51
|
Loong CKP, Zhou HX, Chase PB. Familial hypertrophic cardiomyopathy related E180G mutation increases flexibility of human cardiac α-tropomyosin. FEBS Lett 2012; 586:3503-7. [PMID: 22958892 DOI: 10.1016/j.febslet.2012.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/02/2012] [Accepted: 08/03/2012] [Indexed: 01/10/2023]
Abstract
α-Tropomyosin (αTm) is central to Ca(2+)-regulation of cardiac muscle contraction. The familial hypertrophic cardiomyopathy mutation αTm E180G enhances Ca(2+)-sensitivity in functional assays. To investigate the molecular basis, we imaged single molecules of human cardiac αTm E180G by direct probe atomic force microscopy. Analyses of tangent angles along molecular contours yielded persistence length corresponding to ~35% increase in flexibility compared to wild-type. Increased flexibility of the mutant was confirmed by fitting end-to-end length distributions to the worm-like chain model. This marked increase in flexibility can significantly impact systolic and possibly diastolic phases of cardiac contraction, ultimately leading to hypertrophy.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | |
Collapse
|
52
|
Ochala J, Gokhin DS, Pénisson-Besnier I, Quijano-Roy S, Monnier N, Lunardi J, Romero NB, Fowler VM. Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Hum Mol Genet 2012; 21:4473-85. [PMID: 22798622 DOI: 10.1093/hmg/dds289] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In humans, congenital myopathy-linked tropomyosin mutations lead to skeletal muscle dysfunction, but the cellular and molecular mechanisms underlying such dysfunction remain obscure. Recent studies have suggested a unifying mechanism by which tropomyosin mutations partially inhibit thin filament activation and prevent proper formation and cycling of myosin cross-bridges, inducing force deficits at the fiber and whole-muscle levels. Here, we aimed to verify this mechanism using single membrane-permeabilized fibers from patients with three tropomyosin mutations (TPM2-null, TPM3-R167H and TPM2-E181K) and measuring a broad range of parameters. Interestingly, we identified two divergent, mutation-specific pathophysiological mechanisms. (i) The TPM2-null and TPM3-R167H mutations both decreased cooperative thin filament activation in combination with reductions in the myosin cross-bridge number and force production. The TPM3-R167H mutation also induced a concomitant reduction in thin filament length. (ii) In contrast, the TPM2-E181K mutation increased thin filament activation, cross-bridge binding and force generation. In the former mechanism, modulating thin filament activation by administering troponin activators (CK-1909178 and EMD 57033) to single membrane-permeabilized fibers carrying tropomyosin mutations rescued the thin filament activation defect associated with the pathophysiology. Therefore, administration of troponin activators may constitute a promising therapeutic approach in the future.
Collapse
Affiliation(s)
- Julien Ochala
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Affiliation(s)
- Iacopo Olivotto
- From the Referral Center for Cardiomyopathies, Careggi University Hospital (I.O., F.C.) and Department of Physiology, University of Florence (C.P.), Florence, Italy; and Heart Science Center, Imperial College London, Harefield, United Kingdom (M.H.Y.)
| | - Franco Cecchi
- From the Referral Center for Cardiomyopathies, Careggi University Hospital (I.O., F.C.) and Department of Physiology, University of Florence (C.P.), Florence, Italy; and Heart Science Center, Imperial College London, Harefield, United Kingdom (M.H.Y.)
| | - Corrado Poggesi
- From the Referral Center for Cardiomyopathies, Careggi University Hospital (I.O., F.C.) and Department of Physiology, University of Florence (C.P.), Florence, Italy; and Heart Science Center, Imperial College London, Harefield, United Kingdom (M.H.Y.)
| | - Magdi H. Yacoub
- From the Referral Center for Cardiomyopathies, Careggi University Hospital (I.O., F.C.) and Department of Physiology, University of Florence (C.P.), Florence, Italy; and Heart Science Center, Imperial College London, Harefield, United Kingdom (M.H.Y.)
| |
Collapse
|
54
|
Loong CKP, Zhou HX, Chase PB. Persistence length of human cardiac α-tropomyosin measured by single molecule direct probe microscopy. PLoS One 2012; 7:e39676. [PMID: 22737252 PMCID: PMC3380901 DOI: 10.1371/journal.pone.0039676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
α-Tropomyosin (αTm) is the predominant tropomyosin isoform in adult human heart and constitutes a major component in Ca²+-regulated systolic contraction of cardiac muscle. We present here the first direct probe images of WT human cardiac αTm by atomic force microscopy, and quantify its mechanical flexibility with three independent analysis methods. Single molecules of bacterially-expressed human cardiac αTm were imaged on poly-lysine coated mica and their contours were analyzed. Analysis of tangent-angle (θ(s)) correlation along molecular contours, second moment of tangent angles (<θ²(s)>), and end-to-end length (L(e-e)) distributions respectively yielded values of persistence length (L(p)) of 41-46 nm, 40-45 nm, and 42-52 nm, corresponding to 1-1.3 molecular contour lengths (L(c)). We also demonstrate that a sufficiently large population, with at least 100 molecules, is required for a reliable L(p) measurement of αTm in single molecule studies. Our estimate that L(p) for αTm is only slightly longer than L(c) is consistent with a previous study showing there is little spread of cooperative activation into near-neighbor regulatory units of cardiac thin filaments. The L(p) determined here for human cardiac αTm perhaps represents an evolutionarily tuned optimum between Ca²+ sensitivity and cooperativity in cardiac thin filaments and likely constitutes an essential parameter for normal function in the human heart.
Collapse
Affiliation(s)
- Campion K. P. Loong
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (PBC) (CKPL)
| | - Huan-Xiang Zhou
- Department of Physics, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - P. Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (PBC) (CKPL)
| |
Collapse
|
55
|
Loong CKP, Badr MA, Chase PB. Tropomyosin flexural rigidity and single ca(2+) regulatory unit dynamics: implications for cooperative regulation of cardiac muscle contraction and cardiomyocyte hypertrophy. Front Physiol 2012; 3:80. [PMID: 22493584 PMCID: PMC3318232 DOI: 10.3389/fphys.2012.00080] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/18/2012] [Indexed: 01/04/2023] Open
Abstract
Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca2+, troponin, and tropomyosin on the thin filament. While Ca2+ regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca2+ regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease.
Collapse
Affiliation(s)
- Campion K P Loong
- Department of Biological Science, The Florida State University Tallahassee, FL, USA
| | | | | |
Collapse
|
56
|
Micromechanical thermal assays of Ca2+-regulated thin-filament function and modulation by hypertrophic cardiomyopathy mutants of human cardiac troponin. J Biomed Biotechnol 2012; 2012:657523. [PMID: 22500102 PMCID: PMC3303698 DOI: 10.1155/2012/657523] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
Microfabricated thermoelectric controllers can be employed to investigate mechanisms underlying myosin-driven sliding of Ca(2+)-regulated actin and disease-associated mutations in myofilament proteins. Specifically, we examined actin filament sliding-with or without human cardiac troponin (Tn) and α-tropomyosin (Tm)-propelled by rabbit skeletal heavy meromyosin, when temperature was varied continuously over a wide range (~20-63°C). At the upper end of this temperature range, reversible dysregulation of thin filaments occurred at pCa 9 and 5; actomyosin function was unaffected. Tn-Tm enhanced sliding speed at pCa 5 and increased a transition temperature (T(t)) between a high activation energy (E(a)) but low temperature regime and a low E(a) but high temperature regime. This was modulated by factors that alter cross-bridge number and kinetics. Three familial hypertrophic cardiomyopathy (FHC) mutations, cTnI R145G, cTnI K206Q, and cTnT R278C, cause dysregulation at temperatures ~5-8°C lower; the latter two increased speed at pCa 5 at all temperatures.
Collapse
|
57
|
Detection of target ssDNA using a microfabricated Hall magnetometer with correlated optical readout. J Biomed Biotechnol 2012; 2012:492730. [PMID: 22496610 PMCID: PMC3303874 DOI: 10.1155/2012/492730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/20/2011] [Indexed: 01/12/2023] Open
Abstract
Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs), is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead) target DNA in the presence of 36 μM nontarget (noncomplementary) DNA (<10 ppm target DNA) using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC) diagnostics and subsequent medical care.
Collapse
|
58
|
Facilitated cross-bridge interactions with thin filaments by familial hypertrophic cardiomyopathy mutations in α-tropomyosin. J Biomed Biotechnol 2011; 2011:435271. [PMID: 22187526 PMCID: PMC3237018 DOI: 10.1155/2011/435271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/24/2011] [Indexed: 12/01/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is a disease of cardiac sarcomeres. To identify molecular mechanisms underlying FHC pathology, functional and structural differences in three FHC-related mutations in recombinant α-Tm (V95A, D175N, and E180G) were characterized using both conventional and modified in vitro motility assays and circular dichroism spectroscopy. Mutant Tm's exhibited reduced α-helical structure and increased unordered structure. When thin filaments were fully occupied by regulatory proteins, little or no motion was detected at pCa 9, and maximum speed (pCa 5) was similar for all tropomyosins. Ca2+-responsiveness of filament sliding speed was increased either by increased pCa50 (V95A), reduced cooperativity n (D175N), or both (E180G). When temperature was increased, thin filaments with E180G exhibited dysregulation at temperatures ~10°C lower, and much closer to body temperature, than WT. When HMM density was reduced, thin filaments with D175N required fewer motors to initiate sliding or achieve maximum sliding speed.
Collapse
|
59
|
Asumda FZ, Chase PB. Nuclear cardiac troponin and tropomyosin are expressed early in cardiac differentiation of rat mesenchymal stem cells. Differentiation 2011; 83:106-15. [PMID: 22364878 DOI: 10.1016/j.diff.2011.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 08/31/2011] [Accepted: 10/10/2011] [Indexed: 01/22/2023]
Abstract
Nuclear actin - which is immunologically distinct from cytoplasmic actin - has been documented in a number of differentiated cell types, and cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) have been detected in association with nuclei of adult human cardiac myocytes. It is not known whether these and related proteins are present in undifferentiated stem cells, or when they appear in cardiomyogenic cells following differentiation. We first tested the hypothesis that nuclear actin and cardiac isoforms of troponin C (cTnC) and tropomyosin (cTm) are present along with cTnI and cTnT in nuclei of isolated, neonatal rat cardiomyocytes in culture. We also tested the hypothesis that of these five proteins, only actin is present in nuclei of multipotent, bone marrow-derived mesenchymal stem cells (BM-MSCs) from adult rats in culture, but that cTnC, cTnI, cTnT and cTm appear early and uniquely following cardiomyogenic differentiation. Here we show that nuclear actin is present within nuclei of both ventricular cardiomyocytes and undifferentiated, multipotent BM-MSCs. We furthermore show that cTnC, cTnI, cTnT and cTm are not only present in myofilaments of ventricular cardiomyocytes in culture but are also within their nuclei; significantly, these four proteins appear between days 3 and 5 in both myofilaments and nuclei of BM-MSCs treated to differentiate into cardiomyogenic cells. These observations indicate that cardiac troponin and tropomyosin could have important cellular function(s) beyond Ca(2+)-regulation of contraction. While the roles of nuclear-associated actin, troponin subunits and tropomyosin in cardiomyocytes are not known, we anticipate that the BM-MSC culture system described here will be useful for elucidating their function(s), which likely involve cardiac-specific, Ca(2+)-dependent signaling in the nucleus.
Collapse
Affiliation(s)
- Faizal Z Asumda
- Department of Biological Science and Program in Molecular Biophysics, Florida State University, FL 32306-4295, USA.
| | | |
Collapse
|
60
|
Thin filament-reconstituted skinned muscle fibers for the study of muscle physiology. J Biomed Biotechnol 2011; 2011:486021. [PMID: 22131807 PMCID: PMC3216491 DOI: 10.1155/2011/486021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/12/2011] [Indexed: 11/20/2022] Open
Abstract
We review the use of thin filament-reconstituted muscle fibers in the study of muscle physiology. Thin filament extraction and reconstitution protocol is a powerful technique to study the role of each component of the thin filament. It is also useful for studying the properties of genetically modified molecules such as actin and tropomyosin. We also review the combination of this protocol with sinusoidal analysis, which will provide a solid technique for determining the effect of regulatory proteins on actomyosin interaction and concomitant cross-bridge kinetics. We suggest that thin filament-reconstituted muscle fibers are an ideal system for studying muscle physiology especially when gene modifications of actin or tropomyosin are involved.
Collapse
|
61
|
The 3-state model of muscle regulation revisited: is a fourth state involved? J Muscle Res Cell Motil 2011; 32:203-8. [DOI: 10.1007/s10974-011-9263-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
62
|
Muthu P, Wang L, Yuan CC, Kazmierczak K, Huang W, Hernandez OM, Kawai M, Irving TC, Szczesna-Cordary D. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction. FASEB J 2011; 25:4394-405. [PMID: 21885653 DOI: 10.1096/fj.11-191973] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-Δ43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing (≈ 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I(1,1)/I(1,0), indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-Δ43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-Δ43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.
Collapse
Affiliation(s)
- Priya Muthu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Campbell SG, McCulloch AD. Multi-scale computational models of familial hypertrophic cardiomyopathy: genotype to phenotype. J R Soc Interface 2011; 8:1550-61. [PMID: 21831889 DOI: 10.1098/rsif.2011.0184] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an inherited disorder affecting roughly one in 500 people. Its hallmark is abnormal thickening of the ventricular wall, leading to serious complications that include heart failure and sudden cardiac death. Treatment is complicated by variation in the severity, symptoms and risks for sudden death within the patient population. Nearly all of the genetic lesions associated with FHC occur in genes encoding sarcomeric proteins, indicating that defects in cardiac muscle contraction underlie the condition. Detailed biophysical data are increasingly available for computational analyses that could be used to predict heart phenotypes based on genotype. These models must integrate the dynamic processes occurring in cardiac cells with properties of myocardial tissue, heart geometry and haemodynamic load in order to predict strain and stress in the ventricular walls and overall pump function. Recent advances have increased the biophysical detail in these models at the myofilament level, which will allow properties of FHC-linked mutant proteins to be accurately represented in simulations of whole heart function. The short-term impact of these models will be detailed descriptions of contractile dysfunction and altered myocardial strain patterns at the earliest stages of the disease-predictions that could be validated in genetically modified animals. Long term, these multi-scale models have the potential to improve clinical management of FHC through genotype-based risk stratification and personalized therapy.
Collapse
Affiliation(s)
- Stuart G Campbell
- Department of Bioengineering, University of California San Diego, , 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | | |
Collapse
|
64
|
Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin. Biosens Bioelectron 2011; 26:4538-44. [DOI: 10.1016/j.bios.2011.05.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 11/20/2022]
|