51
|
Zhang W, Zhang Y, Cao J, Jiang W. Improving the performance of edible food packaging films by using nanocellulose as an additive. Int J Biol Macromol 2020; 166:288-296. [PMID: 33129905 DOI: 10.1016/j.ijbiomac.2020.10.185] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Due to the environmental pollution problems caused by plastic-based packaging, the development of edible food packaging films is imminent. However, the performance of most edible packaging films is insufficient to meet practical applications, so recent studies have focused on the research of various fillers to improve film properties. This article reviews recent applications of cellulose nanocrystals (CNC) and cellulose nanofiber (CNF) in edible food packaging films including the effect on thickness, optical properties, barrier properties, water sensitivity, mechanical properties, antioxidant and antimicrobial properties. The main conclusion of this review is that the incorporation of CNC and CNF could significantly improve the performance of edible food packaging films. Particular finding is that although CNC and CNF can be used as excellent addition to improve the performance of edible food packaging films, there is a key "optimum" concentration. In addition, we also found that CNC and CNF as excellent controlled release agents and stabilizers significantly increased the antioxidant and antibacterial properties of edible food packaging films.
Collapse
Affiliation(s)
- Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yiqin Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
52
|
Development of functional chitosan-based composite films incorporated with hemicelluloses: Effect on physicochemical properties. Carbohydr Polym 2020; 246:116489. [DOI: 10.1016/j.carbpol.2020.116489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/20/2022]
|
53
|
Espinach FX, Espinosa E, Reixach R, Rodríguez A, Mutjé P, Tarrés Q. Study on the Macro and Micromechanics Tensile Strength Properties of Orange Tree Pruning Fiber as Sustainable Reinforcement on Bio-Polyethylene Compared to Oil-Derived Polymers and Its Composites. Polymers (Basel) 2020; 12:E2206. [PMID: 32993045 PMCID: PMC7601066 DOI: 10.3390/polym12102206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Agroforestry creates value but also a huge amount of waste outside its value chain. Tree pruning is an example of such a low value waste, that is typically discarded or incinerated in the fields or used to recover energy. Nonetheless, tree prunings are rich in wood fibers that can be used as polymer reinforcement. Although there are some bio-based polymers, the majority of industries use oil-based ones. The election of the materials is usually based on a ratio between properties and cost. Bio-based polymers are more expensive than oil-based ones. This work shows how a bio-polyethylene matrix can be reinforced with fibers from orange tree prunings to obtain materials with notable tensile properties. These bio-based materials can show a balanced cost due to the use of a cheap reinforcement with an expensive matrix. The matrix used showed a tensile strength of 18.65 MPa, which reached 42.54 MPa after the addition of 50 wt.% of reinforcement. The obtained values allow the use of the studied composite to replace polypropylene and some of its composites under tensile loads.
Collapse
Affiliation(s)
- Francesc X Espinach
- Design, Development and Product Innovation, Dept. of Organization, Business, University of Girona, 17003 Girona, Spain
| | - Eduardo Espinosa
- Chemical Engineering Department, Bioagres Group, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Rafel Reixach
- Laboratori d’Enginyeria Paperera i Materials Polímers (LEPAMAP Research Group), Universitat de Girona, Campus Montilivi, C.P., 17003 Girona, Spain; (R.R.); (P.M.); (Q.T.)
| | - Alejandro Rodríguez
- Chemical Engineering Department, Bioagres Group, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Pere Mutjé
- Laboratori d’Enginyeria Paperera i Materials Polímers (LEPAMAP Research Group), Universitat de Girona, Campus Montilivi, C.P., 17003 Girona, Spain; (R.R.); (P.M.); (Q.T.)
- Càtedra de Processos Industrials Sostenibles, Universitat de Girona, Campus Montilivi, C.P., 17003 Girona, Spain
| | - Quim Tarrés
- Laboratori d’Enginyeria Paperera i Materials Polímers (LEPAMAP Research Group), Universitat de Girona, Campus Montilivi, C.P., 17003 Girona, Spain; (R.R.); (P.M.); (Q.T.)
- Càtedra de Processos Industrials Sostenibles, Universitat de Girona, Campus Montilivi, C.P., 17003 Girona, Spain
| |
Collapse
|
54
|
Chen S, Wu M, Wang C, Yan S, Lu P, Wang S. Developed Chitosan/Oregano Essential Oil Biocomposite Packaging Film Enhanced by Cellulose Nanofibril. Polymers (Basel) 2020; 12:E1780. [PMID: 32784925 PMCID: PMC7465515 DOI: 10.3390/polym12081780] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 01/15/2023] Open
Abstract
The use of advanced and eco-friendly materials has become a trend in the field of food packaging. Cellulose nanofibrils (CNFs) were prepared from bleached bagasse pulp board by a mechanical grinding method and were used to enhance the properties of a chitosan/oregano essential oil (OEO) biocomposite packaging film. The growth inhibition rate of the developed films with 2% (w/w) OEO against E. coli and L. monocytogenes reached 99%. With the increased levels of added CNFs, the fibrous network structure of the films became more obvious, as was determined by SEM and the formation of strong hydrogen bonds between CNFs and chitosan was observed in FTIR spectra, while the XRD pattern suggested that the strength of diffraction peaks and crystallinity of the films slightly increased. The addition of 20% CNFs contributed to an oxygen-transmission rate reduction of 5.96 cc/m2·day and water vapor transmission rate reduction of 741.49 g/m2·day. However, the increase in CNFs contents did not significantly improve the barrier properties of the film. The addition of 60% CNFs significantly improved the barrier properties of the film to light and exhibited the lowest light transmittance (28.53%) at 600 nm. Addition of CNFs to the chitosan/OEO film significantly improved tensile strength and the addition of 60% CNFs contributed to an increase of 16.80 MPa in tensile strength. The developed chitosan/oregano essential oil/CNFs biocomposite film with favorable properties and antibacterial activity can be used as a green, functional material in the food-packaging field. It has the potential to improve food quality and extend food shelf life.
Collapse
Affiliation(s)
- Shunli Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (S.C.); (C.W.); (S.Y.); (P.L.)
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (S.C.); (C.W.); (S.Y.); (P.L.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Caixia Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (S.C.); (C.W.); (S.Y.); (P.L.)
| | - Shun Yan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (S.C.); (C.W.); (S.Y.); (P.L.)
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (S.C.); (C.W.); (S.Y.); (P.L.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; (S.C.); (C.W.); (S.Y.); (P.L.)
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| |
Collapse
|
55
|
Zhao Y, Sun H, Yang B, Weng Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers (Basel) 2020; 12:E1775. [PMID: 32784786 PMCID: PMC7465936 DOI: 10.3390/polym12081775] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022] Open
Abstract
Globally increasing environmental awareness and the possibility of increasing price and dwindling supply of traditional petroleum-based plastics have led to a breadth of research currently addressing environmentally friendly bioplastics as an alternative solution. In this context, hemicellulose, as the second richest polysaccharide, has attracted extensive attention due to its combination of such advantages as abundance, biodegradability, and renewability. Herein, in this review, the latest research progress in development of hemicellulose film with regard to application in the field of food packaging is presented with particular emphasis on various physical and chemical modification approaches aimed at performance improvement, primarily for enhancement of mechanical, barrier properties, and hydrophobicity that are essential to food packing materials. The development highlights of hemicellulose film substrate are outlined and research prospects in the field are described.
Collapse
Affiliation(s)
- Yuelong Zhao
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
| | - Hui Sun
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Yang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China; (Y.Z.); (B.Y.); (Y.W.)
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
56
|
Fabrication of branching poly (butylene succinate)/cellulose nanocrystal foams with exceptional thermal insulation. Carbohydr Polym 2020; 247:116708. [PMID: 32829836 DOI: 10.1016/j.carbpol.2020.116708] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/15/2023]
Abstract
Branching poly (butylene succinate) (BPBS) nanocomposite foams incorporated with cellulose nanocrystals (CNCs) were prepared by supercritical CO2. Surface modification of CNCs by acetylation was achieved through replacing hydrophilic hydroxyl groups with hydrophobic acetyl groups, which improved the dispersibility of CNCs significantly. The crystallite sizes of CNCs and acetylated CNCs were calculated by Scherrer's formula as 25 and 19 nm, respectively. The initial crystallization temperature of diverse poly (butylene succinate) (PBS) specimens, a crucial factor for regulating cell nucleation type, increased remarkably by 11.8 °C as well as their storage modulus increased by 2 orders of magnitudes, due to branching reaction and bio-filler addition. BPBS/CNCs foam possessed a high volume expansion ratio as 37.1 times and displayed an exceptional thermal conductivity as 0.021 W(m K)-1. This study provided a promising potential strategy to develop exceptional thermal-insulation polymer foams for composite structures, energy conservation and environment protection.
Collapse
|
57
|
Dou X, Li Q, Wu Q, Duan L, Zhou S, Zhang Y. Effects of lactic acid and mixed acid aqueous solutions on the preparation, structure and properties of thermoplastic chitosan. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int J Biol Macromol 2020; 152:154-170. [DOI: 10.1016/j.ijbiomac.2020.02.276] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 11/19/2022]
|
59
|
Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int J Biol Macromol 2020; 149:11-20. [PMID: 32007845 DOI: 10.1016/j.ijbiomac.2020.01.083] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/24/2019] [Accepted: 01/08/2020] [Indexed: 11/23/2022]
Abstract
Active packaging is designed to extend products shelf life by incorporating active components with biological properties in its structure. The main goal of this research was to develop a biodegradable whey protein isolate (WPI)-based film, incorporated with chitosan nanofiber (CSNF) and cinnamon essential oil (CiEO) (both emulsified and Nanostructured lipid carriers (NLC) form). Then, the physicochemical properties of developed bio-nanocomposite were fully characterized. Both water solubility and the water vapor permeability of WPI film decreased significantly (p < 0.05) by incorporating the CSNF into film structure. The good complexation between WPI and CSNF was confirmed by FTIR. Microstructure revealed that the fiber networks were well distributed throughout the films while the morphological heterogeneity and contributed to the reduction of the tensile strength were evident after addition of CiEO. These obtained results from SEM to be quite in accordance with FT-IR findings that confirmed the incorporation of NLCs into bio-nanocomposite structure have been through physical interactions. The film barrier properties to ultraviolet light were increased by adding all of nano-reinforcements. Moreover, the antibacterial activity of resulting films was enhanced by adding CiEO, especially NLC form. This study introduces a novel ecofriendly bio-nano composite in packaging industries for the shelf life extension of different perishable foods.
Collapse
|