51
|
Shabangu CS, Huang JF, Hsiao HH, Yu ML, Chuang WL, Wang SC. Liquid Biopsy for the Diagnosis of Viral Hepatitis, Fatty Liver Steatosis, and Alcoholic Liver Diseases. Int J Mol Sci 2020; 21:3732. [PMID: 32466319 PMCID: PMC7279404 DOI: 10.3390/ijms21103732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
During the progression from hepatitis to fibrosis, cirrhosis, and liver failure, the accumulation of stressed/damaged hepatocyte elements associated with liver inflammation is critical. The causes of hepatocyte injuries include viral hepatitis infections, alcoholic hepatitis, and non-alcoholic fatty liver disease. Hepatocyte-derived extracellular vesicles (Hep-EVs) released from stressed/damaged hepatocytes are partly responsible for liver disease progression and liver damage because they activate non-parenchymal cells and infiltrate inflammatory cells within the liver, which are in turn are an important source of EVs. This cell-to-cell signaling is prevalent during inflammation in many liver diseases. Accordingly, special emphasis should be placed on liquid biopsy methods for the long-term monitoring of chronic liver diseases. In the present review, we have highlighted various aspects of current liquid biopsy research into chronic liver diseases. We have also reviewed recent progress on liquid biopsies that focus on cell-free DNA (cfDNA), long non-coding RNA (lncRNA), and the proteins in EVs as potential diagnostic tools and novel therapeutic targets in patients with viral hepatitis, fatty liver steatosis, and alcoholic liver diseases.
Collapse
Affiliation(s)
- Ciniso Sylvester Shabangu
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
| | - Jee-Fu Huang
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hui-Hua Hsiao
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Ming-Lung Yu
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Hepatitis Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Faculty of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (J.-F.H.); (M.-L.Y.)
- Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| |
Collapse
|
52
|
Liu Z, Wang J, Yuan H, Liu L, Bu Y, Zhao M, Yang G, Feng J, Liu Y, Li J, He Q, Zhang X. IFN-α2b inhibits the ethanol enriched-HBV cccDNA through blocking a positive feedback loop of HBx/MSL2/cccDNA/HBV/HBx in liver. Biochem Biophys Res Commun 2020; 527:76-82. [PMID: 32446394 DOI: 10.1016/j.bbrc.2020.04.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) is a major risk factor for liver diseases, in which HBV covalently closed circular DNA (cccDNA), as the genomic form that templates viral transcription, plays crucial roles in sustaining viral persistence. Clinically, the excessive ethanol intake accelerates the progression of liver diseases with HBV infection. Here, we supposed that ethanol might trigger HBV cccDNA in the liver. Interestingly, we observed that the ethanol remarkably elevated the levels of HBeAg, HBsAg, HBV DNA and cccDNA in HBV-expressing hepatoma cells. Mechanically, the ethanol increased the levels of HBx and MSL2 in vivo and in HBV-expressing HepG2 cells, but not in HBV-free HepG2 cells. Moreover, the down-regulation of MSL2 by small interference RNA could block the ethanol-promoted HBV cccDNA in HepG2.2.15 cells. As a commonly administered treatment for HBV, the effect of IFNα on ethanol-triggered HBV cccDNA remains poorly understood. Strikingly, we showed that the treatment with IFN-α2b inhibited the ethanol-promoted cccDNA through depressing MSL2 in the cells. Thus, we conclude that IFN-α2b inhibits the ethanol-enriched HBV cccDNA through blocking a positive feedback loop of HBx/MSL2/cccDNA/HBV/HBx. Our finding provides new insights into the mechanism by which IFN-α2b inhibits ethanol-enhanced HBV cccDNA. Therapeutically, IFNα may contribute to the cccDNA induced by ethanol in liver.
Collapse
Affiliation(s)
- Zixian Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiapei Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongfeng Yuan
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yanan Bu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Man Zhao
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guang Yang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinyan Feng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunxia Liu
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiangning Li
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiujia He
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaodong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
53
|
Zhang S, Zhou Y, Wang Y, Wang Z, Xiao Q, Zhang Y, Lou Y, Qiu Y, Zhu F. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020; 22:1860-1883. [PMID: 32249290 DOI: 10.1093/bib/bbaa023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yanan Wang
- School of Life Sciences in Nanchang University, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Qitao Xiao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
54
|
Ye J, Wu S, Pan S, Huang J, Ge L. Risk scoring based on expression of long non‑coding RNAs can effectively predict survival in hepatocellular carcinoma patients with or without fibrosis. Oncol Rep 2020; 43:1451-1466. [PMID: 32323856 PMCID: PMC7108035 DOI: 10.3892/or.2020.7528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Patients with hepatocellular carcinoma (HCC) have different prognoses depending on whether or not they also have fibrosis. Since long non-coding RNAs (lncRNAs) affect tumor formation and progression, the present study aimed to investigate whether their expression might help predict the survival of patients with HCC. Expression profiles downloaded from The Cancer Genome Atlas database were examined to identify lncRNAs differentially expressed (DElncRNAs) between HCC patients with or without fibrosis. These DElncRNAs were then used to develop a risk scoring system to predict overall survival (OS) or recurrence-free survival (RFS). A total of 142 significant DElncRNAs were identified using data from 135 patients with fibrosis and 72 without fibrosis. For HCC patients with fibrosis, a risk scoring system to predict OS was constructed based on five lncRNAs (AL359853.1, Z93930.3, HOXA-AS3, AL772337.1 and AC012640.3), while the risk scoring system to predict RFS was based on 12 lncRNAs (PLCE1-AS1, Z93930.3, LINC02273, TRBV11-2, HHIP-AS1, AC004687.1, LINC01857, AC004585.1, AP000808.1, CU638689.4, AC090152.1 and AL357060.1). For HCC patients without fibrosis, the risk scoring system to predict OS was established based on seven lncRNAs (LINC00239, AC104971.4, AP006285.2, HOXA-AS3, AC079834.2, NRIR and LINC01929), and the system to predict RFS was based on five lncRNAs (AC021744.1, NRIR, LINC00487, AC005858.1 and AC107398.3). Areas under the receiver operating characteristic curves for all risk scoring systems exceeded 0.7. Uni- and multivariate Cox analyses showed that the risk scoring systems were significant independent predictors of OS for HCC patients with fibrosis, or of OS and RFS for HCC patients without fibrosis, after adjusting for clinical factors. Functional enrichment analysis suggested that, depending on the risk scoring system, highly associated genes were involved in pathways mainly associated with the cell cycle, chemokines, Th17 cell differentiation or thermogenesis. The findings of the present study indicate that risk scoring systems based on lncRNA expression can effectively predict the OS of HCC patients with fibrosis as well as the OS or RFS of HCC patients without fibrosis.
Collapse
Affiliation(s)
- Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Siyao Wu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Shan Pan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Junqi Huang
- Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| | - Lianying Ge
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
55
|
Lin X, Li AM, Li YH, Luo RC, Zou YJ, Liu YY, Liu C, Xie YY, Zuo S, Liu Z, Liu Z, Fang WY. Silencing MYH9 blocks HBx-induced GSK3β ubiquitination and degradation to inhibit tumor stemness in hepatocellular carcinoma. Signal Transduct Target Ther 2020; 5:13. [PMID: 32296025 PMCID: PMC7018736 DOI: 10.1038/s41392-020-0111-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023] Open
Abstract
MYH9 has dual functions in tumors. However, its role in inducing tumor stemness in hepatocellular carcinoma (HCC) is not yet determined. Here, we found that MYH9 is an effective promoter of tumor stemness that facilitates hepatocellular carcinoma pathogenesis. Importantly, targeting MYH9 remarkably improved the survival of hepatocellular carcinoma-bearing mice and promoted sorafenib sensitivity of hepatocellular carcinoma cells in vivo. Mechanistic analysis suggested that MYH9 interacted with GSK3β and reduced its protein expression by ubiquitin-mediated degradation, which therefore dysregulated the β-catenin destruction complex and induced the downstream tumor stemness phenotype, epithelial-mesenchymal transition, and c-Jun signaling in HCC. C-Jun transcriptionally stimulated MYH9 expression and formed an MYH9/GSK3β/β-catenin/c-Jun feedback loop. X protein is a hepatitis B virus (HBV)-encoded key oncogenic protein that promotes HCC pathogenesis. Interestingly, we observed that HBV X protein (HBX) interacted with MYH9 and induced its expression by modulating GSK3β/β-catenin/c-Jun signaling. Targeting MYH9 blocked HBX-induced GSK3β ubiquitination to activate the β-catenin destruction complex and suppressed cancer stemness and EMT. Based on TCGA database analysis, MYH9 was found to be elevated and conferred poor prognosis for hepatocellular carcinoma patients. In clinical samples, high MYH9 expression levels predicted poor prognosis of hepatocellular carcinoma patients. These findings identify the suppression of MYH9 as an alternative approach for the effective eradication of CSC properties to inhibit cancer migration, invasion, growth, and sorafenib resistance in HCC patients. Our study demonstrated that MYH9 is a crucial therapeutic target in HCC.
Collapse
Affiliation(s)
- Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Ai-Min Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yong-Hao Li
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Rong-Cheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yu-Jiao Zou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Yi-Yi Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Chen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Ying-Ying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China, 550004
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, Hunan, People's Republic of China, 410002
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China, 510095.
| | - Wei-Yi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510310. .,Cancer Institute, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China, 510515.
| |
Collapse
|
56
|
Tian J, Fan J, Xu J, Ren T, Guo H, Zhou L. circ-FNTA accelerates proliferation and invasion of bladder cancer. Oncol Lett 2019; 19:1017-1023. [PMID: 31897215 PMCID: PMC6924145 DOI: 10.3892/ol.2019.11150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/14/2019] [Indexed: 01/20/2023] Open
Abstract
Role of circ-FNTA in the progression of bladder cancer (BCa) and its underlying mechanism were investigated. circ-FNTA level in BCa tissues and cell lines was detected. The prognostic potential of circ-FNTA was assessed by Kaplan-Meier methods and the proliferative and invasive abilities of BCa influenced by circ-FNTA were explored. Through dual-luciferase reporter gene assay, miRNA-451a, the target of circ-FNTA and the target gene of miRNA-451a, S1PR3 were determined. circ-FNTA was upregulated in BCa, especially in invasive BCa. High level of circ-FNTA indicated worse prognosis in BCa patients. Silence of circ-FNTA attenuated the proliferative and invasive abilities of T24 and UM-UC-3 cells. miRNA-451a was verified to be the target of circ-FNTA, which was downregulated in BCa cells. circ-FNTA negatively regulated the expression level of miRNA-451a. Moreover, S1PR3 was the downstream gene of miRNA-451a. Overexpression of miRNA-451a downregulated S1PR3 level in BCa cells. circ-FNTA accelerates the proliferative and invasive abilities of BCa through targeting miRNA-451a/S1PR3 axis, and indicates a poor prognosis of BCa patients.
Collapse
Affiliation(s)
- Jianhai Tian
- Department of Urology Surgery, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R. China
| | - Jiqiang Fan
- Department of Emergency Surgery, The First People's Hospital of Tancheng, Linyi, Shandong 276199, P.R. China
| | - Jianping Xu
- Department of Urology Surgery, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R. China
| | - Tong Ren
- Department of Urology Surgery, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R. China
| | - Huaiyuan Guo
- Department of Urology Surgery, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R. China
| | - Lulian Zhou
- Department of Head and Neck Thoracic Surgery, Linyi Cancer Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
57
|
Zhang H, Liao Z, Liu F, Su C, Zhu H, Li Y, Tao R, Liang H, Zhang B, Zhang X. Long noncoding RNA HULC promotes hepatocellular carcinoma progression. Aging (Albany NY) 2019; 11:9111-9127. [PMID: 31645479 PMCID: PMC6834430 DOI: 10.18632/aging.102378] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
Long noncoding RNAs (lncRNAs) are overexpressed in many types of cancers, suggesting they may promote tumorigenesis. The lncRNA “highly upregulated in liver cancer” (HULC) promotes hepatocellular carcinoma (HCC) by mechanisms that are not fully understood. In the present study, we showed that HULC is overexpressed in HCC tissues, which correlates with an unfavorable prognosis in HCC patients. We also found that HULC promotes the proliferation, migration, and invasion of HCC cells in vitro, and xenograft tumor growth in vivo. Our mechanistic studies showed that HULC works as a competing endogenous RNA for miR-2052, and that the MET receptor tyrosine kinase is a downstream target of miR-2052 in HCC. Furthermore, HULC inhibits miR-2052, thereby stimulating MET expression in HCC. Finally, MET overexpression reverses the effects of HULC depletion. In sum, our findings reveal a novel regulatory signaling cascade, the HULC/miR-2052/MET axis, which could potentially be exploited for therapeutic benefits in the treatment of HCC.
Collapse
Affiliation(s)
- Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Yani Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Ran Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| | - Xuewu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.,Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, Hubei, China
| |
Collapse
|
58
|
Huang W, Liu J, Yan J, Huang Z, Zhang X, Mao Y, Huang X. LncRNA LINC00470 promotes proliferation through association with NF45/NF90 complex in hepatocellular carcinoma. Hum Cell 2019; 33:131-139. [PMID: 31612313 DOI: 10.1007/s13577-019-00288-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/27/2019] [Indexed: 01/19/2023]
Abstract
Increasing evidence demonstrates that long noncoding RNAs (lncRNAs) play an important role in the development and progression of human cancers. LncRNA LINC00470 has been reported to function as an oncogene in glioblastoma. Until now, the roles and underlying mechanisms of LINC00470 in the progression of hepatocellular carcinoma (HCC) remain unclear. Here, we found that LINC00470 was upregulated in HCC cells and tissues. High-level LINC00470 was significantly correlated with bigger tumor size, advanced TNM stage and poor prognosis in patients with HCC. Functional studies showed that knockdown of LINC00470 expression inhibited HCC cell proliferation and cell cycle progression, while overexpression of LINC00470 showed the opposite effects. Further investigation suggested that LINC00470 was associated with NF45/NF90 complex and increased its interaction with cyclin E1 mRNA, thus inhibiting the degradation of cyclin E1 mRNA. Additionally, knockdown of cyclin E1 in LINC00470-overexpressed cells abolished its promotive effects on HCC cell proliferation. In summary, our findings suggest that targeting LINC00470 could be a potential therapeutic approach in treating HCC patients.
Collapse
Affiliation(s)
- Wenwei Huang
- Department of General Surgery, Hanchuan People's Hospital, No. 1, Renmin Road, Hanchuan City, 432300, Hubei Province, China
| | - Juntao Liu
- Department of General Surgery, Hanchuan People's Hospital, No. 1, Renmin Road, Hanchuan City, 432300, Hubei Province, China
| | - Jijun Yan
- Department of General Surgery, Hanchuan People's Hospital, No. 1, Renmin Road, Hanchuan City, 432300, Hubei Province, China
| | - Zhengbin Huang
- Department of General Surgery, Hanchuan People's Hospital, No. 1, Renmin Road, Hanchuan City, 432300, Hubei Province, China
| | - Xiongjie Zhang
- Department of General Surgery, Hanchuan People's Hospital, No. 1, Renmin Road, Hanchuan City, 432300, Hubei Province, China
| | - Yanping Mao
- Department of General Surgery, Hanchuan People's Hospital, No. 1, Renmin Road, Hanchuan City, 432300, Hubei Province, China
| | - Xiufang Huang
- Department of General Surgery, Hanchuan People's Hospital, No. 1, Renmin Road, Hanchuan City, 432300, Hubei Province, China.
| |
Collapse
|
59
|
Xin L, Zhou Q, Yuan YW, Zhou LQ, Liu L, Li SH, Liu C. METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy. J Cancer Res Clin Oncol 2019; 145:2507-2517. [PMID: 31485766 DOI: 10.1007/s00432-019-03015-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/28/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Autophagy plays an important role in regulating cisplatin (CDDP) resistance in gastric cancer cells. However, the underlying mechanism of methioninase (METase) in the regulation of autophagy and CDDP resistance of gastric cancer cells is still not clear. MATERIALS AND METHODS Western blot was used to detect the levels of autophagy-related proteins, multidrug-resistant 1 (MDR-1), and FoxM1 protein. LncRNA HULC was detected by qRT-PCR. Cell viability was detected using CCK-8 assay. The interaction between lncRNA HULC and FoxM1 was confirmed by RNA pull-down and RIP assay. RESULTS Lentiviral vector carrying METase (LV-METase) suppressed autophagy and CDDP resistance of drug-resistant gastric cancer cells. LncRNA HULC was significantly downregulated in drug-resistant gastric cancer cells transfected with LV-METase. Besides, we found that lncRNA HULC interacted with FoxM1. In addition, METase suppressed autophagy to reduce CDDP resistance of drug-resistant gastric cancer cells through regulating HULC/FoxM1, and interfering HULC suppressed autophagy to reduce CDDP resistance of drug-resistant gastric cancer cells through regulating FoxM1. Finally, interfering HULC inhibited tumor growth in vivo. CONCLUSION METase suppressed autophagy to reduce CDDP resistance of drug-resistant gastric cancer cells through regulating HULC/FoxM1 pathway.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
60
|
Chi Y, Wang D, Wang J, Yu W, Yang J. Long Non-Coding RNA in the Pathogenesis of Cancers. Cells 2019; 8:cells8091015. [PMID: 31480503 PMCID: PMC6770362 DOI: 10.3390/cells8091015] [Citation(s) in RCA: 546] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence and mortality rate of cancer has been quickly increasing in the past decades. At present, cancer has become the leading cause of death worldwide. Most of the cancers cannot be effectively diagnosed at the early stage. Although there are multiple therapeutic treatments, including surgery, radiotherapy, chemotherapy, and targeted drugs, their effectiveness is still limited. The overall survival rate of malignant cancers is still low. It is necessary to further study the mechanisms for malignant cancers, and explore new biomarkers and targets that are more sensitive and effective for early diagnosis, treatment, and prognosis of cancers than traditional biomarkers and methods. Long non-coding RNAs (lncRNAs) are a class of RNA transcripts with a length greater than 200 nucleotides. Generally, lncRNAs are not capable of encoding proteins or peptides. LncRNAs exert diverse biological functions by regulating gene expressions and functions at transcriptional, translational, and post-translational levels. In the past decade, it has been demonstrated that the dysregulated lncRNA profile is widely involved in the pathogenesis of many diseases, including cancer, metabolic disorders, and cardiovascular diseases. In particular, lncRNAs have been revealed to play an important role in tumor growth and metastasis. Many lncRNAs have been shown to be potential biomarkers and targets for the diagnosis and treatment of cancers. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis of certain malignant cancers, including lung, breast, liver, and colorectal cancers, as well as hematological malignancies and neuroblastoma.
Collapse
Affiliation(s)
- Yujing Chi
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Di Wang
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China
| | - Weidong Yu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| |
Collapse
|