51
|
Chemical Degradation of the La0.6Sr0.4Co0.2Fe0.8O3−δ/Ce0.8Sm0.2O2−δ Interface during Sintering and Cell Operation. ENERGIES 2021. [DOI: 10.3390/en14123674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A complete cell consisting of NiO-Ce0.8Sm0.2O3−δ//Ce0.8Sm0.2O3−δ//(La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ elaborated by a co-tape casting and co-sintering process and tested in operating fuel cell conditions exhibited a strong degradation in performance over time. Study of the cathode–electrolyte interface after cell testing showed, on one hand, the diffusion of lanthanum from (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ into Sm-doped ceria leading to a La- and Sm-doped ceria phase. On the other hand, Ce and Sm diffused into the perovskite phase of the cathode. The grain boundaries appear to be the preferred pathways of the cation diffusion. Furthermore, a strontium enrichment was clearly observed both in the (La0.6Sr0.4)0.95Co0.2Fe0.8O3−δ layer and at the interface with electrolyte. X-ray photoelectron spectroscopy (XPS) indicates that this Sr-rich phase corresponded to SrCO3. These different phenomena led to a chemical degradation of materials and interfaces, explaining the decrease in electrochemical performance.
Collapse
|
52
|
Tsurugi H, Mashima K. Renaissance of Homogeneous Cerium Catalysts with Unique Ce(IV/III) Couple: Redox-Mediated Organic Transformations Involving Homolysis of Ce(IV)-Ligand Covalent Bonds. J Am Chem Soc 2021; 143:7879-7890. [PMID: 33904711 DOI: 10.1021/jacs.1c02889] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in the catalytic application of cerium complexes were achieved through controlling the Ce(IV/III) redox couple. Although Ce(IV) complexes have been extensively investigated as stoichiometric oxidants in organic synthesis on the basis of their highly positive redox potentials, these complexes can be used as catalysts, not only by introducing supporting ligands around the coordination sphere of cerium, but also by taking advantage of the photoresponsive properties of Ce(IV) and Ce(III) species. Cerium is highly abundant, comparable to that of some first-row transition metals such as copper, nickel, and zinc. Cerium complexes are new and promising homogeneous catalyst candidates for a variety of organic transformations under mild reaction conditions. They are typically used to activate dioxygen to oxidize organic compounds and applied for organic radical generation using the photoresponsive character of Ce(IV) carboxylates and alkoxides as well as electronic transition of Ce(III), in which homolysis of Ce(IV)-ligand covalent bonds is an important step for the overall catalytic cycle. In this Perspective, we first review the early discovery of Ce(OAc)4-mediated oxidative transformations to emphasize the importance of Ce(IV)-OAc bond homolysis in various C-C bond-forming reactions and its relation to recent developments. We then focus on the fundamental importance of Ce(IV) reactivity involving thermal and photoassisted homolysis of the Ce(IV)-ligand covalent bond and the developments regarding Ce(IV/III) redox changes in catalytic reactions together with our recent findings on cerium-based catalysis.
Collapse
Affiliation(s)
- Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
53
|
Abstract
We review the solution-based synthesis routes to cerium oxide materials where one or more elements are included in place of a proportion of the cerium, i.e., substitution of cerium is performed. The focus is on the solvothermal method, where reagents are heated above the boiling point of the solvent to induce crystallisation directly from the solution. This yields unusual compositions with crystal morphology often on the nanoscale. Chemical elements from all parts of the periodic table are considered, from transition metals to main group elements and the rare earths, including isovalent and aliovalent cations, and surveyed using the literature published in the past ten years. We illustrate the versatility of this synthesis method to allow the formation of functional materials with applications in contemporary applications such as heterogeneous catalysis, electrodes for solid oxide fuel cells, photocatalysis, luminescence and biomedicine. We pick out emerging trends towards control of crystal habit by use of non-aqueous solvents and solution additives and identify challenges still remaining, including in detailed structural characterisation, the understanding of crystallisation mechanisms and the scale-up of synthesis.
Collapse
|
54
|
Yan F, Li P, Zhang X. CO and C3H6 oxidation over La0.9Sr0.1CoO3 catalysts: Influence of preparation solvent. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0781-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Lim AMH, Zeng HC. Antisolvent Route to Ultrathin Hollow Spheres of Cerium Oxide for Enhanced CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20501-20510. [PMID: 33891399 DOI: 10.1021/acsami.1c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cerium(IV) oxide (CeO2), or ceria, is one of the most abundant rare-earth materials that has been extensively investigated for its catalytic properties over the past two decades. However, due to the global scarcity and increasing cost of rare-earth materials, efficient utilization of this class of materials poses a challenging issue for the materials research community. Thus, this work is directed toward an exploration of making ultrathin hollow ceria or other rare-earth metal oxides and mixed rare-earth oxides in general. Such a hollow morphology appears to be attractive, especially when the thickness is trimmed to its limit, so that it can be viewed as a two-dimensional sheet of organized nanoscale crystallites, while remaining three-dimensional spatially. This ensures that both inner and outer shell surfaces can be better utilized in catalytic reactions if the polycrystalline sphere is further endowed with mesoporosity. Herein, we have devised our novel synthetic protocol for making ultrathin mesoporous hollow spheres of ceria or other desired rare-earth oxides with a tunable shell thickness in the region of 10 to 40 nm. Our ceria ultrathin hollow spheres are catalytically active and outperform other reported similar nanostructured ceria for the oxidation reaction of carbon monoxide in terms of fuller utilization of cerium. The versatility of this approach has also been extended to fabricating singular or multicomponent rare-earth metal oxides with the same ultrathin hollow morphology and structural uniformity. Therefore, this approach holds good promise for better utilization of rare-earth metal elements across their various technological applications, not ignoring nano-safety considerations.
Collapse
Affiliation(s)
- Alvin M H Lim
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
56
|
Celik E, Ma Y, Brezesinski T, Elm MT. Ordered mesoporous metal oxides for electrochemical applications: correlation between structure, electrical properties and device performance. Phys Chem Chem Phys 2021; 23:10706-10735. [PMID: 33978649 DOI: 10.1039/d1cp00834j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ordered mesoporous metal oxides with a high specific surface area, tailored porosity and engineered interfaces are promising materials for electrochemical applications. In particular, the method of evaporation-induced self-assembly allows the formation of nanocrystalline films of controlled thickness on polar substrates. In general, mesoporous materials have the advantage of benefiting from a unique combination of structural, chemical and physical properties. This Perspective article addresses the structural characteristics and the electrical (charge-transport) properties of mesoporous metal oxides and how these affect their application in energy storage, catalysis and gas sensing.
Collapse
Affiliation(s)
- Erdogan Celik
- Center for Materials Research, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Yanjiao Ma
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Torsten Brezesinski
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Matthias T Elm
- Center for Materials Research, Justus Liebig University Giessen, 35392 Giessen, Germany. and Institute of Experimental Physics I, Justus Liebig University Giessen, 35392 Giessen, Germany and Institute of Physical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
57
|
Sakti AW, Chou CP, Nishimura Y, Nakai H. Is Oxygen Diffusion Faster in Bulk CeO2 or on a (111)-CeO2 Surface? A Theoretical Study. CHEM LETT 2021. [DOI: 10.1246/cl.200895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aditya Wibawa Sakti
- Department of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Jakarta 12220, Indonesia
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Chien-Pin Chou
- JSR Coorporation Yokkaichi Research Center, Yokkaichi, Mie 510-8552, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
- Element Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
58
|
Catalytic performance of Ni/CeO2 catalysts prepared from different routes for CO2 methanation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
59
|
Zhou X, Chen Z, Guo Z, Yang H, Shao J, Zhang X, Zhang S. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124177. [PMID: 33082022 DOI: 10.1016/j.jhazmat.2020.124177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
A series of dual metal incorporated CuCex-SAPO-34(x = 0-0.04) samples were synthesized using one-pot hydrothermal method with diethylamine as organic structure-directing agent for selective catalytic reduction of NOx by NH3. The catalytic properties were elucidated in detail with physicochemical properties being analyzed using various instruments. All the catalysts exhibited typical SAPO-34 crystal structures with high specific surface areas. With the dual-metal incorporation, the surface acidity and amount of isolated Cu2+, which may be active sites for NH3-SCR, were significantly enhanced. However, excessive Ce restrained the formation of isolated Cu2+ due to its occupation of cationic sites. Therefore, the 0.05CuCe0.02-SAPO-34 exhibited high NO conversion (≥80%) at 168°C-500°C. Furthermore, the NH3-SCR mechanism over different catalysts was investigated in-situ DRIFTS experiments. For the 0.05Cu-SAPO-34, the adsorbed NH3 species react with gaseous NO and following the E-R mechanism throughout the reaction temperature range. Meanwhile, adsorbed NO2 was detected and reacted with the adsorbed NH3 species according to the L-H mechanism in low-temperature region. In contrast, the NH3-SCR reaction over the 0.05CuCe0.02-SAPO-34 primarily followed the E-R mechanism throughout the temperature range. The L-H mechanism was cut off due to the loss of the adsorption ability of nitrous species at high temperatures., resulting in NO conversion decreasing.
Collapse
Affiliation(s)
- Xiaoming Zhou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Zhuoyuan Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Zhiyong Guo
- School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Haiping Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Jingai Shao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Xiong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Shihong Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
| |
Collapse
|
60
|
Riley C, De La Riva A, Park JE, Percival SJ, Benavidez A, Coker EN, Aidun RE, Paisley EA, Datye A, Chou SS. A High Entropy Oxide Designed to Catalyze CO Oxidation Without Precious Metals. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8120-8128. [PMID: 33565850 DOI: 10.1021/acsami.0c17446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical complexity of single-phase multicationic oxides, commonly termed high entropy oxides (HEOs), enables the integration of conventionally incompatible metal cations into a single-crystalline phase. However, few studies have effectively leveraged the multicationic nature of HEOs for optimization of disparate physical and chemical properties. Here, we apply the HEO concept to design robust oxidation catalysts in which multicationic oxide composition is tailored to simultaneously achieve catalytic activity, oxygen storage capacity, and thermal stability. Unlike conventional catalysts, HEOs maintain single-phase structure, even at high temperature, and do not rely on the addition of expensive platinum group metals (PGM) to be active. The HEOs are synthesized through a facile, relatively low temperature (500 °C) sol-gel method, which avoids excessive sintering and catalyst deactivation. Nanostructured high entropy oxides with surface areas as high as 138 m2/g are produced, marking a significant structural improvement over previously reported HEOs. Each HEO contained Ce in varying concentrations, as well as four other metals among Al, Fe, La, Mn, Nd, Pr, Sm, Y, and Zr. All samples adopted a fluorite structure. First row transition metal cations were most effective at improving CO oxidation activity, but their incorporation reduced thermal stability. Rare earth cations were necessary to prevent thermal deactivation while maintaining activity. In sum, our work demonstrates the utility of entropy in complex oxide design and a low-energy synthetic route to produce nanostructured HEOs with cations selected for a cooperative effect toward robust performance in chemically and physically demanding applications.
Collapse
Affiliation(s)
- Christopher Riley
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Andrew De La Riva
- Department of Chemical and Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - James Eujin Park
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen J Percival
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Angelica Benavidez
- Department of Chemical and Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eric N Coker
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Ruby E Aidun
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Abhaya Datye
- Department of Chemical and Biological Engineering and Center for Microengineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stanley S Chou
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
61
|
Taniguchi A, Kumabe Y, Kan K, Ohtani M, Kobiro K. Ce 3+-enriched spherical porous ceria with an enhanced oxygen storage capacity. RSC Adv 2021; 11:5609-5617. [PMID: 35423111 PMCID: PMC8694730 DOI: 10.1039/d0ra10186a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/22/2021] [Indexed: 11/21/2022] Open
Abstract
Porous ceria was obtained using a unique solvothermal reaction in acetonitrile, applying high temperature and pressure. The resulting material comprised homogeneous and monodisperse spheres and exhibited an extremely large surface area of 152 m2 g-1. From catalytic performance evaluation by vapor- and liquid-phase reactions, the synthesized porous ceria showed superior and different reaction activity compared with commercial CeO2. To examine the origin of the reaction activity of the present porous ceria, synchrotron hard X-ray photoelectron spectroscopy (HAXPES) measurements were carried out. The systematic study of HAXPES measurements revealed that the obtained porous ceria with the present solvothermal method contained a very high concentration of Ce3+. Moreover, O2-pulse adsorption analyses demonstrated a significant oxygen adsorption capacity exceeding 268 μmol-O g-1 at 400 °C owing to its high contents of Ce3+ species.
Collapse
Affiliation(s)
- Ayano Taniguchi
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Yoshitaka Kumabe
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Kai Kan
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Laboratory for Structural Nanochemistry, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Research Center for Molecular Design, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Masataka Ohtani
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Laboratory for Structural Nanochemistry, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Research Center for Molecular Design, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| | - Kazuya Kobiro
- School of Environmental Science and Engineering, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Laboratory for Structural Nanochemistry, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
- Research Center for Molecular Design, Kochi University of Technology 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502 Japan
| |
Collapse
|
62
|
|
63
|
Uniyal S, Atri S, Uma S, Nagarajan R. Microstructural changes caused by Ba and Pr doping in nanosized Bi 2Ce 2O 7 leading to interesting optical, magnetic, and catalytic properties. CrystEngComm 2021. [DOI: 10.1039/d0ce01550d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The microstructural changes arising out of the inclusion of electropositive Ba2+ and praseodymium capable of showing variable valences in Bi2Ce2O7 have been correlated with the optical, magnetic, and catalytic properties.
Collapse
Affiliation(s)
- Shrishti Uniyal
- Materials Chemistry Group
- Department of Chemistry
- University of Delhi
- Delhi
- -110007 INDIA
| | - Shalu Atri
- Materials Chemistry Group
- Department of Chemistry
- University of Delhi
- Delhi
- -110007 INDIA
| | - Sitharaman Uma
- Materials Chemistry Group
- Department of Chemistry
- University of Delhi
- Delhi
- -110007 INDIA
| | - Rajamani Nagarajan
- Materials Chemistry Group
- Department of Chemistry
- University of Delhi
- Delhi
- -110007 INDIA
| |
Collapse
|
64
|
Wang Z, Khalid O, Wang W, Wang Y, Weber T, Spriewald Luciano A, Zhan W, Smarsly BM, Over H. Comparison study of the effect of CeO 2-based carrier materials on the total oxidation of CO, methane, and propane over RuO 2. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01277k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While activity and kinetics of catalytic CO and propane combustion over RuO2 depends sensitively on the carrier material, methane combustion on RuO2 is hardly affected by the carrier.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Omeir Khalid
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Wei Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Yu Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Tim Weber
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | | | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Bernd M. Smarsly
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Herbert Over
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| |
Collapse
|
65
|
Rudel HE, Lane MKM, Muhich CL, Zimmerman JB. Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure-Property-Function Relationships for Faceted Nanoscale Metal Oxides. ACS NANO 2020; 14:16472-16501. [PMID: 33237735 PMCID: PMC8144246 DOI: 10.1021/acsnano.0c08356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoscale metal oxides (NMOs) have found wide-scale applicability in a variety of environmental fields, particularly catalysis, gas sensing, and sorption. Facet engineering, or controlled exposure of a particular crystal plane, has been established as an advantageous approach to enabling enhanced functionality of NMOs. However, the underlying mechanisms that give rise to this improved performance are often not systematically examined, leading to an insufficient understanding of NMO facet reactivity. This critical review details the unique electronic and structural characteristics of commonly studied NMO facets and further correlates these characteristics to the principal mechanisms that govern performance in various catalytic, gas sensing, and contaminant removal applications. General trends of facet-dependent behavior are established for each of the NMO compositions, and selected case studies for extensions of facet-dependent behavior, such as mixed metals, mixed-metal oxides, and mixed facets, are discussed. Key conclusions about facet reactivity, confounding variables that tend to obfuscate them, and opportunities to deepen structure-property-function understanding are detailed to encourage rational, informed design of NMOs for the intended application.
Collapse
Affiliation(s)
- Holly E Rudel
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Christopher L Muhich
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School for the Engineering of Matter, Transport, and Energy, Ira A Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85001, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
66
|
|
67
|
Kim Y, Lee H, Kwak JH. Mechanism of CO Oxidation on Pd/CeO
2
(100): The Unique Surface‐Structure of CeO
2
(100) and the Role of Peroxide. ChemCatChem 2020. [DOI: 10.1002/cctc.202000714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongseon Kim
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Hosik Lee
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| | - Ja Hun Kwak
- School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 Republic of Korea
| |
Collapse
|
68
|
Jeon J, Ham H, Xing F, Nakaya Y, Shimizu KI, Furukawa S. PdIn-Based Pseudo-Binary Alloy as a Catalyst for NO x Removal under Lean Conditions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jaewan Jeon
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Hyungwon Ham
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
- Japan Science and Technology Agency, PRESTO, Chiyodaku, Tokyo 102-0076, Japan
| |
Collapse
|
69
|
The effect of CeO2 morphology on the electrochemical performance of the reversible solid oxide cells. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
70
|
|
71
|
Feng J, Wang Y, Gao D, Kang B, Li S, Li C, Chen G. Ce-Mn coordination polymer derived hierarchical/porous structured CeO 2-MnO x for enhanced catalytic properties. NANOSCALE 2020; 12:16381-16388. [PMID: 32725031 DOI: 10.1039/d0nr03028g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalytic performance is largely dependent on how the structures/compositions of materials are designed. Herein, CeO2-MnOx binary oxide catalysts with a hierarchical/porous structure are prepared by a facile and efficient method, which involves the preparation of the hierarchical Ce-Mn coordination polymer (CPs) precursor, followed by a thermal treatment step. The obtained CeO2-MnOx catalysts not only well inherit the hierarchical structure of Ce-Mn CPs, but also possess porous and hollow features due to the removal of organic ligands and heterogeneous contraction during the calcination process. In addition, the effect of the Mn/Ce ratio is also studied to optimize catalytic performance. Specifically, the as-prepared CeO2-MnOx (5 : 5) catalyst exhibits excellent catalytic performance toward CO oxidation and selective catalytic reduction (SCR) of NO with NH3 at low temperatures. Based on the characterization results, we propose that the special hierarchical structure, high surface area, strong synergistic interaction between CeO2 and MnOx, and high content of active Ce3+, Mn4+ and Osurf are collectively responsible for its remarkable catalytic performance.
Collapse
Affiliation(s)
- Junwei Feng
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, China.
| | - Yong Wang
- Institut National de la Recherche Scientifique, 1650 Boulevard Lionel Boulet, Varennes, Québec J3X 1S2, Canada.
| | - Daowei Gao
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, China.
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, China.
| | - Shun Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China. and Foshan (Southern China) Institute for New Materials, Foshan, 528200, Guangdong, China
| | - Chunsheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, China.
| | - Guozhu Chen
- School of Chemistry and Chemical Engineering, University of Jinan, 250022, China.
| |
Collapse
|
72
|
Elucidation of Water Promoter Effect of Proton Conductor in WGS Reaction over Pt-Based Catalyst: An Operando DRIFTS Study. Catalysts 2020. [DOI: 10.3390/catal10080841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A conventional Pt/CeO2/Al2O3 catalyst physically mixed with an ionic conductor (Mo- or Eu-doped ZrO2) was tested at high space velocity (20,000 h−1 and 80 L h−1 gcat−1) under model conditions (only with CO and H2O) and industrial conditions, with a realistic feed. The promoted system with the ionic conductor physically mixed showed better catalytic activity associated with better water dissociation and mobility, considered as a rate-determining step. The water activation was assessed by operando diffuse reflectance infrared fourier transformed spectroscopy (DRIFTS) studies under reaction conditions and the Mo-containing ionic conductor exhibited the presence of both dissociated (3724 cm−1) and physisorbed (5239 cm−1) water on the Eu-doped ZrO2 solid solution, which supports the appearance of proton conductivity by Grotthuss mechanism. Moreover, the band at 3633 cm−1 ascribed to hydrated Mo oxide, which increases with the temperature, explains the increase of catalytic activity when the physical mixture was used in a water gas shift (WGS) reaction.
Collapse
|
73
|
Effect of the Preparation Method on the Physicochemical Properties and the CO Oxidation Performance of Nanostructured CeO2/TiO2 Oxides. Processes (Basel) 2020. [DOI: 10.3390/pr8070847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ceria-based mixed oxides have been widely studied in catalysis due to their unique surface and redox properties, with implications in numerous energy- and environmental-related applications. In this regard, the rational design of ceria-based composites by means of advanced synthetic routes has gained particular attention. In the present work, ceria–titania composites were synthesized by four different methods (precipitation, hydrothermal in one and two steps, Stöber) and their effect on the physicochemical characteristics and the CO oxidation performance was investigated. A thorough characterization study, including N2 adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM) and H2 temperature-programmed reduction (H2-TPR) was performed. Ceria–titania samples prepared by the Stöber method, exhibited the optimum CO oxidation performance, followed by samples prepared by the hydrothermal method in one step, whereas the precipitation method led to almost inactive oxides. CeO2/TiO2 samples synthesized by the Stöber method display a rod-like morphology of ceria nanoparticles with a uniform distribution of TiO2, leading to enhanced reducibility and oxygen storage capacity (OSC). A linear relationship was disclosed among the catalytic performance of the samples prepared by different methods and the abundance of reducible oxygen species.
Collapse
|
74
|
|
75
|
Sim M, Wang B, Oh TS. Low temperature CO oxidation by doped cerium oxide electrospun fibers. NANO CONVERGENCE 2020; 7:22. [PMID: 32602081 PMCID: PMC7324448 DOI: 10.1186/s40580-020-00234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
We investigated CO oxidation behavior of doped cerium oxide fibers. Electrospinning technique was used to fabricate the inorganic fibers after burning off polymer component at 600 °C in air. Cu, Ni, Co, Mn, Fe, and La were doped at 10 and 30 mol% by dissolving metal salts into the polymeric electrospinning solution. 10 mol% Cu-doped ceria fiber showed excellent catalytic activity for low temperature CO oxidation with 50% CO conversion at just 52 °C. This 10 mol% Cu-doped sample showed unexpected regeneration behavior under simple ambient air annealing at 400 °C. From the CO oxidation behavior of the 12 samples, we conclude that absolute oxygen vacancy concentration estimated by Raman spectroscopy is not a good indicator for low temperature CO oxidation catalysts unless extra care is taken such that the Raman signal reflects oxide surface status. The experimental trend over the six dopants showed limited agreement with theoretically calculated oxygen vacancy formation energy in the literature.
Collapse
Affiliation(s)
- Myeongseok Sim
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Buhua Wang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Tae-Sik Oh
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
76
|
Keshri KS, Spezzati G, Ruidas S, Hensen E, Chowdhury B. Role of bismuth on aerobic benzyl alcohol oxidation over ceria polymorph-supported gold nanoparticles. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
77
|
Pt/Re/CeO2 Based Catalysts for CO-Water–Gas Shift Reaction: from Powders to Structured Catalyst. Catalysts 2020. [DOI: 10.3390/catal10050564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work focuses on the development of a Pt/Re/CeO2-based structured catalyst for a single stage water–gas shift process. In the first part of the work, the activity in water–gas shift reactions was evaluated for three Pt/Re/CeO2-based powder catalysts, with Pt/Re ratio equal to 1/1, 1/2 ad 2/1 and total loading ≈ 1 wt%. The catalysts were prepared by sequential dry impregnation of commercial ceria, with the salts precursors of rhenium and platinum; the activity tests were carried out by feeding a reacting mixture with a variable CO/H2O ratio, equal to 7/14, 7/20 and 7/24, and the kinetic parameters were determined. The model which better described the experimental results involves the water–gas shift (WGS) reaction and CO as well as CO2 methanation. The preliminary tests showed that the catalyst with the Pt/Re ratio equal to 2/1 had the best performance, and this was selected for further investigations. In the second part of the work, a structured catalyst, obtained by coating a commercial aluminum alloy foam with the chosen catalytic formulation, was prepared and tested in different reaction conditions. The results demonstrated that a single stage water–gas shift process is achievable, obtaining a hydrogen production rate of 18.7 mmol/min at 685 K, at τ = 53 ms, by feeding a simulated reformate gas mixture (37.61 vol% H2, 9.31 vol% CO2, 9.31 vol% CO, 42.19 vol% H2O, 1.37 vol% CH4).
Collapse
|
78
|
|
79
|
Prieur D, Bonani W, Popa K, Walter O, Kriegsman KW, Engelhard MH, Guo X, Eloirdi R, Gouder T, Beck A, Vitova T, Scheinost AC, Kvashnina K, Martin P. Size Dependence of Lattice Parameter and Electronic Structure in CeO 2 Nanoparticles. Inorg Chem 2020; 59:5760-5767. [PMID: 32233468 DOI: 10.1021/acs.inorgchem.0c00506] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intrinsic properties of a compound (e.g., electronic structure, crystallographic structure, optical and magnetic properties) define notably its chemical and physical behavior. In the case of nanomaterials, these fundamental properties depend on the occurrence of quantum mechanical size effects and on the considerable increase of the surface to bulk ratio. Here, we explore the size dependence of both crystal and electronic properties of CeO2 nanoparticles (NPs) with different sizes by state-of-the art spectroscopic techniques. X-ray diffraction, X-ray photoelectron spectroscopy, and high-energy resolution fluorescence-detection hard X-ray absorption near-edge structure (HERFD-XANES) spectroscopy demonstrate that the as-synthesized NPs crystallize in the fluorite structure and they are predominantly composed of CeIV ions. The strong dependence of the lattice parameter with the NPs size was attributed to the presence of adsorbed species at the NPs surface thanks to Fourier transform infrared spectroscopy and thermogravimetric analysis measurements. In addition, the size dependence of the t2g states in the Ce LIII XANES spectra was experimentally observed by HERFD-XANES and confirmed by theoretical calculations.
Collapse
Affiliation(s)
- Damien Prieur
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany.,The Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9 France
| | - Walter Bonani
- European Commission, Joint Research Centre, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Karin Popa
- European Commission, Joint Research Centre, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Olaf Walter
- European Commission, Joint Research Centre, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Kyle W Kriegsman
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Mark H Engelhard
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland, Washington 99352, United States
| | - Xiaofeng Guo
- Department of Chemistry and Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99164, United States
| | - Rachel Eloirdi
- European Commission, Joint Research Centre, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Thomas Gouder
- European Commission, Joint Research Centre, P.O. Box 2340, D-76125 Karlsruhe, Germany
| | - Aaron Beck
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Andreas C Scheinost
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany.,The Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9 France
| | - Kristina Kvashnina
- Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany.,The Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9 France
| | - Philippe Martin
- CEA, DEN, DMRC, SFMA, LCC, F30207 Bagnols sur Cèze cedex, France
| |
Collapse
|
80
|
Sakti A, Chou CP, Nakai H. Density-Functional Tight-Binding Study of Carbonaceous Species Diffusion on the (100)-γ-Al 2O 3 Surface. ACS OMEGA 2020; 5:6862-6871. [PMID: 32258922 PMCID: PMC7114690 DOI: 10.1021/acsomega.0c00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/05/2020] [Indexed: 05/17/2023]
Abstract
Carbonaceous or oxy-carbon species are intermediates formed during C x H y combustion on a Pt n /Al2O3 catalyst, which contain carbon, hydrogen, and oxygen atoms. The accumulation of the carbonaceous species, arguably, leads to catalytic deactivation; therefore, their removal is of importance. As the diffusion process is occasionally the rate-determining step in the growth of carbonaceous species, the present study aims to reveal the diffusion mechanisms. The free energy barriers of acetate, formate, and methoxy diffusion on the (100)-γ-Al2O3 surface were evaluated through extensive metadynamics simulations at the density-functional tight-binding level. The present work deduces that each adopted carbonaceous species exhibits different diffusion mechanisms and supports experimental evidence that the acetate species exhibits the slowest diffusivity among the adopted carbonaceous species.
Collapse
Affiliation(s)
- Aditya
W. Sakti
- Element
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520, Japan
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Chien-Pin Chou
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Element
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Kyoto 615-8520, Japan
- Waseda
Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan
- Department
of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan
- E-mail: . Phone: +81 3-5286-3452. Fax: +81 3-3205-2504
| |
Collapse
|
81
|
Hebert SC, Stöwe K. Synthesis and Characterization of Bismuth-Cerium Oxides for the Catalytic Oxidation of Diesel Soot. MATERIALS 2020; 13:ma13061369. [PMID: 32197456 PMCID: PMC7143761 DOI: 10.3390/ma13061369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
In this paper, the syntheses of a set of cerium-bismuth mixed oxides with the formula Ce1−xBixO2−x/2, where the range of x is 0.0 to 1.0 in 10 mol% steps, via co-precipitation methods is described. Two synthesis routes are tested: The “normal” and the so called “reverse strike” (RS) co-precipitation route. The syntheses are performed with an automated synthesis robot. The activity for Diesel soot oxidation is measured by temperature programmed oxidation with an automated, serial thermogravimetric and differential scanning calorimetry system (TGA/DSC). P90 is used as a model soot. An automated and reproducible tight contact between soot and catalyst is used. The synthesized catalysts are characterized in terms of the specific surface area according to Brunauer, Emmett and Teller (SBET), as well as the dynamic oxygen storage capacity (OSCdyn). The crystalline phases of the catalysts are analysed by powder X-ray diffraction (PXRD) and Raman spectroscopy. The elemental mass fraction of the synthesized catalysts is verified by X-ray fluorescence (XRF) analysis. A correlation between the T50 values, OSCdyn and SBET has been discovered. The best catalytic performance is exhibited by the catalyst with the formula RS-Ce0.8Bi0.2Ox which is synthesized by the reverse strike co-precipitation route. Here, a correlation between activity, OSCdyn, and SBET can be confirmed based on structural properties.
Collapse
|
82
|
Safavinia B, Wang Y, Jiang C, Roman C, Darapaneni P, Larriviere J, Cullen DA, Dooley KM, Dorman JA. Enhancing CexZr1–xO2 Activity for Methane Dry Reforming Using Subsurface Ni Dopants. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00203] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Behnam Safavinia
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yuming Wang
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Changyi Jiang
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Cameron Roman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Pragathi Darapaneni
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jarod Larriviere
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - David A. Cullen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kerry M. Dooley
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A. Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
83
|
Ceria-Based Catalysts Studied by Near Ambient Pressure X-ray Photoelectron Spectroscopy: A Review. Catalysts 2020. [DOI: 10.3390/catal10030286] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The development of better catalysts is a passionate topic at the forefront of modern science, where operando techniques are necessary to identify the nature of the active sites. The surface of a solid catalyst is dynamic and dependent on the reaction environment and, therefore, the catalytic active sites may only be formed under specific reaction conditions and may not be stable either in air or under high vacuum conditions. The identification of the active sites and the understanding of their behaviour are essential information towards a rational catalyst design. One of the most powerful operando techniques for the study of active sites is near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), which is particularly sensitive to the surface and sub-surface of solids. Here we review the use of NAP-XPS for the study of ceria-based catalysts, widely used in a large number of industrial processes due to their excellent oxygen storage capacity and well-established redox properties.
Collapse
|
84
|
Narayanan AM, Umarji AM. Rare earth barium cobaltites: potential candidates for low-temperature oxygen separation. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
85
|
Effect of Zirconia on Hydrothermally Synthesized Co3O4/TiO2 Catalyst for NOx Reduction from Engine Emissions. Catalysts 2020. [DOI: 10.3390/catal10020209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Effect of zirconia on the 6 wt.% Co3O4/TiO2 catalyst for NOx reduction is investigated in this paper. Co3O4/TiO2 catalyst was prepared by using hydrothermal method and then was promoted with zirconia by impregnation to get 8% wt. ZrO2-Co3O4/TiO2 catalyst. Catalysts were characterized by using XRD, SEM, and TGA. Catalysts real time activity was tested by coating them on stainless steel wire meshes, containing them in a mild steel shell and mounting them at the exhaust tailpipe of a 72 cm3 motorcycle engine. Zirconia promoted catalyst showed higher conversion efficiency of NOX than the simple Co3O4/TiO2 catalyst due to small crystalline size, fouling inhibition and thermal stability.
Collapse
|
86
|
Li P, Wang R, Yan F. Effect of Pr addition into Ni based anode on direct methanol fueled solid oxide fuel cell. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
87
|
Ashikaga R, Murata K, Ito T, Yamamoto Y, Arai S, Satsuma A. Tuning the oxygen release properties of CeO 2-based catalysts by metal–support interactions for improved gasoline soot combustion. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01294g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CeO2-supported Cu and Rh catalysts showed high soot combustion activities by their high oxygen release properties depending on moderate metal–oxygen bond energy.
Collapse
Affiliation(s)
- Ryota Ashikaga
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kazumasa Murata
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Tetsuya Ito
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Shigeo Arai
- Institute of Materials and Systems for Sustainability
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Atsushi Satsuma
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
88
|
Hill AJ, Seo CY, Chen X, Bhat A, Fisher GB, Lenert A, Schwank JW. Thermally Induced Restructuring of Pd@CeO2 and Pd@SiO2 Nanoparticles as a Strategy for Enhancing Low-Temperature Catalytic Activity. ACS Catal 2019. [DOI: 10.1021/acscatal.9b05224] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander J. Hill
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Chang Yup Seo
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Xiaoyin Chen
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Adarsh Bhat
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Galen B. Fisher
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Andrej Lenert
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Johannes W. Schwank
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
89
|
Li XN, Jiang LX, Wang LN, Ou SH, Zhang MQ, Yang Y, Ma TM, He SG. An Eight-Atom Iridium-Aluminum Oxide Cluster IrAlO 6+ Catalytically Oxidizes Six CO Molecules. J Phys Chem Lett 2019; 10:7850-7855. [PMID: 31790248 DOI: 10.1021/acs.jpclett.9b03056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fundamental understanding regarding oxygen storage capacity involving how and why an active site can buffer a large number of oxygen atoms in redox processes is vital to the design of advanced oxygen storage materials, while it is challenging because of the complexity of heterogeneous catalysis. Herein, we identified that an eight-atom iridium-aluminum oxide cluster IrAlO6+ can transfer all the oxygen atoms to catalytically oxidize six CO molecules. This finding represents a breakthrough in cluster catalysis where at most three oxygen atoms from a heteronuclear metal oxide cluster can be catalytically involved in CO oxidation. We found that oxygen prefers to be stored on aluminum to form an O3-• radical in the energetically unfavorable IrAlO6+ isomer and generate the low-coordinated iridium that is pivotal to capturing CO and triggering the catalysis. The powerful electron cycling capability of iridium and the cooperative iridium-aluminum interplay are emphasized to drive the oxygen atom-transfer behavior.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li-Xue Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Li Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Shu-Hua Ou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- School of Chemistry and Chemical Engineering , South China University of Technology , 381 Wushan Road, Tianhe District , Guangzhou 510641 , China
| | - Mei-Qi Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Yuan Yang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering , South China University of Technology , 381 Wushan Road, Tianhe District , Guangzhou 510641 , China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences , Beijing 100190 , China
| |
Collapse
|
90
|
Kim HJ, Jang MG, Shin D, Han JW. Design of Ceria Catalysts for Low‐Temperature CO Oxidation. ChemCatChem 2019. [DOI: 10.1002/cctc.201901787] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Hyung Jun Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| | - Myeong Gon Jang
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| | - Dongjae Shin
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jeong Woo Han
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
91
|
Ikemoto S, Huang X, Muratsugu S, Nagase S, Koitaya T, Matsui H, Yokota GI, Sudoh T, Hashimoto A, Tan Y, Yamamoto S, Tang J, Matsuda I, Yoshinobu J, Yokoyama T, Kusaka S, Matsuda R, Tada M. Reversible low-temperature redox activity and selective oxidation catalysis derived from the concerted activation of multiple metal species on Cr and Rh-incorporated ceria catalysts. Phys Chem Chem Phys 2019; 21:20868-20877. [PMID: 31517357 DOI: 10.1039/c9cp04625a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ceria-based catalyst incorporated with Cr and a trace amount of Rh (Cr0.19Rh0.06CeOz) was prepared and the reversible redox performances and oxidation catalysis of CO and alcohol derivatives with O2 at low temperatures (<373 K) were investigated. In situ X-ray absorption fine structure (XAFS), ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)-EDS/EELS and temperature-programmed reduction/oxidation (TPR/TPO) revealed the structures and redox mechanisms of three metals in Cr0.19Rh0.06CeOz: dispersed Rh3+δ species (<1 nm) and Cr6-γO3-x nanoparticles (∼1 nm) supported on CeO2 in Cr0.19Rh0.06CeOz were transformed to Rh nanoclusters, Cr(OH)3 species and CeO2-x with two Ce3+-oxide layers at the surface in a concerted activation manner of the three metal species with H2.
Collapse
Affiliation(s)
- Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Xiubing Huang
- Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. and Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Shoko Nagase
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Takanori Koitaya
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi 332-0012, Japan and Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Hirosuke Matsui
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Gen-Ichi Yokota
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Takatoshi Sudoh
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Ayako Hashimoto
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi 332-0012, Japan and In-situ Characterization Technique Development Group, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Yuanyuan Tan
- Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Susumu Yamamoto
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Jiayi Tang
- Graduate School of Engineering, University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2280, Japan
| | - Iwao Matsuda
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Jun Yoshinobu
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Toshihiko Yokoyama
- Department of Materials Molecular Science, Institute for Molecular Science, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Shinpei Kusaka
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Ryotaro Matsuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan. and Research Center for Materials Science (RCMS) & Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
92
|
Oxidative Thermal Sintering and Redispersion of Rh Nanoparticles on Supports with High Oxygen Ion Lability. Catalysts 2019. [DOI: 10.3390/catal9060541] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The thermal sintering under oxidative conditions of Rh nanoparticles supported on oxides characterized by very different oxygen storage capacities (OSC) and labilities was studied at 750 and 850 °C. Under sintering conditions, significant particle growth occurred for Rh/γ-Al2O3 (up to 120% at 850 °C). In striking contrast, Rh/ACZ (alumina–ceria–zirconia) and Rh/CZ (ceria–zirconia) exhibited marked resistance to sintering, and even moderate (ca. −10% at 850 °C) to pronounced (ca. −60% at 850 °C) redispersion of the Rh. A model is proposed based on a double-layer description of metal–support interactions assigned to back-spillover of labile oxygen ions onto the Rh particles, accompanied by trapping of atomic Rh by the resulting surface oxygen vacancies. This model accounts for the observed resistance to sintering and actual redispersion of Rh, consistent with both alternative sintering mechanisms, namely Ostwald ripening (OR) or particle migration and coalescence (PMC).
Collapse
|
93
|
Ye L, Mahadi AH, Saengruengrit C, Qu J, Xu F, Fairclough SM, Young N, Ho PL, Shan J, Nguyen L, Tao FF, Tedsree K, Tsang SCE. Ceria Nanocrystals Supporting Pd for Formic Acid Electrocatalytic Oxidation: Prominent Polar Surface Metal Support Interactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00421] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Ye
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - A. Hanif Mahadi
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Chalathan Saengruengrit
- Department of Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131, Thailand
| | - Jin Qu
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Feng Xu
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Simon M. Fairclough
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Neil Young
- Department of Materials, University of Oxford, Oxford OX1 3PH, U.K
| | - Ping-Luen Ho
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Junjun Shan
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Luan Nguyen
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Franklin F. Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Karaked Tedsree
- Department of Chemistry, Faculty of Science, Burapha University, Bangsaen, Chonburi 20131, Thailand
| | - S. C. Edman Tsang
- The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
94
|
Fonseca J, Bion N, Licea YE, Morais CM, Rangel MDC, Duprez D, Epron F. Unexpected redox behaviour of large surface alumina containing highly dispersed ceria nanoclusters. NANOSCALE 2019; 11:1273-1285. [PMID: 30603748 DOI: 10.1039/c8nr07898j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cerium-containing oxide materials have several very interesting applications due to their capacity to store and release oxygen under oxidizing and reducing conditions respectively. In the case of pure ceria this property is highly size dependent inasmuch as the phenomenon is limited to the surface and subsurface oxygen atoms. As a consequence, the design of nanocrystals of ceria has been attracting much attention. In this paper, the evaporation-induced self-assembly method was used to prepare a series of mixed oxide materials composed of nanoclusters of ceria very well dispersed over large surface mesoporous alumina. We observed a total and reversible reduction of Ce4+ into Ce3+ at 400 °C for the materials with a Ce loading between 20 and 35 wt%. A combination of analyses including in situ X-ray diffraction, temperature-programmed reduction, oxygen storage capacity, isotopic exchange, 27-Al and 17-O solid state NMR, and X-ray absorption spectroscopy at the Ce L3-edge was employed to investigate this unexpected redox behavior. The results reveal that the strong structural disorder observed in both CeO2 and Al2O3 nanoclusters favors the formation of non-crystallized CeAlO3 pseudo phase at the interface between the two oxides.
Collapse
Affiliation(s)
- Juliana Fonseca
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), University of Poitiers, CNRS, 4 rue Michel Brunet, TSA51106, F86073 Poitiers Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
95
|
Ju TJ, Wang CH, Lin SD. Insights into the CO2 deoxygenation to CO over oxygen vacancies of CeO2. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00111e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reversibly regenerated oxygen vacancies of CeO2 can catalyze CO2 deoxygenation and the reaction is initially surface reaction limited.
Collapse
Affiliation(s)
- Tz-Jie Ju
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Chi-Han Wang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| | - Shawn D. Lin
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taipei 106
- Taiwan
| |
Collapse
|
96
|
Li P, Chen X, Ma L, Bhat A, Li Y, Schwank JW. Effect of Ce and La dopants in Co3O4 nanorods on the catalytic activity of CO and C3H6 oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02460j] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic activity is enhanced by Ce but inhibited by La dopant. The catalysts have been characterized in light of structural properties, reducibility, mobility of adsorbed oxygen and lattice oxygen, and surface reaction intermediates.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
- Tianjin Key Laboratory of Applied Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University)
| | - Xiaoyin Chen
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Lei Ma
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Adarsh Bhat
- Department of Chemical Engineering
- University of Michigan
- Ann Arbor
- USA
| | - Yongdan Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University)
- School of Chemical Engineering
- Tianjin University
- Tianjin 300072
- China
| | | |
Collapse
|
97
|
Sun Y, Li C, Djerdj I, Khalid O, Cop P, Sann J, Weber T, Werner S, Turke K, Guo Y, Smarsly BM, Over H. Oxygen storage capacity versus catalytic activity of ceria–zirconia solid solutions in CO and HCl oxidation. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00222g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
CexZr1−xO2 solid solutions were prepared to explore the relationship between oxygen storage capacity and activity of oxidation reactions.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Chenwei Li
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Igor Djerdj
- Department of Chemistry
- Josip Juraj Strossmayer University of Osijek
- HR-31000 Osijek
- Croatia
| | - Omeir Khalid
- Physikalisch-Chemisches Institut
- Justus Liebig University
- Germany
| | - Pascal Cop
- Physikalisch-Chemisches Institut
- Justus Liebig University
- Germany
| | - Joachim Sann
- Physikalisch-Chemisches Institut
- Justus Liebig University
- Germany
| | - Tim Weber
- Physikalisch-Chemisches Institut
- Justus Liebig University
- Germany
| | | | - Kevin Turke
- Physikalisch-Chemisches Institut
- Justus Liebig University
- Germany
| | - Yanglong Guo
- Key Laboratory for Advanced Materials
- Research Institute of Industrial Catalysis
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | - Herbert Over
- Physikalisch-Chemisches Institut
- Justus Liebig University
- Germany
| |
Collapse
|
98
|
Ohba N, Yokoya T, Kajita S, Takechi K. Search for high-capacity oxygen storage materials by materials informatics. RSC Adv 2019; 9:41811-41816. [PMID: 35541582 PMCID: PMC9076568 DOI: 10.1039/c9ra09886k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022] Open
Abstract
Novel high-capacity oxygen storage material, Cu3Nb2O8, has been discovered by materials informatics.
Collapse
Affiliation(s)
| | - Takuro Yokoya
- Toyota Motor Corporation Higashi-Fuji Technical Center
- Susono
- Japan
| | | | | |
Collapse
|