51
|
Zhang W, Zhang M, Wang Z, Cheng Y, Liu H, Zhou Z, Han B, Chen B, Yao H, Chao J. Neogambogic acid prevents silica-induced fibrosis via inhibition of high-mobility group box 1 and MCP-1-induced protein 1. Toxicol Appl Pharmacol 2016; 309:129-40. [PMID: 27616297 DOI: 10.1016/j.taap.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/13/2016] [Accepted: 09/06/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Silicosis is a systemic disease caused by inhaling silicon dioxide (SiO2); early stages are characterized by alveolar inflammation, and later stages are characterized by progressive lung fibrosis. Mounting evidence indicates that high-mobility group box 1 (HMGB1) is involved in pulmonary fibrosis. Whether neogambogic acid (NGA) inhibits macrophage and fibroblast activation induced by SiO2 by targeting HMGB1 remains unclear. METHODS AND RESULTS Experiments using cultured mouse macrophages (RAW264.7 cells) demonstrated that SiO2 treatment induces the expression of HMGB1 in a time- and dose-dependent manner via mitogen-activated protein kinases (MAPKs) and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway; in turn, this expression causes macrophage apoptosis and fibroblast activation. Pretreating macrophages with NGA inhibited the HMGB1 expression induced by SiO2 and attenuated both macrophage apoptosis and fibroblast activation. Moreover, NGA directly inhibited MCP-1-induced protein 1 (MCPIP1) expression, as well as markers of fibroblast activation and migration induced by SiO2. Furthermore, the effects of NGA on macrophages and fibroblasts were confirmed in vivo by exposing mice to SiO2. CONCLUSION NGA can prevent SiO2-induced macrophage activation and apoptosis via HMGB1 inhibition and SiO2-induced fibrosis via the MCPIP1 pathway. Targeting HMGB1 and MCPIP1 with NGA could provide insights into the potential development of a therapeutic approach for alleviating the inflammation and fibrosis induced by SiO2.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Mei Zhang
- Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Zhongjiang Wang
- Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yusi Cheng
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Haijun Liu
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zewei Zhou
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China.
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China; Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China; Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
52
|
Luo M, Liu Q, He M, Yu Z, Pi R, Li M, Yang X, Wang S, Liu A. Gartanin induces cell cycle arrest and autophagy and suppresses migration involving PI3K/Akt/mTOR and MAPK signalling pathway in human glioma cells. J Cell Mol Med 2016; 21:46-57. [PMID: 27491646 PMCID: PMC5192955 DOI: 10.1111/jcmm.12937] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/23/2016] [Indexed: 01/05/2023] Open
Abstract
In central nervous system, glioma is the most common primary brain tumour. The diffuse migration and rapid proliferation are main obstacles for successful treatment. Gartanin, a natural xanthone of mangosteen, suppressed proliferation, migration and colony formation in a time- and concentration-dependent manner in T98G glioma cells but not in mouse normal neuronal HT22 cells. Gartanin, at low micromole, led to cell cycle arrest in G1 phase accompanied by inhibited expression level of G1 cell cycle regulatory proteins cyclin D1, while increased expression level of cyclin-dependent kinase inhibitor p27Kip1. In addition, the secretion and activity of matrix metalloproteinases 2/9 (MMP-2/-9) were significantly suppressed in T98G cells treated with gartanin, and it might result from modulating mitogen-activated protein kinases (MAPK) signalling pathway in T98G glioma cells. Moreover, gartanin significantly induced autophagy in T98G cells and increased GFP-LC3 punctate fluorescence accompanied by the increased expression level of Beclin 1 and LC3-II, while suppressed expression level of p62. Gartanin treatment resulted in obvious inhibition of PI3K/Akt/mTOR signalling pathway, which is important in modulating autophagy. Notably, gartanin-mediated anti-viability was significantly abrogated by autophagy inhibitors including 3-methyladenine (3-MA) and chloroquine (CQ). These results indicate that anti-proliferation effect of gartanin in T98G cells is most likely via cell cycle arrest modulated by autophagy, which is regulated by PI3K/Akt/mTOR signalling pathway, while anti-migration effect is most likely via suppression of MMP-2/-9 activity which is involved in MAPK signalling pathway.
Collapse
Affiliation(s)
- Ming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingyu Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mingliang He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Rongbiao Pi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-dementia Drugs of Guangdong, Guangzhou, China
| | - Min Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaohong Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-dementia Drugs of Guangdong, Guangzhou, China
| | - Shengnan Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-dementia Drugs of Guangdong, Guangzhou, China
| | - Anmin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
53
|
Yu X, Zhao Q, Zhang H, Fan C, Zhang X, Xie Q, Xu C, Liu Y, Wu X, Han Q, Zhang H. Gambogenic acid inhibits LPS-simulated inflammatory response by suppressing NF-κB and MAPK in macrophages. Acta Biochim Biophys Sin (Shanghai) 2016; 48:454-61. [PMID: 27025602 DOI: 10.1093/abbs/gmw021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 01/21/2023] Open
Abstract
Inflammation is a response of body tissues to injury and infection. Compounds that can inhibit inflammation have been shown to have potential therapeutic clinical application. Gambogenic acid (GEA) has potent antitumor and anti-inflammatory activities. Herein, the molecular mechanisms of GEA's anti-inflammatory effect were investigated in lipopolysaccharide (LPS)-stimulated macrophage cells. The results showed that pretreatment with GEA could markedly inhibit interleukin (IL)-1α, IL-1β, tumor necrosis factor-α, IFN-β, IL-12b, and IL-23a production in a dose-dependent manner in LPS-induced model. Furthermore, this drug significantly reduced the release of nitric oxide (NO), and impaired the protein level of inducible NO synthase and the cyclooxygenase 2. The finding also showed that the effect of GEA may be related to the suppression of the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathway. These results indicate that GEA could suppress LPS-simulated inflammatory response partially by attenuating NO synthesis and NF-κB and MAPK activation, suggesting that it may become a potent therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xianjun Yu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiwei Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cunxian Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xixi Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qun Xie
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chengxian Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongbo Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxia Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quanbin Han
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Haibing Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
54
|
Yu X, Ruan X, Zhang J, Zhao Q. Celastrol Induces Cell Apoptosis and Inhibits the Expression of the AML1-ETO/C-KIT Oncoprotein in t(8;21) Leukemia. Molecules 2016; 21:molecules21050574. [PMID: 27144550 PMCID: PMC6274014 DOI: 10.3390/molecules21050574] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/16/2022] Open
Abstract
Resistance to chemotherapy is a major challenge to improving overall survival in Acute Myeloid Leukemia (AML). Therefore, the development of innovative therapies and the identification of more novel agents for AML are urgently needed. Celastrol, a compound extracted from the Chinese herb Tripterygium wilfordii Hook, exerts anticancer activity. We investigated the effect of celastrol in the t(8;21) AML cell lines Kasumi-1 and SKNO-1. We demonstrated that inhibition of cell proliferation activated caspases and disrupted mitochondrial function. In addition, we found that celastrol downregulated the AML1-ETO fusion protein, therefore downregulating C-KIT kinases and inhibiting AKT, STAT3 and Erk1/2. These findings provide clear evidence that celastrol might provide clinical benefits to patients with t(8;21) leukemia.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit/biosynthesis
- Down-Regulation/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Pentacyclic Triterpenes
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins c-kit/biosynthesis
- RUNX1 Translocation Partner 1 Protein
- Transcription Factors/biosynthesis
- Translocation, Genetic
- Triterpenes/therapeutic use
Collapse
Affiliation(s)
- Xianjun Yu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China.
| | - Xuzhi Ruan
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Jingxuan Zhang
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China.
| | - Qun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
55
|
Jing X, Cheng W, Wang S, Li P, He L. Resveratrol induces cell cycle arrest in human gastric cancer MGC803 cells via the PTEN-regulated PI3K/Akt signaling pathway. Oncol Rep 2015; 35:472-8. [PMID: 26530632 DOI: 10.3892/or.2015.4384] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022] Open
Abstract
Resveratrol is a polyphenolic compound that is extracted from Polygonum cuspidatum and is used in traditional Chinese medicine. Previous data have shown that resveratrol inhibits the growth of human gastric cancer. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and trypan blue assays showed that resveratrol significantly decreased the survival rate of MGC803 cells in a concentration- and time-dependent manner. Our flow cytometric analysis showed that resveratrol treatment arrested the cells at the G0/G1 phase of the cell cycle. Furthermore, western blotting demonstrated that resveratrol decreased the protein expression of phospho-glycogen synthase kinase 3β (p-GSK3β), cyclin D1, phospho-phosphatase and tensin homologue (p-PTEN), phospho-phosphatidylinositol 3'-OH kinase (p-PI3K), and phospho-protein kinase B (p-PKB/Akt). We also found that resveratrol inhibited the progression of the cell cycle in MGC803 cells by repressing p-PI3K and p-Akt expression. Meanwhile, resveratrol did not decrease the phosphorylation level of Akt when the PTEN gene expression was knocked down by an siRNA in the MGC803 cells. Taken together, these results suggest that resveratrol induced cell cycle arrest in human gastric cancer MGC803 cells by regulating the PTEN/PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoping Jing
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Weiwei Cheng
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Shiying Wang
- Department of General Surgery, Putuo Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Pin Li
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| | - Li He
- Department of Traditional Chinese Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, P.R. China
| |
Collapse
|
56
|
Chen F, Zhang XH, Hu XD, Zhang W, Lou ZC, Xie LH, Liu PD, Zhang HQ. Enhancement of radiotherapy by ceria nanoparticles modified with neogambogic acid in breast cancer cells. Int J Nanomedicine 2015; 10:4957-69. [PMID: 26316742 PMCID: PMC4542556 DOI: 10.2147/ijn.s82980] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy is one of the main strategies for cancer treatment but has significant challenges, such as cancer cell resistance and radiation damage to normal tissue. Radiosensitizers that selectively increase the susceptibility of cancer cells to radiation can enhance the effectiveness of radiotherapy. We report here the development of a novel radiosensitizer consisting of monodispersed ceria nanoparticles (CNPs) covered with the anticancer drug neogambogic acid (NGA-CNPs). These were used in conjunction with radiation in MCF-7 breast cancer cells, and the efficacy and mechanisms of action of this combined treatment approach were evaluated. NGA-CNPs potentiated the toxic effects of radiation, leading to a higher rate of cell death than either treatment used alone and inducing the activation of autophagy and cell cycle arrest at the G2/M phase, while pretreatment with NGA or CNPs did not improve the rate of radiation-induced cancer cells death. However, NGA-CNPs decreased both endogenous and radiation-induced reactive oxygen species formation, unlike other nanomaterials. These results suggest that the adjunctive use of NGA-CNPs can increase the effectiveness of radiotherapy in breast cancer treatment by lowering the radiation doses required to kill cancer cells and thereby minimizing collateral damage to healthy adjacent tissue.
Collapse
Affiliation(s)
- Feng Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiao Hong Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Xiao Dan Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Wei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Zhi Chao Lou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Li Hua Xie
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Pei Dang Liu
- Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| | - Hai Qian Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China ; Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
57
|
Cao W, Liu Y, Zhang R, Zhang B, Wang T, Zhu X, Mei L, Chen H, Zhang H, Ming P, Huang L. Homoharringtonine induces apoptosis and inhibits STAT3 via IL-6/JAK1/STAT3 signal pathway in Gefitinib-resistant lung cancer cells. Sci Rep 2015; 5:8477. [PMID: 26166037 PMCID: PMC4499885 DOI: 10.1038/srep08477] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/22/2015] [Indexed: 12/25/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are mostly used in non-small cell lung cancer (NSCLC) treatment. Unfortunately, treatment with Gefitinib for a period of time will result in drug resistance and cause treatment failure in clinic. Therefore, exploring novel compounds to overcome this resistance is urgently required. Here we investigated the antitumor effect of homoharringtonine (HHT), a natural compound extracted from Cephalotaxus harringtonia, on Gefitinib-resistant NSCLC cell lines in vitro and in vivo. NCI-H1975 cells with EGFR T790M mutation are more sensitive to HHT treatment compared with that of A549 cells with wild type EGFR. HHT inhibited cells growth, cell viability and colony formation, as well as induced cell apoptosis through mitochondria pathway. Furthermore, we explored the mechanism of HHT inhibition on NSCLC cells. Higher level of interleukin-6 (IL-6) existed in lung cancer patients and mutant EGFR and TGFβ signal requires the upregulation of IL-6 through the gp130/JAK pathway to overactive STAT3, an oncogenic protein which has been considered as a potential target for cancer therapy. HHT reversiblely inhibited IL-6-induced STAT3 Tyrosine 705 phosphorylation and reduced anti-apoptotic proteins expression. Gefitinib-resistant NSCLC xenograft tests also confirmed the antitumor effect of HHT in vivo. Consequently, HHT has the potential in Gefitinib-resistant NSCLC treatment.
Collapse
Affiliation(s)
- Wei Cao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Ying Liu
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ran Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Teng Wang
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianbing Zhu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Lin Mei
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Hongbo Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Hongling Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Pinghong Ming
- Laboratory of Zhuhai People’s Hospital, Zhuhai, Guangdong, 519000, China
| | - Laiqiang Huang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- The Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Health Science and Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
58
|
He Y, Ding J, Lin Y, Li J, Shi Y, Wang J, Zhu Y, Wang K, Hu X. Gambogenic acid alters chemosensitivity of breast cancer cells to Adriamycin. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 15:181. [PMID: 26066793 PMCID: PMC4486132 DOI: 10.1186/s12906-015-0710-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/05/2015] [Indexed: 12/26/2022]
Abstract
Background Breast cancer remains a major health problem worldwide, and is becoming increasingly resistant to traditional drug treatments. For instance, Adriamycin (ADR) is beneficial for the treatment of breast cancer. However, its wide application often leads to drug resistance in clinic practice, which results in treatment failure. Gambogenic acid (GNA), a polyprenylated xanthone isolated from the traditional medicine gamboge, has been reported to effectively inhibit the survival and proliferation of cancer cells. Its effects on ADR resistance have not yet been reported in breast cancer. In this study, we examined the ability of GNA to modulate ADR resiatance and the molecular mechanisms underlying this process using a cell based in vitro system. Methods An MTT assay was used to evaluate the inhibitory effect of the drugs on the growth of MCF-7 and MCF-7/ADR cell lines. The effects of drugs on apoptosis were detected using Annexin-V APC/7-AAD double staining. The expression of apoptosis-related proteins and the proteins in the PTEN/PI3K/AKT pathway were evaluated by Western blot analysis. Results In the MCF-7/ADR cell lines, the IC50 (half maximal inhibitory concentration) of the group that received combined treatment with GNA and ADR was significantly lower than that in the ADR group, and this value decreased with an increasing concentration of GNA. In parallel, GNA treatment increased the chemosensitivity of breast cancer cells to ADR. The cell apoptosis and cell cycle anaysis indicated that the anti-proliferative effect of GNA is in virtue of increased G0/G1 arrest and potentiated apoptosis. When combined with GNA in MCF-7/ADR cell lines, the expression levels of the tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome ten) and the apoptosis-related proteins caspase-3 and capsese-9 were significantly increased, while the expression of phosphorylated AKT was decreased. Conclusions Our study has indicated a potential role for GNA to increase the chemosensitivity of breast cancer cells to ADR. This modulatory role was mediated by suppression of the PTEN/PI3K/AKT pathway that led to apoptosis in MCF-7/ADR cells. This work suggests that GNA may be used as a regulatory agent for treating ADR resistance in breast cancer patients.
Collapse
|
59
|
Park MS, Kim NH, Kang CW, Oh CW, Kim GD. Antimetastatic Effects of Gambogic Acid are Mediated via the Actin Cytoskeleton and NF-κB Pathways in SK-HEP1 Cells. Drug Dev Res 2015; 76:132-42. [DOI: 10.1002/ddr.21249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/10/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Min-Seok Park
- Department of Microbiology; College of Natural Science, Pukyong National University; Busan 608-737 Republic of Korea
| | - Nan-Hee Kim
- Department of Microbiology; College of Natural Science, Pukyong National University; Busan 608-737 Republic of Korea
| | - Chang-Won Kang
- Department of Microbiology; College of Natural Science, Pukyong National University; Busan 608-737 Republic of Korea
| | - Chul-Woong Oh
- Department of Marine Biology; College of Fishery Sciences, Pukyong National University; Busan 608-737 Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology; College of Natural Science, Pukyong National University; Busan 608-737 Republic of Korea
| |
Collapse
|
60
|
Breast cancer cell line MCF7 escapes from G1/S arrest induced by proteasome inhibition through a GSK-3β dependent mechanism. Sci Rep 2015; 5:10027. [PMID: 25941117 PMCID: PMC4419540 DOI: 10.1038/srep10027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/24/2015] [Indexed: 12/18/2022] Open
Abstract
Targeting the ubiquitin proteasome pathway has emerged as a rational approach in the treatment of human cancers. Autophagy has been described as a cytoprotective mechanism to increase tumor cell survival under stress conditions. Here, we have focused on the role of proteasome inhibition in cell cycle progression and the role of autophagy in the proliferation recovery. The study was performed in the breast cancer cell line MCF7 compared to the normal mammary cell line MCF10A. We found that the proteasome inhibitor MG132 induced G1/S arrest in MCF10A, but G2/M arrest in MCF7 cells. The effect of MG132 on MCF7 was reproduced on MCF10A cells in the presence of the glycogen synthase kinase 3β (GSK-3β) inhibitor VII. Similarly, MCF7 cells overexpressing constitutively active GSK-3β behaved like MCF10A cells. On the other hand, MCF10A cells remained arrested after MG132 removal while MCF7 recovered the proliferative capacity. Importantly, this recovery was abolished in the presence of the autophagy inhibitor 3-methyladenine (3-MA). Thus, our results support the relevance of GSK-3β and autophagy as two targets for controlling cell cycle progression and proliferative capacity in MCF7, highlighting the co-treatment of breast cancer cells with 3-MA to synergize the effect of the proteasome inhibition.
Collapse
|
61
|
Xia Y, Lei Q, Zhu Y, Ye T, Wang N, Li G, Shi X, Liu Y, Shao B, Yin T, Zhao L, Wu W, Song X, Xiong Y, Wei Y, Yu L. SKLB316, a novel small-molecule inhibitor of cell-cycle progression, induces G2/M phase arrest and apoptosis in vitro and inhibits tumor growth in vivo. Cancer Lett 2014; 355:297-309. [PMID: 25301449 DOI: 10.1016/j.canlet.2014.09.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/05/2023]
Abstract
Benzothiazole derivatives have received considerable attentions for their potencies in cancer therapy. In the present study, we reported that SKLB316, a novel synthesized benzothiazole derivative, exhibits activities to inhibit colorectal and pancreatic cancer in vitro and in vivo by inducing G2/M cell cycle arrest and apoptosis. In vitro, it exhibited significant anti-proliferative activities against human cancer cells derived from different histotypes including the colorectal cancer cell line HCT116 and pancreatic cancer cell line CFPAC-1. We chose these cell lines to study the possible anti-tumor mechanism because they are sensitive to SKLB316 treatment. Flow cytometry assays showed that SKLB316 could induce G2/M cell cycle arrest. Mechanistically, SKLB316 could decrease the activities of cdc2/cyclin B1 complex, including decreasing the synthesis of cyclin B1, cdc2 and cdc25c, while accumulating the levels of phosphorylated cdc2 (Tyr15) and checkpoint kinase 2. SKLB316 could also decrease the level of cyclin E and A2. Moreover, SKLB316 could induce cancer cell apoptosis, which was associated with activation of caspase 9, downregulation of Bcl-2 and upregulation of Bax. SKLB316 could also decrease the mitochondrial membrane potential and induce the generation of reactive oxygen species in cells. The results implied that SKLB316 may induce apoptosis via the mitochondria-mediated apoptotic pathway. Moreover, SKLB316 could suppress the growth of established colorectal and pancreatic cancer tumors in nude mice without causing obvious side effects. TUNEL assays confirmed that SKLB316 could also induce tumor cell apoptosis in vivo. Taken together, these findings demonstrate the potential value of SKLB316 as a novel anti-tumor drug candidate.
Collapse
Affiliation(s)
- Yong Xia
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ningyu Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Guobo Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuanhong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yantong Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Bin Shao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Yin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Xiong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
62
|
Hua X, Liang C, Dong L, Qu X, Zhao T. Simultaneous determination and pharmacokinetic study of gambogic acid and gambogenic acid in rat plasma after oral administration ofGarcinia hanburyiextracts by LC-MS/MS. Biomed Chromatogr 2014; 29:545-51. [PMID: 25159917 DOI: 10.1002/bmc.3311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/02/2014] [Accepted: 07/22/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Xiangdong Hua
- Hepatobiliary and Pancreatic Surgery; Liaoning Cancer Hospital and Institute; Shenyang 110042 China
| | - Chuang Liang
- Department of General Surgery; the First People's Hospital of Jinzhou District in Dalian City; Dalian 116100 China
| | - Lei Dong
- Department of Laparoscopic Surgery; the First Affiliated Hospital of Dalian Medical University; Dalian 116001 China
| | - Xiaotong Qu
- Department of Neurology; the First Affiliated Hospital of Dalian Medical University; Dalian 116001 China
| | - Tong Zhao
- Department of Oncology; Zhongshan Hospital of Dalian University; Dalian 116001 China
| |
Collapse
|
63
|
Wang R, Xiao X, Wang PY, Wang L, Guan Q, Du C, Wang XJ. Stimulation of autophagic activity in human glioma cells by anti-proliferative ardipusilloside I isolated from Ardisia pusilla. Life Sci 2014; 110:15-22. [PMID: 24984215 DOI: 10.1016/j.lfs.2014.06.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 05/10/2014] [Accepted: 06/20/2014] [Indexed: 01/21/2023]
Abstract
AIMS Ardipusilloside I (ADS-I), a triterpenoid saponin isolated from Ardisia pusilla A.DC (Myrsinaceae), has been recently tested for cancer treatment including brain cancer. However, the mechanism of its action remains elusive. The present study was to investigate the role of autophagy activation in the anti-tumor activities of ADS-I in human glioma cells. MAIN METHODS The tetrazolium dye (MTT) colorimetric assay was used for the measurement of cell proliferation in cultured glioma cells, transmission electron microscopy (TEM) for the examination of autophagic activity, flow cytometric analysis for the determination of cell cycle and apoptotic cells, and immunocytochemistry and Western blot for protein expression of microtubule-associated protein light-chain 3 (LC3) and Beclin 1. KEY FINDINGS ADS-I significantly inhibited the proliferation of both U373 and T98G glioma cells in cultures in a dose-dependent manner. The cytotoxic activity of ADS-I against glioma cell growth was associated not only with the induction of cell cycle arrest at G2/M phase and cell apoptosis in flow cytometric analysis, but also with the activation of autophagy, indicated by the formation of autophagosomes and up-regulated expression of both autophagic protein Beclin 1 and LC3 in glioma cells. Additionally, the treatment with chloroquine, an autophagy inhibitor, reduced ADS-1-mediated cell death. SIGNIFICANCE These data suggest that the anti-proliferative activity of ADS-I in human glioma cells is associated with the activation of autophagy in addition to cell cycle arrest and apoptosis, and the antagonistic effect of chloroquine suggests an important role of autophagy in ADS-I-mediated cell death against tumor growth.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Pharmacology, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, China
| | - Xin Xiao
- Department of Pharmacy, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Peng-Yuan Wang
- Department of Pharmacy, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lin Wang
- Department of Pharmacy, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Xiao-Juan Wang
- Department of Pharmacy, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
64
|
CHEN CHANGGUI, TANG YANHONG, DENG WEI, HUANG CONGXIN, WU TIANYI. Salidroside blocks the proliferation of pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB. Mol Med Rep 2014; 10:917-22. [DOI: 10.3892/mmr.2014.2238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/21/2014] [Indexed: 11/05/2022] Open
|
65
|
Chen JP, Wang DL, Yang LL, Wang CY, Wang SS. Ultra-high-performance liquid chromatography tandem mass spectrometry method for the determination of gambogenic acid in dog plasma and its application to a pharmacokinetic study. Biomed Chromatogr 2014; 28:1854-9. [DOI: 10.1002/bmc.3231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/21/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Pei Chen
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Dian Lei Wang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Li Li Yang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Chen Yin Wang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| | - Shan Shan Wang
- College of Pharmacy, Laboratory of Drug Metabolism and Pharmacokinetics; Anhui University of Chinese Medicine; Hefei Anhui China
| |
Collapse
|
66
|
Gambogenic acid kills lung cancer cells through aberrant autophagy. PLoS One 2014; 9:e83604. [PMID: 24427275 PMCID: PMC3888381 DOI: 10.1371/journal.pone.0083604] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023] Open
Abstract
Lung cancer is one of the most common types of cancer and causes 1.38 million deaths annually, as of 2008 worldwide. Identifying natural anti-lung cancer agents has become very important. Gambogenic acid (GNA) is one of the active compounds of Gamboge, a traditional medicine that was used as a drastic purgative, emetic, or vermifuge for treating tapeworm. Recently, increasing evidence has indicated that GNA exerts promising anti-tumor effects; however, the underlying mechanism remains unclear. In the present paper, we found that GNA could induce the formation of vacuoles, which was linked with autophagy in A549 and HeLa cells. Further studies revealed that GNA triggers the initiation of autophagy based on the results of MDC staining, AO staining, accumulation of LC3 II, activation of Beclin 1 and phosphorylation of P70S6K. However, degradation of p62 was disrupted and free GFP could not be released in GNA treated cells, which indicated a block in the autophagy flux. Further studies demonstrated that GNA blocks the fusion between autophagosomes and lysosomes by inhibiting acidification in lysosomes. This dysfunctional autophagy plays a pro-death role in GNA-treated cells by activating p53, Bax and cleaved caspase-3 while decreasing Bcl-2. Beclin 1 knockdown greatly decreased GNA-induced cell death and the effects on p53, Bax, cleaved caspase-3 and Bcl-2. Similar results were obtained using a xenograft model. Our findings show, for the first time, that GNA can cause aberrant autophagy to induce cell death and may suggest the potential application of GNA as a tool or viable drug in anticancer therapies.
Collapse
|
67
|
Liu Z, Ma L, Wen ZS, Hu Z, Wu FQ, Li W, Liu J, Zhou GB. Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. Carcinogenesis 2013; 35:905-14. [PMID: 24293411 DOI: 10.1093/carcin/bgt395] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Celastrol binds CIP2A and enhances CIP2A-CHIP interaction, leading to ubiquitination/degradation of CIP2A and inhibition of lung cancer cells in vitro and in vivo. Celastrol potentiates cisplatin's efficacy by suppressing the CIP2A-Akt pathway, and therefore CIP2A inhibitors may represent novel therapeutics for cancer.
Collapse
Affiliation(s)
- Zi Liu
- Division of Molecular Carcinogenesis and Targeted Therapy for Cancer, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Liu Y, Cao W, Zhang B, Liu YQ, Wang ZY, Wu YP, Yu XJ, Zhang XD, Ming PH, Zhou GB, Huang L. The natural compound magnolol inhibits invasion and exhibits potential in human breast cancer therapy. Sci Rep 2013; 3:3098. [PMID: 24226295 PMCID: PMC3827615 DOI: 10.1038/srep03098] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/15/2013] [Indexed: 11/12/2022] Open
Abstract
Invasion and metastasis are the main causes of treatment failure and death in breast cancer. Thus, novel invasion-based therapies such as those involving natural agents are urgently required. In this study, we examined the effects of magnolol (Mag), a compound extracted from medicinal herbs, on breast cancer cells in vitro and in vivo. Highly invasive cancer cells were found to be highly sensitive to treatment. Mag markedly inhibited the activity of highly invasive MDA-MB-231 cells. Furthermore, Mag significantly downregulated matrix metalloproteinase-9 (MMP-9) expression, an enzyme critical to tumor invasion. Mag also inhibited nuclear factor-κB (NF-κB) transcriptional activity and the DNA binding of NF-κB to MMP-9 promoter. These results indicate that Mag suppresses tumor invasion by inhibiting MMP-9 through the NF-κB pathway. Moreover, Mag overcame the promoting effects of phorbol 12-myristate 13-acetate (PMA) on the invasion of MDA-MB-231 cells. Our findings reveal the therapeutic potential and mechanism of Mag against cancer.
Collapse
Affiliation(s)
- Ying Liu
- 1] School of Life Sciences, Tsinghua University, Beijing, 100084, China [2] The Shenzhen Key Laboratory of Gene & Antibody Therapy, State Key Laboratory of Health Science & Technology (prep), Center for Biotechnology & Biomedicine and Division of Life & Health Sciences, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong, 518055, China [3]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wang Y, Wu H, Gao L, Chen S, Gu L, Ding Z, Guo J. Elevated toll-like receptor 3 inhibits pancreatic β-cell proliferation through G1 phase cell cycle arrest. Mol Cell Endocrinol 2013; 377:112-22. [PMID: 23850521 DOI: 10.1016/j.mce.2013.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Activation of the innate and acquired immune systems plays an important role in chronic inflammatory diseases and conditions such as obesity, insulin resistance, type 2 diabetes mellitus and atherosclerosis, with additional roles in regulation of cell proliferation and survival. Here, we provide evidence that TLR3 can respond to nutrient signals and induce loss of β-cell mass through induction of G1 cycle arrest. Activation of TLR3 by polyinosinic-polycytidylic acid [poly (I:C)] was shown to trigger the decline of cyclin D1/2 protein levels in pancreatic β-cell lines, which could be reversed by the proteasome inhibitor MG132. P38 was also found to interfere with this degradation which may be associated with G1 cycle arrest. Moreover, inhibitory effects of TLR3 on β-cell growth were supported by gene silencing of TRIF, which could inhibit p38 activity in response to poly (I:C) stimuli. These results support a role for TLR3 in β-cell mass loss in metabolic surplus and raise the possibility that TRIF/p38 signaling may be involved in G1 phase cycle arrest through ubiquitin/proteasome-dependent degradation of cyclin D.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | | | |
Collapse
|
70
|
Yu JH, Liu CY, Zheng GB, Zhang LY, Yan MH, Zhang WY, Meng XY, Yu XF. Pseudolaric acid B induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma l929 cell. Int J Med Sci 2013; 10:707-18. [PMID: 23630435 PMCID: PMC3638294 DOI: 10.7150/ijms.5726] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/28/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE PAB induced various cancer cell apoptosis, cell cycle arrest and senescence. But in cell line murine fibrosarcoma L929, PAB did not induce apoptosis, but autophagy, therefore it was thought by us as a good model to research the relationship of cell cycle arrest, autophagy and senescence bypass apoptosis. METHODS Inhibitory ratio was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis. Phase contrast microscopy visualized cell morphology. Hoechst 33258 staining for nuclear change, propidium iodode (PI) staining for cell cycle, monodansylcadaverine (MDC) staining for autophagy, and rodanmine 123 staining for mitochondrial membrane potential (MMP) were measured by fluorescence microscopy or flowcytometry. Apoptosis was determined by DNA ladder test. Protein kinase C (PKC) activity was detected by PKC assay kit. SA-β-galactosidase assay was used to detect senescence. Protein expression was examined by western blot. RESULTS PAB inhibited L929 cell growth in time-and dose-dependent manner. At 12 h, 80 μmol/L PAB induced obvious mitotic arrest; at 24 h, PAB began to induce autophagy; at 36 h, cell-treated with PAB slip into G1 cell cycle; and 3 d PAB induced senescence. In time sequence PAB induced firstly cell cycle arrest, then autophagy, then slippage into G1 phase, lastly senescence. Senescent cells had high level of autophagy, inhibiting autophagy led to apoptosis, and no senescence. PAB activated PKC activity to induce cell cycle arrest, autophagy and senescence, inhibiting PKC activity suppressed cell cycle arrest, autophagy and senescence. CONCLUSION PAB induced cell cycle arrest, autophagy and senescence in murine fibrosarcoma L929 cell through PKC.
Collapse
Affiliation(s)
- Jing hua Yu
- Institute of virology and AIDS research, The first hospital of Jilin University, 519 Dongminzhu Street, Changchun 130021, P R China
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Identification of an annonaceous acetogenin mimetic, AA005, as an AMPK activator and autophagy inducer in colon cancer cells. PLoS One 2012; 7:e47049. [PMID: 23056575 PMCID: PMC3466238 DOI: 10.1371/journal.pone.0047049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/11/2012] [Indexed: 01/13/2023] Open
Abstract
Annonaceous acetogenins, a large family of naturally occurring polyketides isolated from various species of the plant genus Annonaceae, have been found to exhibit significant cytotoxicity against a variety of cancer cells. Previous studies showed that these compounds could act on the mitochondria complex-I and block the corresponding electron transport chain and terminate ATP production. However, more details of the mechanisms of action remain ambiguous. In this study we tested the effects of a set of mimetics of annonaceous acetogenin on some cancer cell lines, and report that among them AA005 exhibits the most potent antitumor activity. AA005 depletes ATP, activates AMP-activated protein kinase (AMPK) and inhibits mTOR complex 1 (mTORC1) signal pathway, leading to growth inhibition and autophagy of colon cancer cells. AMPK inhibitors compound C and inosine repress, while AMPK activator AICAR enhances, AA005-caused proliferation suppression and subsequent autophagy of colon cancer cells. AA005 enhances the ATP depletion and AMPK activation caused by 2-deoxyglucose, an inhibitor of mitochondrial respiration and glycolysis. AA005 also inhibits chemotherapeutic agent cisplatin-triggered up-regulation of mTOR and synergizes with this drug in suppression of proliferation and induction of apoptosis of colon cancer cells. These data indicate that AA005 is a new metabolic inhibitor which exhibits therapeutic potentials in colon cancer.
Collapse
|
72
|
Basic consideration of research strategies for head and neck cancer. Front Med 2012; 6:339-53. [DOI: 10.1007/s11684-012-0213-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 06/18/2012] [Indexed: 10/27/2022]
|