineral deposition. Additionally, we outline the content of skeletal tissue- and soft tissue-derived MVs, and discuss their key mineralisation mediators that could be targeted for future therapeutic use.
Collapse
Affiliation(s)
- L Cui
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK.
| | - D A Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - C Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - V E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
64
|
Patent highlights: December 2015-January 2016. Pharm Pat Anal 2016; 5:147-53. [PMID: 27088860 DOI: 10.4155/ppa-2016-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
65
|
Abstract
Hypophosphatasia (HPP) results from ALPL mutations leading to deficient activity of the tissue-non-specific alkaline phosphatase isozyme (TNAP) and thereby extracellular accumulation of inorganic pyrophosphate (PPi), a natural substrate of TNAP and potent inhibitor of mineralization. Thus, HPP features rickets or osteomalacia and hypomineralization of teeth. Enzyme replacement using mineral-targeted TNAP from birth prevented severe HPP in TNAP-knockout mice and was then shown to rescue and substantially treat infants and young children with life-threatening HPP. Clinical trials are revealing aspects of HPP pathophysiology not yet fully understood, such as craniosynostosis and muscle weakness when HPP is severe. New treatment approaches are under development to improve patient care.
Collapse
Affiliation(s)
- José Luis Millán
- Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA.
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospital for Children, St. Louis, MO, 63110, USA
- Division of Bone and Mineral Diseases, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, 63110, USA
| |
Collapse
|
66
|
Correia CR, Pirraco RP, Cerqueira MT, Marques AP, Reis RL, Mano JF. Semipermeable Capsules Wrapping a Multifunctional and Self-regulated Co-culture Microenvironment for Osteogenic Differentiation. Sci Rep 2016; 6:21883. [PMID: 26905619 PMCID: PMC4764811 DOI: 10.1038/srep21883] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/11/2016] [Indexed: 01/26/2023] Open
Abstract
A new concept of semipermeable reservoirs containing co-cultures of cells and supporting microparticles is presented, inspired by the multi-phenotypic cellular environment of bone. Based on the deconstruction of the "stem cell niche", the developed capsules are designed to drive a self-regulated osteogenesis. PLLA microparticles functionalized with collagen I, and a co-culture of adipose stem (ASCs) and endothelial (ECs) cells are immobilized in spherical liquified capsules. The capsules are coated with multilayers of poly(L-lysine), alginate, and chitosan nano-assembled through layer-by-layer. Capsules encapsulating ASCs alone or in a co-culture with ECs are cultured in endothelial medium with or without osteogenic differentiation factors. Results show that osteogenesis is enhanced by the co-encapsulation, which occurs even in the absence of differentiation factors. These findings are supported by an increased ALP activity and matrix mineralization, osteopontin detection, and the up regulation of BMP-2, RUNX2 and BSP. The liquified co-capsules also act as a VEGF and BMP-2 cytokines release system. The proposed liquified capsules might be a valuable injectable self-regulated system for bone regeneration employing highly translational cell sources.
Collapse
Affiliation(s)
- Clara R Correia
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana T Cerqueira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
67
|
Li CS, Yang P, Ting K, Aghaloo T, Lee S, Zhang Y, Khalilinejad K, Murphy MC, Pan HC, Zhang X, Wu B, Zhou YH, Zhao Z, Zheng Z, Soo C. Fibromodulin reprogrammed cells: A novel cell source for bone regeneration. Biomaterials 2016; 83:194-206. [PMID: 26774565 DOI: 10.1016/j.biomaterials.2016.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/27/2015] [Accepted: 01/01/2016] [Indexed: 02/05/2023]
Abstract
Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
Collapse
Affiliation(s)
- Chen-Shuang Li
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Pu Yang
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Kang Ting
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tara Aghaloo
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Soonchul Lee
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University, Gyeonggi-do, 463-712, South Korea
| | - Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kambiz Khalilinejad
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Maxwell C Murphy
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsin Chuan Pan
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Benjamin Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yan-Heng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Zhong Zheng
- Dental and Craniofacial Research Institute and Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Chia Soo
- UCLA Division of Plastic Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
68
|
Multiple Functions of MSCA-1/TNAP in Adult Mesenchymal Progenitor/Stromal Cells. Stem Cells Int 2015; 2016:1815982. [PMID: 26839555 PMCID: PMC4709781 DOI: 10.1155/2016/1815982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/30/2015] [Indexed: 01/09/2023] Open
Abstract
Our knowledge about mesenchymal stem cells has considerably grown in the last years. Since the proof of concept of the existence of such cells in the 70s by Friedenstein et al., a growing mass of reports were conducted for a better definition of these cells and for the reevaluation from the term “mesenchymal stem cells” to the term “mesenchymal stromal cells (MSCs).” Being more than a semantic shift, concepts behind this new terminology reveal the complexity and the heterogeneity of the cells grouped in MSC family especially as these cells are present in nearly all adult tissues. Recently, mesenchymal stromal cell antigen-1 (MSCA-1)/tissue nonspecific alkaline phosphatase (TNAP) was described as a new cell surface marker of MSCs from different tissues. The alkaline phosphatase activity of this protein could be involved in wide range of MSC features described below from cell differentiation to immunomodulatory properties, as well as occurrence of pathologies. The present review aims to decipher and summarize the role of TNAP in progenitor cells from different tissues focusing preferentially on brain, bone marrow, and adipose tissue.
Collapse
|
69
|
Durussel J, Liu J, Campbell C, Nam HK, Hatch NE. Bone mineralization-dependent craniosynostosis and craniofacial shape abnormalities in the mouse model of infantile hypophosphatasia. Dev Dyn 2015; 245:175-82. [PMID: 26605996 DOI: 10.1002/dvdy.24370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/23/2015] [Accepted: 11/18/2015] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Inactivating mutations in tissue-nonspecific alkaline phosphatase (TNAP) cause hypophosphatasia (HPP), which is commonly characterized by decreased bone mineralization. Infants and mice with HPP can also develop craniosynostosis and craniofacial shape abnormalities, although the mechanism by which TNAP deficiency causes these craniofacial defects is not yet known. Manifestations of HPP are heterogeneous in severity, and evidence from the literature suggests that much of this variability is mutation dependent. Here, we performed a comprehensive analysis of craniosynostosis and craniofacial shape variation in the Alpl(-/-) mouse model of murine HPP as an initial step toward better understanding penetrance of the HPP craniofacial phenotype. RESULTS Despite similar deficiencies in alkaline phosphatase, Alpl(-/-) mice develop craniosynostosis and a brachycephalic/acrocephalic craniofacial shape of variable penetrance. Only those Alpl(-/-) mice with a severe bone hypomineralization defect develop craniosynostosis and an abnormal craniofacial shape. CONCLUSIONS These results indicate that variability of the HPP phenotype is not entirely dependent upon the type of genetic mutation and level of residual alkaline phosphatase activity. Additionally, despite a severity continuum of the bone hypomineralization phenotype, craniofacial skeletal shape abnormalities and craniosynostosis occur only in the context of severely diminished bone mineralization in the Alpl(-/-) mouse model of HPP.
Collapse
Affiliation(s)
- John Durussel
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Cassandra Campbell
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Hwa K Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
70
|
Choi H, Kim TH, Yun CY, Kim JW, Cho ES. Testicular acid phosphatase induces odontoblast differentiation and mineralization. Cell Tissue Res 2015; 364:95-103. [DOI: 10.1007/s00441-015-2310-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/30/2015] [Indexed: 01/01/2023]
|
71
|
Foster BL, Ao M, Willoughby C, Soenjaya Y, Holm E, Lukashova L, Tran AB, Wimer HF, Zerfas PM, Nociti FH, Kantovitz KR, Quan BD, Sone ED, Goldberg HA, Somerman MJ. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 2015; 78:150-64. [PMID: 25963390 PMCID: PMC4466207 DOI: 10.1016/j.bone.2015.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/21/2015] [Accepted: 05/02/2015] [Indexed: 01/15/2023]
Abstract
Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in endochondral ossification in the cranial base, and craniofacial morphology was unaffected in Bsp(-/-) mice. These analyses confirm a critical role for BSP in processes of cementogenesis and intramembranous ossification of craniofacial bone, whereas endochondral ossification in the cranial base was minimally affected and dentinogenesis was normal in Bsp(-/-) molar teeth. Dissimilar effects of loss of BSP on mineralization of dental and craniofacial tissues suggest local differences in the role of BSP and/or yet to be defined interactions with site-specific factors.
Collapse
Affiliation(s)
- B L Foster
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - M Ao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - C Willoughby
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - Y Soenjaya
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - E Holm
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - L Lukashova
- Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| | - A B Tran
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| | - H F Wimer
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.
| | - P M Zerfas
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health (NIH), 9000 Rockville Pike, 112 Building 28A, MSC 5230, Bethesda, MD 20892, USA.
| | - F H Nociti
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Prosthodontics and Periodontics, Division of Periodontics, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - K R Kantovitz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA; Department of Pediatric Dentistry, School of Dentistry, Campinas State University, Piracicaba, SP 13414-903, Brazil.
| | - B D Quan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada.
| | - E D Sone
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 320A Mining Building, Toronto, ON M5S 3G9, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | - H A Goldberg
- Biomedical Engineering Program, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; School of Dentistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - M J Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), 9000 Rockville Pike, 4120 Building 50, Bethesda, MD 20892, USA.
| |
Collapse
|
72
|
Liu J, Campbell C, Nam HK, Caron A, Yadav MC, Millán JL, Hatch NE. Enzyme replacement for craniofacial skeletal defects and craniosynostosis in murine hypophosphatasia. Bone 2015; 78:203-11. [PMID: 25959417 PMCID: PMC4466206 DOI: 10.1016/j.bone.2015.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 12/30/2022]
Abstract
Hypophosphatasia (HPP) is an inborn-error-of-metabolism disorder characterized by deficient bone and tooth mineralization due to loss-of function mutations in the gene (Alpl) encoding tissue-nonspecific alkaline phosphatase (TNAP). Alpl(-/-) mice exhibit many characteristics seen in infantile HPP including long bone and tooth defects, vitamin B6 responsive seizures and craniosynostosis. Previous reports demonstrated that a mineral-targeted form of TNAP rescues long bone, vertebral and tooth mineralization defects in Alpl(-/-) mice. Here we report that enzyme replacement with mineral-targeted TNAP (asfotase-alfa) also prevents craniosynostosis (the premature fusion of cranial bones) and additional craniofacial skeletal abnormalities in Alpl(-/-) mice. Craniosynostosis, cranial bone volume and density, and craniofacial shape abnormalities were assessed by microscopy, histology, digital caliper measurements and micro CT. We found that craniofacial shape defects, cranial bone mineralization and craniosynostosis were corrected in Alpl(-/-) mice injected daily subcutaneously starting at birth with recombinant enzyme. Analysis of Alpl(-/-) calvarial cells indicates that TNAP deficiency leads to aberrant osteoblastic gene expression and diminished proliferation. Some but not all of these cellular abnormalities were rescued by treatment with inorganic phosphate. These results confirm an essential role for TNAP in craniofacial skeletal development and demonstrate the efficacy of early postnatal mineral-targeted enzyme replacement for preventing craniofacial abnormalities including craniosynostosis in murine infantile HPP.
Collapse
Affiliation(s)
- Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Cassie Campbell
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Manisha C Yadav
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Nan E Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA..
| |
Collapse
|
73
|
Liu C, Niu Y, Zhou X, Xu X, Yang Y, Zhang Y, Zheng L. Cell cycle control, DNA damage repair, and apoptosis-related pathways control pre-ameloblasts differentiation during tooth development. BMC Genomics 2015; 16:592. [PMID: 26265206 PMCID: PMC4534026 DOI: 10.1186/s12864-015-1783-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/16/2015] [Indexed: 02/05/2023] Open
Abstract
Background Ameloblast differentiation is the most critical stepwise process in amelogenesis, and it is controlled by precise molecular events. To better understand the mechanism controlling pre-ameloblasts (PABs) differentiation into secretory ameloblasts (SABs), a more precise identification of molecules and signaling networks will elucidate the mechanisms governing enamel formation and lay a foundation for enamel regeneration. Results We analyzed transcriptional profiles of human PABs and SABs. From a total of 28,869 analyzed transcripts, we identified 923 differentially expressed genes (DEGs) with p < 0.05 and Fold-change > 2. Among the DEGs, 647 genes showed elevated expression in PABs compared to SABs. Notably, 38 DEGs displayed greater than eight-fold changes. Comparative analysis revealed that highly expressed genes in PABs were involved in cell cycle control, DNA damage repair and apoptosis, while highly expressed genes in SABs were related to cell adhesion and extracellular matrix. Moreover, coexpression network analysis uncovered two highly conserved sub-networks contributing to differentiation, containing transcription regulators (RUNX2, ETV1 and ETV5), solute carrier family members (SLC15A1 and SLC7A11), enamel matrix protein (MMP20), and a polymodal excitatory ion channel (TRPA1). Conclusions By combining comparative analysis and coexpression networks, this study provides novel biomarkers and research targets for ameloblast differentiation and the potential for their application in enamel regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1783-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Yulong Niu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, PR China.
| | - Yan Zhang
- Department of Orofacial Sciences, University of California, San Francisco, CA, 94143, USA.
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China.
| |
Collapse
|
74
|
Nahabet EH, Gatherwright J, Vockley J, Henderson N, Tomei KL, Grigorian AP, Kaminski B, Bass N, Selman WR, Lakin GE. Postnatal Pancraniosynostosis in a Patient With Infantile Hypophosphatasia. Cleft Palate Craniofac J 2015; 53:741-744. [PMID: 26171568 DOI: 10.1597/15-027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypophosphatasia is a rare metabolic bone disorder that predisposes patients to craniosynostosis. Typically, patients born with hypophosphatasia will exhibit fused cranial sutures at birth. This is the first reported case of delayed onset of pancraniosynostosis in a patient with infantile hypophosphatasia. The severity of onset and delayed presentation in this patient are of interest and should give pause to those care providers who treat and evaluate patients with hypophosphatasia.
Collapse
|
75
|
Gasque KCS, Foster BL, Kuss P, Yadav MC, Liu J, Kiffer-Moreira T, van Elsas A, Hatch N, Somerman MJ, Millán JL. Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl-/- mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 2015; 72:137-47. [PMID: 25433339 PMCID: PMC4283789 DOI: 10.1016/j.bone.2014.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/16/2014] [Accepted: 11/19/2014] [Indexed: 12/13/2022]
Abstract
Hypophosphatasia (HPP) results from ALPL gene mutations, which lead to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP), and accumulation of inorganic pyrophosphate, a potent inhibitor of mineralization that is also a natural substrate of TNAP, in the extracellular space. HPP causes mineralization disorders including soft bones (rickets or osteomalacia) and defects in teeth and periodontal tissues. Enzyme replacement therapy using mineral-targeting recombinant TNAP has proven effective in preventing skeletal and dental defects in TNAP knockout (Alpl(-/-)) mice, a model for life-threatening HPP. Here, we show that the administration of a soluble, intestinal-like chimeric alkaline phosphatase (ChimAP) improves the manifestations of HPP in Alpl(-/-) mice. Mice received daily subcutaneous injections of ChimAP at doses of 1, 8 or 16 mg/kg, from birth for up to 53 days. Lifespan and body weight of Alpl(-/-) mice were normalized, and vitamin B6-associated seizures were absent with 16 mg/kg/day of ChimAP. Radiographs, μCT and histological analyses documented improved mineralization in cortical and trabecular bone and secondary ossification centers in long bones of ChimAP16-treated mice. There was no evidence of craniosynostosis in the ChimAP16-treated mice and we did not detect ectopic calcification by radiography and histology in the aortas, stomachs, kidneys or lungs in any of the treatment groups. Molar tooth development and function improved with the highest ChimAP dose, including enamel, dentin, and tooth morphology. Cementum remained deficient and alveolar bone mineralization was reduced compared to controls, though ChimAP-treated Alpl(-/-) mice featured periodontal attachment and retained teeth. This study provides the first evidence for the pharmacological efficacy of ChimAP for use in the treatment of skeletal and dental manifestations of HPP.
Collapse
Affiliation(s)
- Kellen C S Gasque
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Brian L Foster
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pia Kuss
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Manisha C Yadav
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Jin Liu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Tina Kiffer-Moreira
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Martha J Somerman
- Laboratory of Oral Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
76
|
Alassaf A, Masri A, Mornet E, Odeh R, Al-Qudah AA. Pseudotumor Cerebri as a Rare Presentation of Infantile Hypophosphatasia: A Case Report. AACE Clin Case Rep 2015. [DOI: 10.4158/ep14476.cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
77
|
Hou X, Yu Q, Zeng F, Ye J, Wu S. A ratiometric fluorescent probe for in vivo tracking of alkaline phosphatase level variation resulting from drug-induced organ damage. J Mater Chem B 2014; 3:1042-1048. [PMID: 32261982 DOI: 10.1039/c4tb01744g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Clinical drug-induced organ toxicity and damage have been recognized as an important public health issue, and an effective approach capable of in vivo detection of biomarkers resulting from drug-induced organ damage is being actively pursued. Herein, we demonstrate a ratiometric fluorescent probe that can trace the variation in alkaline phosphatase (ALP, an organ damage biomarker) levels spatially in vivo. The probe was synthesized by incorporating a phosphate group and an amine-N-oxide group on a 1,8-naphthalimide derivative. The presence of ALP cleaves the phosphate group from naphthalimide and remarkably alters the probe's photophysical properties, thus achieving ratiometric detection of ALP. The incorporation of amine-N-oxide ensures excellent water solubility and biocompatibility, which guarantees the ratiometric detection of ALP in aqueous media and in the cells overexpressed with ALP. With a detection limit of 0.38 U L-1, the probe was successfully used in detecting ALP in human serum samples. Moreover, the probe can be employed to monitor and spatially map the endogenous variation in ALP levels in zebrafishes. This is the first observation, to our knowledge, of organ-scale ALP pattern in vivo as a result of clinical drug (APAP) induced damage.
Collapse
Affiliation(s)
- Xianfeng Hou
- College of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|