51
|
Menchicchi B, Savvaidou E, Thöle C, Hensel A, Goycoolea FM. Low-Molecular-Weight Dextran Sulfate Nanocapsules Inhibit the Adhesion of Helicobacter pylori to Gastric Cells. ACS APPLIED BIO MATERIALS 2019; 2:4777-4789. [DOI: 10.1021/acsabm.9b00523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bianca Menchicchi
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- Department of Medicine 1, University of Erlangen-Nüremberg, D-91054 Erlangen, Germany
| | - Eleni Savvaidou
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Christian Thöle
- Institute for Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstrasse 48, D-48149 Münster, Germany
| | - Andreas Hensel
- Institute for Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, Correnstrasse 48, D-48149 Münster, Germany
| | - Francisco M. Goycoolea
- Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Schlossplatz 8, D-48143 Münster, Germany
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, United Kingdom
| |
Collapse
|
52
|
Shishir MRI, Karim N, Gowd V, Xie J, Zheng X, Chen W. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
53
|
Zarate-Triviño DG, Pool H, Vergara-Castañeda H, Elizalde-Peña EA, Vallejo-Becerra V, Villaseñor F, Prokhorov E, Gough J, Garcia-Gaitan B, Luna-Barcenas G. (Chitosan-g-glycidyl methacrylate)-collagen II scaffold for cartilage regeneration. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1655749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Diana G. Zarate-Triviño
- Cinvestav-Querétaro, Querétaro, Mexico
- Departmento de Biología, Universidad Autónoma de Nuevo León, Nuevo León, Monterrey, México
| | | | - Hayde Vergara-Castañeda
- Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro, Qro, México
| | - Eduardo A. Elizalde-Peña
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, Qro, Mexico
| | - Vanessa Vallejo-Becerra
- División de Investigación y Posgrado, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, Qro, Mexico
| | - Francisco Villaseñor
- Departamento de Ingeniería Bioquímica, Instituto Tecnológico de Celaya, Celaya, Gto, México
| | | | - Julie Gough
- Materials Engineering, School of Materials, The University of Manchester, Manchester, UK
| | - Beatriz Garcia-Gaitan
- Division de Estudios de Posgrado e Investigacion, Instituto Tecnologico de Toluca, Estado de México, Metepec, Mexico
| | | |
Collapse
|
54
|
Citkowska A, Szekalska M, Winnicka K. Possibilities of Fucoidan Utilization in the Development of Pharmaceutical Dosage Forms. Mar Drugs 2019; 17:E458. [PMID: 31387230 PMCID: PMC6722496 DOI: 10.3390/md17080458] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/27/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022] Open
Abstract
Fucoidan is a polysaccharide built from L-fucose molecules. The main source of this polysaccharide is the extracellular matrix of brown seaweed (Phaeophyta), but it can be also isolated from invertebrates such as sea urchins (Echinoidea) and sea cucumbers (Holothuroidea). Interest in fucoidan is related to its broad biological activity, including possible antioxidant, anti-inflammatory, antifungal, antiviral or antithrombotic effects. The potential application of fucoidan in the pharmaceutical technology is also due to its ionic nature. The negative charge of the molecule results from the presence of sulfate residues in the C-2 and C-4 positions, occasionally in C-3, allowing the formation of complexes with other oppositely charged molecules. Fucoidan is non-toxic, biodegradable and biocompatible compound approved by Food and Drug Administration (FDA) as Generally Recognized As Safe (GRAS) category as food ingredient. Fucoidan plays an important role in the pharmaceutical technology, so in this work aspects concerning its pharmaceutical characteristics and designing of various dosage forms (nanoparticles, liposomes, microparticles, and semisolid formulations) with fucoidan itself and with its combinations with other polymers or components that give a positive charge were reviewed. Advantages and limitations of fucoidan utilization in the pharmaceutical technology were also discussed.
Collapse
Affiliation(s)
- Aleksandra Citkowska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Marta Szekalska
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Katarzyna Winnicka
- Department of Pharmaceutical Technology, Medical University of Białystok, Mickiewicza 2c, 15-222 Białystok, Poland.
| |
Collapse
|
55
|
Besednova N, Zaporozhets T, Kuznetsova T, Makarenkova I, Fedyanina L, Kryzhanovsky S, Malyarenko O, Ermakova S. Metabolites of Seaweeds as Potential Agents for the Prevention and Therapy of Influenza Infection. Mar Drugs 2019; 17:E373. [PMID: 31234532 PMCID: PMC6627559 DOI: 10.3390/md17060373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/07/2023] Open
Abstract
CONTEXT Seaweed metabolites (fucoidans, carrageenans, ulvans, lectins, and polyphenols) are biologically active compounds that target proteins or genes of the influenza virus and host components that are necessary for replication and reproduction of the virus. OBJECTIVE This review gathers the information available in the literature regarding to the useful properties of seaweeds metabolites as potential agents for the prevention and therapy of influenza infection. MATERIALS AND METHODS The sources of scientific literature were found in various electronic databases (i.e., PubMed, Web of Science, and ScienceDirect) and library search. The retrospective search depth is 25 years. RESULTS Influenza is a serious medical and social problem for humanity. Recently developed drugs are quite effective against currently circulating influenza virus strains, but their use can lead to the selection of resistant viral strains. In this regard, new therapeutic approaches and drugs with a broad spectrum of activity are needed. Metabolites of seaweeds fulfill these requirements. This review presents the results of in vitro and in vivo experimental and clinical studies about the effectiveness of these compounds in combating influenza infection and explains the necessity of their use as a potential basis for the creation of new drugs with a broad spectrum of activity.
Collapse
Affiliation(s)
- Natalia Besednova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Tatiana Zaporozhets
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Tatiana Kuznetsova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Ilona Makarenkova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, Vladivostok 690087, Russia.
| | - Lydmila Fedyanina
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., Vladivostok 690922, Russia.
| | - Sergey Kryzhanovsky
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., Vladivostok 690922, Russia.
| | - Olesya Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia.
| | - Svetlana Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, Vladivostok 690022, Russia.
| |
Collapse
|
56
|
Lu X, Chen J, Guo Z, Zheng Y, Rea MC, Su H, Zheng X, Zheng B, Miao S. Using polysaccharides for the enhancement of functionality of foods: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
57
|
Paramita VD, Kasapis S. Molecular dynamics of the diffusion of natural bioactive compounds from high-solid biopolymer matrices for the design of functional foods. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
58
|
The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Res Int 2019; 120:130-140. [PMID: 31000223 DOI: 10.1016/j.foodres.2019.02.024] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Food-sourced bioactive compounds have drawn much attention due to their health benefits such as anti-oxidant, anti-cancer, anti-diabetes and cardiovascular disease-preventing functions. However, the poor solubility, low stability and limited bioavailability of sensitive bioactive compounds greatly limited their application in food industry. Therefore, numbers of carriers were developed for improving their dispersibility, stability and bioavailability. This review addresses the digestion and absorption mechanisms of bioactive compounds in epithelial cells based on several well-known in vitro and in vivo models. Factors such as environmental stimuli, stomach conditions and mucus barrier influencing the utilization efficacy of the bioactive compounds are discussed. Delivery systems with enhanced utilization efficacy, such as complex coacervates, cross-linked polysaccharides, self-assembled micro-/nano-particles and Pickering emulsions are compared. It is a comprehensive multidisciplinary review which provides useful guidelines for application of bioactive compounds in food industry.
Collapse
|
59
|
Yunessnia lehi A, Shagholani H, Ghorbani M, Nikpay A, Soleimani lashkenari M, Soltani M. Chitosan nanocapsule-mounted cellulose nanofibrils as nanoships for smart drug delivery systems and treatment of avian trichomoniasis. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
60
|
Teixeira F, Cordeiro MNDS. Improving Vibrational Mode Interpretation Using Bayesian Regression. J Chem Theory Comput 2019; 15:456-470. [PMID: 30525596 DOI: 10.1021/acs.jctc.8b00439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To streamline the interpretation of vibrational spectra, this work introduces the use of Bayesian linear regression with automatic relevance determination as a viable approach to decompose the atomic motions along any vibrational mode as a weighted combination of displacements along chemically meaningful internal coordinates. This novel approach denominated vibrational mode automatic relevance determination (VMARD) is presented and compared with the well-established potential energy decomposition (PED) scheme. Good agreement is generally attained between the two methods. VMARD returns a decomposition of the atomic displacement using only a small number of internal coordinates, thus aiding the interpretation of the vibrational spectra. Moreover, the results show that the VMARD descriptions are resilient toward the addition of additional internal coordinates, achieving a concise description of the vibrational modes despite the use of redundant internal coordinates. Potential applications of VMARD involving the gathering of physical insights on the atomic motions along the reaction coordinate at transition state structures, as well as the improvement of theoretically predicted vibrational frequencies, are also presented under a proof-of-concept perspective.
Collapse
Affiliation(s)
- Filipe Teixeira
- LAQV-REQUIMTE , Faculty of Sciences of the University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal
| | - M Natália D S Cordeiro
- LAQV-REQUIMTE , Faculty of Sciences of the University of Porto , Rua do Campo Alegre , 4169-007 Porto , Portugal
| |
Collapse
|
61
|
Martínez‐Ibarra DM, Sánchez‐Machado DI, López‐Cervantes J, Campas‐Baypoli ON, Sanches‐Silva A, Madera‐Santana TJ. Hydrogel wound dressings based on chitosan and xyloglucan: Development and characterization. J Appl Polym Sci 2018. [DOI: 10.1002/app.47342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | - Ana Sanches‐Silva
- National Institute for Agricultural and Veterinary Research I.P. (INIAV) 655 Vairão, Vila do Conde Portugal
| | | |
Collapse
|
62
|
Deepika MS, Thangam R, Sheena TS, Sasirekha R, Sivasubramanian S, Babu MD, Jeganathan K, Thirumurugan R. A novel rutin-fucoidan complex based phytotherapy for cervical cancer through achieving enhanced bioavailability and cancer cell apoptosis. Biomed Pharmacother 2018; 109:1181-1195. [PMID: 30551368 DOI: 10.1016/j.biopha.2018.10.178] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies on flavonoids forming complexes with macromolecules attract researchers due to their enhanced bioavailability as well as chemo-preventive efficacy. In this study, a flavonoid rutin (Ru) is non-covalently complexed with fucoidan (Fu) using the functional groups to obtain a therapeutic polymeric complex overcoming the limitations of bioavailability of rutin. The prepared novel rutin-fucoidan (Ru-Fu) complex is characterized for spectroscopic features, particle size and distribution analysis by DLS. It is shown that the complex displayed the nanostructural features that are different from that of the usual rutin-fucoidan mixture. The studies on drug release profiles at different pH (5.5, 6.8 and 7.4) show that the sustained release of compounds from complex occurs preferentially at the desired endosomal pH (5.5). Further, the chemopreventive potential of Ru-Fu complex is investigated against HeLa cells by cellular apoptotic assays and flow cytometric analysis. It showed that the complex is able to disrupt cell cycle regulation and has the ability to induce cellular apoptosis via nuclear fragmentation, ROS generation and mitochondrial potential loss. In vitro cell viability assay with Ru-Fu complex shows that the complex is biocompatible on normal cells. The hemolysis assay also reveals that the complex does not release hemoglobin from human red blood cells (RBCs). Thus, the study is envisaged to open up interests for developing such formulations against cervical cancer and other cancers.
Collapse
Affiliation(s)
- Murugesan Sathiya Deepika
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ramar Thangam
- CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu, India
| | - Thankaraj Salammal Sheena
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajendran Sasirekha
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | | | - Manikandan Dinesh Babu
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Kulandaivel Jeganathan
- Centre for Nanoscience and Nanotechnology, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ramasamy Thirumurugan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
63
|
Roy JC, Giraud S, Ferri A, Mossotti R, Guan J, Salaün F. Influence of process parameters on microcapsule formation from chitosan—Type B gelatin complex coacervates. Carbohydr Polym 2018; 198:281-293. [DOI: 10.1016/j.carbpol.2018.06.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 01/21/2023]
|
64
|
Q Mesquita M, J Dias C, P M S Neves MG, Almeida A, F Faustino MA. Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy. Molecules 2018; 23:E2424. [PMID: 30248888 PMCID: PMC6222430 DOI: 10.3390/molecules23102424] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Microbial infection is a severe concern, requiring the use of significant amounts of antimicrobials/biocides, not only in the hospital setting, but also in other environments. The increasing use of antimicrobial drugs and the rapid adaptability of microorganisms to these agents, have contributed to a sharp increase of antimicrobial resistance. It is obvious that the development of new strategies to combat planktonic and biofilm-embedded microorganisms is required. Photodynamic inactivation (PDI) is being recognized as an effective method to inactivate a broad spectrum of microorganisms, including those resistant to conventional antimicrobials. In the last few years, the development and biological assessment of new photosensitizers for PDI were accompanied by their immobilization in different supports having in mind the extension of the photodynamic principle to new applications, such as the disinfection of blood, water, and surfaces. In this review, we intended to cover a significant amount of recent work considering a diversity of photosensitizers and supports to achieve an effective photoinactivation. Special attention is devoted to the chemistry behind the preparation of the photomaterials by recurring to extensive examples, illustrating the design strategies. Additionally, we highlighted the biological challenges of each formulation expecting that the compiled information could motivate the development of other effective photoactive materials.
Collapse
Affiliation(s)
- Mariana Q Mesquita
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
- Department of Biomedical Sciences and iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Cristina J Dias
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Maria G P M S Neves
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Adelaide Almeida
- Department of Biology CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
65
|
Evaluating the behaviour of curcumin nanoemulsions and multilayer nanoemulsions during dynamic in vitro digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
66
|
Jeong Y, Thuy LT, Ki SH, Ko S, Kim S, Cho WK, Choi JS, Kang SM. Multipurpose Antifouling Coating of Solid Surfaces with the Marine-Derived Polymer Fucoidan. Macromol Biosci 2018; 18:e1800137. [DOI: 10.1002/mabi.201800137] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Yeonwoo Jeong
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| | - Le Thi Thuy
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - So Hyun Ki
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sangwon Ko
- Transportation Environmental Research Team; Korea Railroad Research Institute; Uiwang 16105 Republic of Korea
| | - Suyeob Kim
- Department of Marine Biomaterials and Aquaculture; Pukyong National University; Busan 48513 Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry; Chungnam National University; Daejeon 34134 Republic of Korea
| | - Sung Min Kang
- Department of Chemistry; Chungbuk National University; Chungbuk 28644 Republic of Korea
| |
Collapse
|
67
|
Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
68
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
69
|
Rochín-Wong S, Rosas-Durazo A, Zavala-Rivera P, Maldonado A, Martínez-Barbosa ME, Vélaz I, Tánori J. Drug Release Properties of Diflunisal from Layer-By-Layer Self-Assembled κ-Carrageenan/Chitosan Nanocapsules: Effect of Deposited Layers. Polymers (Basel) 2018; 10:E760. [PMID: 30960685 PMCID: PMC6403737 DOI: 10.3390/polym10070760] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 12/20/2022] Open
Abstract
Engineering of multifunctional drug nanocarriers combining stability and good release properties remains a great challenge. In this work, natural polymers κ-carrageenan (κ-CAR) and chitosan (CS) were deposited onto olive oil nanoemulsion droplets (NE) via layer-by-layer (LbL) self-assembly to study the release mechanisms of the anti-inflammatory diflunisal (DF) as a lipophilic drug model. The nano-systems were characterized by dynamic light scattering (DLS), zeta potential (ζ-potential) measurements, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (XEDS) and Fourier transform infrared spectroscopy (FTIR) to confirm the NE-coating with polymer layers. In addition, kinetic release studies of DF were developed by the dialysis diffusion bag technique. Mathematical models were applied to investigate the release mechanisms. The results showed that stable and suitably sized nanocapsules (~300 nm) were formed. Also, the consecutive adsorption of polyelectrolytes by charge reversal was evidenced. More interestingly, the drug release mechanism varied depending on the number of layers deposited. The nanosized systems containing up to two layers showed anomalous transport and first order kinetics. Formulations with three and four layers exhibited Case II transport releasing diflunisal with zero order kinetics. Hence, our results suggest that these polyelectrolyte nanocapsules have great potential as a multifunctional nanocarrier for drug delivery applications.
Collapse
Affiliation(s)
- Sarai Rochín-Wong
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - Aarón Rosas-Durazo
- Rubio Pharma y Asociados S.A. de C.V., 83210 Hermosillo, Sonora, Mexico.
| | - Paul Zavala-Rivera
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - Amir Maldonado
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - María Elisa Martínez-Barbosa
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| | - Itziar Vélaz
- Departamento de Química, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Navarra, Spain.
| | - Judith Tánori
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico.
| |
Collapse
|
70
|
Jenjob R, Seidi F, Crespy D. Encoding materials for programming a temporal sequence of actions. J Mater Chem B 2018; 6:1433-1448. [DOI: 10.1039/c7tb03215c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Materials are usually synthesized to allow a function that is either independent of time or that can be triggered in a specific environment.
Collapse
Affiliation(s)
- R. Jenjob
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - F. Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - D. Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| |
Collapse
|
71
|
Je HJ, Kim ES, Lee JS, Lee HG. Release Properties and Cellular Uptake in Caco-2 Cells of Size-Controlled Chitosan Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10899-10906. [PMID: 29172499 DOI: 10.1021/acs.jafc.7b03627] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The influences of particle size on the physicochemical, release, and cellular uptake properties of chitosan nanoparticles (CSNPs) were investigated. Ionotropic CSNPs of different sizes (200-1000 nm) loaded with two model core materials (resveratrol or coumarin-6) were prepared using tripolyphosphate and carrageenan as cross-linkers. With an increase of particle size, zeta potential (34.6 ± 0.5 to 51.1 ± 0.9) and entrapment efficiency (14.9 ± 1.4 to 40.9 ± 1.9) of the CSNPs were significantly (p < 0.05) increased and release rates were decreased. However, Caco-2 cellular uptake of CSNPs were significantly increased from 3.70 ± 0.03 to 5.24 ± 0.20 with an increase of particle size from 200 to 600 nm, whereas those significantly decreased from 5.24 ± 0.20 to 4.55 ± 0.2 for particles larger than 600 nm in transwell assay. Moreover, much the same uptake patterns were also observed in confocal microscopy and flow cytometry. Investigation of cellular uptake of CSNPs revealed positive correlations between ZP and EE and indicated the effects of complex factors of nanoparticles other than size. These results provide a better understanding of CSNPs absorption and raises the possibility of controlling alternative nanoparticle properties to enhance bioavailability.
Collapse
Affiliation(s)
- Hyun Jeong Je
- Department of Food and Nutrition, Hanyang University , 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea
| | - Eun Suh Kim
- Department of Food and Nutrition, Hanyang University , 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea
| | - Ji-Soo Lee
- Department of Food and Nutrition, Hanyang University , 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University , 222, Wangsimni-ro, Seoungdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
72
|
Alassi A, Benammar M, Brett D. Quartz Crystal Microbalance Electronic Interfacing Systems: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2799. [PMID: 29206212 PMCID: PMC5750807 DOI: 10.3390/s17122799] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO₄ crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications.
Collapse
Affiliation(s)
- Abdulrahman Alassi
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar.
| | | | - Dan Brett
- Department of Chemical Engineering, University College London, London WC1E 6BT, UK.
| |
Collapse
|
73
|
Farias MDP, Albuquerque PBS, Soares PAG, de Sá DMAT, Vicente AA, Carneiro-da-Cunha MG. Xyloglucan from Hymenaea courbaril var. courbaril seeds as encapsulating agent of l-ascorbic acid. Int J Biol Macromol 2017; 107:1559-1566. [PMID: 28987799 DOI: 10.1016/j.ijbiomac.2017.10.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
This study evaluated the l-ascorbic acid (AA) encapsulation in microparticles of xyloglucan (XAA) extracted from Hymenaea courbaril seeds by spray drying (SD) and its application in tilapia fish burgers. The encapsulation efficiency was 96.34±1.6% and the retention of the antioxidant activity was of 89.48±0.88% after 60days at 25°C. SEM images showed microspheres with diameters ranging from 4.4 to 34.0μm. FTIR spectrum confirmed the presence of AA in xyloglucan microparticles, which was corroborated by DSC and TGA. The release of ascorbic acid was found to be pH-dependent. The application of XAA in tilapia fish burger did not change the pH after heating and the ascorbic acid retention was greater compared to its free form. The results indicate that xyloglucan can be used to encapsulate AA by SD and suggest that XAA was able to reduce undesirable organoleptic changes in fish burgers.
Collapse
Affiliation(s)
- Mirla D P Farias
- Biochemistry Department/Laboratory of Immunopathology Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego s/n, CEP 50.670-420, Recife, PE, Brazil; Eixo de Produção Alimentícia, Instituto Federal de Educação do Ceará- IFCE, Av. Dr. Guarani, 317, Derby Clube, CEP: 62.042-030, Sobral, CE, Brazil
| | - Priscilla B S Albuquerque
- Biochemistry Department/Laboratory of Immunopathology Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego s/n, CEP 50.670-420, Recife, PE, Brazil
| | - Paulo A G Soares
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Programa de Glicobiologia, Universidade Federal do Rio de Janeiro, CEP: 21941-913, Rio de Janeiro, RJ, Brazil
| | - Daniele M A T de Sá
- Eixo de Produção Alimentícia, Instituto Federal de Educação do Ceará- IFCE, Av. Dr. Guarani, 317, Derby Clube, CEP: 62.042-030, Sobral, CE, Brazil
| | - António A Vicente
- Centre of Biological Engineering (CEB), Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria G Carneiro-da-Cunha
- Biochemistry Department/Laboratory of Immunopathology Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego s/n, CEP 50.670-420, Recife, PE, Brazil.
| |
Collapse
|
74
|
Formation, stability and antioxidant activity of food-grade multilayer emulsions containing resveratrol. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
75
|
Fernández-Díaz C, Coste O, Malta EJ. Polymer chitosan nanoparticles functionalized with Ulva ohnoi extracts boost in vitro ulvan immunostimulant effect in Solea senegalensis macrophages. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
76
|
Pourebrahim F, Ghaedi M, Dashtian K, Kheirandish S, Jannesar R, Pezeshkpour V. Preparation of chitosan functionalized end-capped Ag-NPs and composited with Fe3O4-NPs: Controlled release to pH-responsive delivery of progesterone and antibacterial activity againstpseudomonas aeruginosa (PAO-1). Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Mehrorang Ghaedi
- Department of chemistry; Yasouj University; Yasouj 75918-74831 Iran
| | - Kheibar Dashtian
- Department of chemistry; Yasouj University; Yasouj 75918-74831 Iran
| | | | - Ramin Jannesar
- Department of Pathology; Yasuj University of Medical Sciences; Yasuj Iran
| | - Vahid Pezeshkpour
- Department of Pathology; Yasuj University of Medical Sciences; Yasuj Iran
| |
Collapse
|
77
|
Kuznetsova A, Domingues PM, Silva T, Almeida A, Zheludkevich ML, Tedim J, Ferreira MGS, Cunha A. Antimicrobial activity of 2-mercaptobenzothiazole released from environmentally friendly nanostructured layered double hydroxides. J Appl Microbiol 2017; 122:1207-1218. [PMID: 28251734 DOI: 10.1111/jam.13433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/08/2017] [Accepted: 02/23/2017] [Indexed: 11/30/2022]
Abstract
AIMS The objective of this work was to assess the antibacterial effect of 2-mercaptobenzothiazole (MBT), used as model-biocide, immobilized in a layered double hydroxide (LDH) structure, under different conditions of pH and salinity, envisaging possible applications of the system in active antifouling and anticorrosion coatings. METHODS AND RESULTS Biological effects of MBT immobilized in LDH were assessed by monitoring bacterial bioluminescence of cell suspensions of either Allivibrio fischeri or a recombinant strain of Escherichia coli, as a proxy for bacterial activity. Salinity (1, 2 and 3% NaCl) and pH (4, 5, 6 and 7) of the suspension media were experimentally manipulated and biocide release tests were performed in parallel. The release profiles obtained by UV-visible spectrophotometry indicated a fast release of biocide from MBT@LDH, slightly enhanced in 3% NaCl and under alkaline conditions. However, biological effects were more pronounced at 1% NaCl and at neutral pH. CONCLUSIONS The release and toxic effect of MBT immobilized in LDH is dependent on the concentration of solutes in the suspension medium. SIGNIFICANCE AND IMPACT OF THE STUDY The results confirm LDH as a biologically compatible material with potential to be used for biocide delivery.
Collapse
Affiliation(s)
- A Kuznetsova
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - P M Domingues
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.,Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - T Silva
- Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Department of Biology, University of Aveiro, Aveiro, Portugal
| | - A Almeida
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal.,Department of Biology, University of Aveiro, Aveiro, Portugal
| | - M L Zheludkevich
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.,Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research GmbH, Institute of Materials Research - MagIC, Geesthacht, Germany
| | - J Tedim
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - M G S Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - A Cunha
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal.,Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
78
|
Pinheiro AC, Gonçalves RFS, Madalena DA, Vicente AA. Towards the understanding of the behavior of bio-based nanostructures during in vitro digestion. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
79
|
Lu KY, Li R, Hsu CH, Lin CW, Chou SC, Tsai ML, Mi FL. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr Polym 2017; 165:410-420. [DOI: 10.1016/j.carbpol.2017.02.065] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/26/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022]
|
80
|
Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Adv Colloid Interface Sci 2017; 243:23-45. [PMID: 28395856 DOI: 10.1016/j.cis.2017.02.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
Micro- and nanoencapsulation is an emerging technology in the food field that potentially allows the improvement of food quality and human health. Bio-based delivery systems of bioactive compounds have a wide variety of morphologies that influence their stability and functional performance. The incorporation of bioactive compounds in food products using micro- and nano-delivery systems may offer extra health benefits, beyond basic nutrition, once their encapsulation may provide protection against undesired environmental conditions (e.g., heat, light and oxygen) along the food chain (including processing and storage), thus improving their bioavailability, while enabling their controlled release and target delivery. This review provides an overview of the bio-based materials currently used for encapsulation of bioactive compounds intended for food applications, as well as the main production techniques employed in the development of micro- and nanosystems. The behavior of such systems and of bioactive compounds entrapped into, throughout in vitro gastrointestinal systems, is also tracked in a critical manner. Comparisons between various in vitro digestion systems (including the main advantages and disadvantages) currently in use, as well as correlations between the behavior of micro- and nanosystems studied through in vitro and in vivo systems were highlighted and discussed here for the first time. Finally, examples of bioactive micro- and nanosystems added to food simulants or to real food matrices are provided, together with a revision of the main challenges for their safe commercialization, the regulatory issues involved and the main legislation aspects.
Collapse
|
81
|
Hwang PA, Lin XZ, Kuo KL, Hsu FY. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells. MATERIALS 2017; 10:ma10030291. [PMID: 28772650 PMCID: PMC5503377 DOI: 10.3390/ma10030291] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs) were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and −67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Xiao-Zhen Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| | - Ko-Liang Kuo
- Seafood Technology Division, Council of Agriculture Fisheries Research Institute, No. 199 Hou-Ih Road, Keelung City 202, Taiwan.
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Road, Keelung City 202, Taiwan.
| |
Collapse
|
82
|
Yucel Falco C, Sotres J, Rascón A, Risbo J, Cárdenas M. Design of a potentially prebiotic and responsive encapsulation material for probiotic bacteria based on chitosan and sulfated β-glucan. J Colloid Interface Sci 2017; 487:97-106. [DOI: 10.1016/j.jcis.2016.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/09/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022]
|
83
|
Lamarra J, Rivero S, Pinotti A. Design of chitosan-based nanoparticles functionalized with gallic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:717-726. [DOI: 10.1016/j.msec.2016.05.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/24/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|
84
|
Cheng N, Wang Y, Wu F. Facile fabrication of double-walled polymeric hollow spheres with independent temperature and pH dual-responsiveness for synergetic drug delivery. J Appl Polym Sci 2016. [DOI: 10.1002/app.44335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nan Cheng
- Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| | - Yu Wang
- Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences; Beijing 100049 People's Republic of China
| | - Feipeng Wu
- Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 People's Republic of China
| |
Collapse
|
85
|
Brandelli A, Brum LFW, dos Santos JHZ. Nanobiotechnology Methods to Incorporate Bioactive Compounds in Food Packaging. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-39306-3_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
86
|
Rocha Amorim MO, Lopes Gomes D, Dantas LA, Silva Viana RL, Chiquetti SC, Almeida-Lima J, Silva Costa L, Oliveira Rocha HA. Fucan-coated silver nanoparticles synthesized by a green method induce human renal adenocarcinoma cell death. Int J Biol Macromol 2016; 93:57-65. [PMID: 27543345 DOI: 10.1016/j.ijbiomac.2016.08.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/11/2016] [Accepted: 08/13/2016] [Indexed: 12/22/2022]
Abstract
Polysaccharides containing sulfated L-fucose are often called fucans. The seaweed Spatoglossum schröederi synthesizes three fucans, among which fucan A is the most abundant. This polymer is not cytotoxic against various normal cell lines and is non-toxic to rats when administered at high doses. In addition, it exhibits low toxicity against tumor cells. With the aim of increasing the toxicity of fucan A, silver nanoparticles containing this polysaccharide were synthesized using a green chemistry method. The mean size of these nanoparticles was 210nm. They exhibited a spherical shape and negative surface charge and were stable for 14 months. When incubated with cells, these nanoparticles did not show any toxic effects against various normal cell lines; however, they decreased the viability of various tumor cells, especially renal adenocarcinoma cells 786-0. Flow cytometry analyses showed that the nanoparticles induced cell death responses of 786-0 cells through necrosis. Assays performed with several renal cell lines (HEK, VERO, MDCK) showed that these nanoparticles only induce death of 786-0 cells. The data obtained herein leads to the conclusion that fucan A nanoparticles are promising agents against renal adenocarcinoma.
Collapse
Affiliation(s)
- Monica Oliveira Rocha Amorim
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil
| | - Dayanne Lopes Gomes
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil
| | - Larisse Araujo Dantas
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Rony Lucas Silva Viana
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Samanta Cristina Chiquetti
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Jailma Almeida-Lima
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil
| | - Leandro Silva Costa
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Intituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Ceara-Mirim, Rio Grande do Norte - RN, 59580-000, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte- RN 59078-970, Brazil; Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte - RN 59078-970, Brazil.
| |
Collapse
|
87
|
Vilela C, Figueiredo ARP, Silvestre AJD, Freire CSR. Multilayered materials based on biopolymers as drug delivery systems. Expert Opin Drug Deliv 2016; 14:189-200. [DOI: 10.1080/17425247.2016.1214568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Carla Vilela
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana R. P. Figueiredo
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Armando J. D. Silvestre
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
88
|
Silva JM, Reis RL, Mano JF. Biomimetic Extracellular Environment Based on Natural Origin Polyelectrolyte Multilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4308-42. [PMID: 27435905 DOI: 10.1002/smll.201601355] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/15/2016] [Indexed: 05/23/2023]
Abstract
Surface modification of biomaterials is a well-known approach to enable an adequate biointerface between the implant and the surrounding tissue, dictating the initial acceptance or rejection of the implantable device. Since its discovery in early 1990s layer-by-layer (LbL) approaches have become a popular and attractive technique to functionalize the biomaterials surface and also engineering various types of objects such as capsules, hollow tubes, and freestanding membranes in a controllable and versatile manner. Such versatility enables the incorporation of different nanostructured building blocks, including natural biopolymers, which appear as promising biomimetic multilayered systems due to their similarity to human tissues. In this review, the potential of natural origin polymer-based multilayers is highlighted in hopes of a better understanding of the mechanisms behind its use as building blocks of LbL assembly. A deep overview on the recent progresses achieved in the design, fabrication, and applications of natural origin multilayered films is provided. Such films may lead to novel biomimetic approaches for various biomedical applications, such as tissue engineering, regenerative medicine, implantable devices, cell-based biosensors, diagnostic systems, and basic cell biology.
Collapse
Affiliation(s)
- Joana M Silva
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - Rui L Reis
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| | - João F Mano
- 3Bs Research Group-Biomaterials Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory Braga/Guimarães, Portugal
| |
Collapse
|
89
|
Chollet L, Saboural P, Chauvierre C, Villemin JN, Letourneur D, Chaubet F. Fucoidans in Nanomedicine. Mar Drugs 2016; 14:E145. [PMID: 27483292 PMCID: PMC4999906 DOI: 10.3390/md14080145] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
Fucoidans are widespread cost-effective sulfated marine polysaccharides which have raised interest in the scientific community over last decades for their wide spectrum of bioactivities. Unsurprisingly, nanomedicine has grasped these compounds to develop innovative therapeutic and diagnostic nanosystems. The applications of fucoidans in nanomedicine as imaging agents, drug carriers or for their intrinsic properties are reviewed here after a short presentation of the main structural data and biological properties of fucoidans. The origin and the physicochemical specifications of fucoidans are summarized in order to discuss the strategy of fucoidan-containing nanosystems in Human health. Currently, there is a need for reproducible, well characterized fucoidan fractions to ensure significant progress.
Collapse
Affiliation(s)
- Lucas Chollet
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
- Algues & Mer, Kernigou, F-29242 Ouessant, France.
| | - Pierre Saboural
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| | - Cédric Chauvierre
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| | | | - Didier Letourneur
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| | - Frédéric Chaubet
- Inserm, U1148, LVTS, University Paris Diderot, X Bichat Hospital, F-75877 Paris, France.
- Galilée Institute, University Paris 13, Sorbonne Paris Cité, F-93430 Villetaneuse, France.
| |
Collapse
|
90
|
Design of bio-based supramolecular structures through self-assembly of α-lactalbumin and lysozyme. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
91
|
|
92
|
Cunha L, Grenha A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar Drugs 2016; 14:E42. [PMID: 26927134 PMCID: PMC4820297 DOI: 10.3390/md14030042] [Citation(s) in RCA: 279] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting.
Collapse
Affiliation(s)
- Ludmylla Cunha
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| | - Ana Grenha
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| |
Collapse
|
93
|
Cardoso MJ, Costa RR, Mano JF. Marine Origin Polysaccharides in Drug Delivery Systems. Mar Drugs 2016; 14:E34. [PMID: 26861358 PMCID: PMC4771987 DOI: 10.3390/md14020034] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.
Collapse
Affiliation(s)
- Matias J Cardoso
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Rui R Costa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - João F Mano
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine, Avepark-Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.
- ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
94
|
Venkatesan J, Anil S, Kim SK, Shim MS. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel) 2016; 8:E30. [PMID: 30979124 PMCID: PMC6432598 DOI: 10.3390/polym8020030] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/17/2023] Open
Abstract
In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs) by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics). Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.
Collapse
Affiliation(s)
| | - Sukumaran Anil
- Department of Preventive Dental Sciences, College of Dentistry, Jazan University, P.O Box 114, Jazan 45142, Saudi Arabia.
| | - Se-Kwon Kim
- Marine Bioprocess Research Center and Department of Marine-bio Convergence Science, Pukyong National University, Busan 608-737, Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Korea.
| |
Collapse
|
95
|
Wu C, Wu T, Fang Z, Zheng J, Xu S, Chen S, Hu Y, Ye X. Formation, characterization and release kinetics of chitosan/γ-PGA encapsulated nisin nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra06003j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To improve its efficiency, nisin was encapsulated in a γ-PGA and chitosan nanoparticles using self-assembly method. The release of nisin from the nanoparticles exhibited a pH-dependent pattern, and the release mechanism was an anomalous behavior.
Collapse
Affiliation(s)
- Chunhua Wu
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Zhejiang University
| | - Tiantian Wu
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Zhejiang University
| | - Zhongxiang Fang
- Faculty of Veterinary and Agricultural Sciences
- The University of Melbourne
- Parkville
- Australia
| | - Jiawen Zheng
- Division of Applied Biosciences
- Graduate School of Agriculture
- Kyoto University
- Kyoto
- Japan
| | - Shao Xu
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Zhejiang University
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Zhejiang University
| | - Yaqin Hu
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Zhejiang University
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science
- Fuli Institute of Food Science
- Zhejiang Key Laboratory for Agro-Food Processing
- Zhejiang R & D Center for Food Technology and Equipment
- Zhejiang University
| |
Collapse
|
96
|
|
97
|
Chang Y, McClements DJ. Interfacial deposition of an anionic polysaccharide (fucoidan) on protein-coated lipid droplets: Impact on the stability of fish oil-in-water emulsions. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
98
|
Fitton JH, Stringer DN, Karpiniec SS. Therapies from Fucoidan: An Update. Mar Drugs 2015; 13:5920-46. [PMID: 26389927 PMCID: PMC4584361 DOI: 10.3390/md13095920] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
Fucoidans are a class of sulfated fucose-rich polysaccharides found in brown marine algae and echinoderms. Fucoidans have an attractive array of bioactivities and potential applications including immune modulation, cancer inhibition, and pathogen inhibition. Research into fucoidan has continued to gain pace over the last few years and point towards potential therapeutic or adjunct roles. The source, extraction, characterization and detection of fucoidan is discussed.
Collapse
Affiliation(s)
- Janet Helen Fitton
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Damien N Stringer
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| | - Samuel S Karpiniec
- Marinova Pty Ltd., 249 Kennedy Drive, Cambridge, Tasmania 7170, Australia.
| |
Collapse
|
99
|
Yu SH, Wu SJ, Wu JY, Wen DY, Mi FL. Preparation of fucoidan-shelled and genipin-crosslinked chitosan beads for antibacterial application. Carbohydr Polym 2015; 126:97-107. [DOI: 10.1016/j.carbpol.2015.02.068] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/20/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022]
|
100
|
Rivera MC, Pinheiro AC, Bourbon AI, Cerqueira MA, Vicente AA. Hollow chitosan/alginate nanocapsules for bioactive compound delivery. Int J Biol Macromol 2015; 79:95-102. [PMID: 25907011 DOI: 10.1016/j.ijbiomac.2015.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/19/2015] [Accepted: 03/03/2015] [Indexed: 01/24/2023]
Abstract
This work aimed at the development of biodegradable nanocapsules as carriers of two bioactive compounds, 5-aminosalycilic acid and glycomacropeptide. Nanocapsules were produced through layer-by-layer (LbL) deposition of chitosan (CH) and alginate (ALG) layers on polystyrene nanoparticles. The bioactive compounds were incorporated on the third layer of the nanocapsules being its encapsulation efficiency and release behaviour evaluated. The LbL deposition process, stability, morphology and size of the multilayer nanocapsules were monitored by means of zeta potential and transmission electron microscopy (TEM). The bioactive compounds release from the CH/ALG nanocapsules was successfully described by a mathematical model (linear superimposition model - LSM), which allowed concluding that bioactive compounds release is due to both Brownian motion and the polymer relaxation of the CH/ALG layers. Final results demonstrated that the synthesized LbL hollow nanocapsules presented spherical morphology and a good capacity to encapsulate different bioactive compounds, being the best results obtained for the system containing 5-aminosalycilic acid (with an encapsulation efficiency of approximately 70%). CH/ALG multilayer nanocapsules could be a promising carrier of bioactive compounds for applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Melissa C Rivera
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana C Pinheiro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana I Bourbon
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel A Cerqueira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - António A Vicente
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|