51
|
Li CL, Fang ZX, Wu Z, Hou YY, Wu HT, Liu J. Repurposed itraconazole for use in the treatment of malignancies as a promising therapeutic strategy. Biomed Pharmacother 2022; 154:113616. [PMID: 36055112 DOI: 10.1016/j.biopha.2022.113616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 02/05/2023] Open
Abstract
Understanding cancer biology and the development of novel agents for cancer treatment has always been the goal of cancer researchers. However, the research and development of new drugs is hindered by its long development time, exorbitant cost, high regulatory hurdles, and staggering failure rates. Given the challenges involved drug development for cancer therapies, alternative strategies, in particular the repurposing of 'old' drugs that have been approved for other indications, are attractive. Itraconazole is an FDA-approved anti-fungal drug of the triazole class, and has been used clinically for more than 30 years. Recent drug repurposing screens revealed itraconazole exerts anti-cancer activity via inhibiting angiogenesis and multiple oncogenic signaling pathways. To explore the potential utilization of itraconazole in different types of malignancies, we retrieved the published literature relating to itraconazole in cancer and reviewed the mechanisms of itraconazole in preclinical and clinical cancer studies. Current research predicts the hedgehog signaling pathway as the main target by which itraconazole inhibits a variety of solid and hematological cancers. As clinical trial results become available, itraconazole could emerge as a new antitumor drug that can be used in combination with first-line antitumor drugs.
Collapse
Affiliation(s)
- Chun-Lan Li
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China; Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Physiology/Changjiang Scholar's Laboratory, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
52
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
53
|
Boyle Y, Johns TG, Fletcher EV. Potassium Ion Channels in Malignant Central Nervous System Cancers. Cancers (Basel) 2022; 14:cancers14194767. [PMID: 36230692 PMCID: PMC9563970 DOI: 10.3390/cancers14194767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Malignant central nervous system (CNS) cancers are among the most difficult to treat, with low rates of survival and a high likelihood of recurrence. This is primarily due to their location within the CNS, hindering adequate drug delivery and tumour access via surgery. Furthermore, CNS cancer cells are highly plastic, an adaptive property that enables them to bypass targeted treatment strategies and develop drug resistance. Potassium ion channels have long been implicated in the progression of many cancers due to their integral role in several hallmarks of the disease. Here, we will explore this relationship further, with a focus on malignant CNS cancers, including high-grade glioma (HGG). HGG is the most lethal form of primary brain tumour in adults, with the majority of patient mortality attributed to drug-resistant secondary tumours. Hence, targeting proteins that are integral to cellular plasticity could reduce tumour recurrence, improving survival. This review summarises the role of potassium ion channels in malignant CNS cancers, specifically how they contribute to proliferation, invasion, metastasis, angiogenesis, and plasticity. We will also explore how specific modulation of these proteins may provide a novel way to overcome drug resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Yasmin Boyle
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
- Correspondence:
| | - Terrance G. Johns
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| | - Emily V. Fletcher
- Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands, Perth, WA 6009, Australia
- School of Biomedicine, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, WA 6009, Australia
| |
Collapse
|
54
|
Modulation of Hedgehog Signaling for the Treatment of Basal Cell Carcinoma and the Development of Preclinical Models. Biomedicines 2022; 10:biomedicines10102376. [PMID: 36289637 PMCID: PMC9598418 DOI: 10.3390/biomedicines10102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Basal Cell Carcinoma (BCC) is the most commonly diagnosed cancer worldwide. While the survivability of BCC is high, many patients are excluded from clinically available treatments due to health risks or personal choice. Further, patients with advanced or metastatic disease have severely limited treatment options. The dysregulation of the Hedgehog (Hh) signaling cascade drives onset and progression of BCC. As such, the modulation of this pathway has driven advancements in BCC research. In this review, we focus firstly on inhibitors that target the Hh pathway as chemotherapeutics against BCC. Two therapies targeting Hh signaling have been made clinically available for BCC patients, but these treatments suffer from limited initial efficacy and a high rate of chemoresistant tumor recurrence. Herein, we describe more recent developments of chemical scaffolds that have been designed to hopefully improve upon the available therapeutics. We secondly discuss the history and recent efforts involving modulation of the Hh genome as a method of producing in vivo models of BCC for preclinical research. While there are many advancements left to be made towards improving patient outcomes with BCC, it is clear that targeting the Hh pathway will remain at the forefront of research efforts in designing more effective chemotherapeutics as well as relevant preclinical models.
Collapse
|
55
|
Heppt MV, Gebhardt C, Hassel JC, Alter M, Gutzmer R, Leiter U, Berking C. Long-Term Management of Advanced Basal Cell Carcinoma: Current Challenges and Future Perspectives. Cancers (Basel) 2022; 14:cancers14194547. [PMID: 36230474 PMCID: PMC9559463 DOI: 10.3390/cancers14194547] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Local therapies are no longer an option for locally advanced basal cell carcinoma. Abnormal activation of the hedgehog signaling pathway leads to uncontrolled tumor growth. Hedgehog pathway inhibitors are an effective treatment option for this kind of tumor. However, treatment-related toxicity under long-term treatment may lead to limitations in quality of life, and thus to therapy interruption or even discontinuation. This review summarizes pertinent treatment adjustments and novel therapeutic strategies for effective treatment of locally advanced basal cell carcinoma. Abstract The first-line therapy for locally advanced basal cell carcinoma (laBCC) is Hedgehog pathway inhibitors (HHIs), as they achieve good efficacy and duration of response. However, toxicity in the course of long-term treatment may lead to a decrease in the quality of life, and consequently to interruption or even discontinuation of therapy. As HHI therapy is a balancing act between effectiveness, adverse events, quality of life, and adherence, numerous successful treatment strategies have evolved, such as dose reduction and dose interruptions with on-off treatment schedules or interruptions with re-challenge after progression. As a small percentage of patients show primary or acquired resistance to HHIs, the inhibition of programmed cell death protein 1 (PD-1) has been approved as a second-line therapy, which may also be accompanied by immune-related toxicities and non-response. Thus, optimization of current treatment schedules, novel agents, and combination strategies are urgently needed for laBCC. Here, we narratively model the treatment sequence for patients with laBCC and summarize the current state of approved treatment regimens and therapeutic strategies to optimize the long-term management of laBCC.
Collapse
Affiliation(s)
- Markus V. Heppt
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CC ER-EMN), 91054 Erlangen, Germany
- Correspondence:
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Jessica C. Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Erlangen, Germany
| | - Mareike Alter
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, 32423 Minden, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum Campus Minden, 32423 Minden, Germany
| | - Ulrike Leiter
- Department of Dermatology, Eberhard-Karls-University Tuebingen, 72076 Tuebingen, Germany
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
56
|
ABT-737 suppresses aberrant Hedgehog pathway and overcomes resistance to smoothened antagonists by blocking Gli. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:188. [PMID: 36071246 DOI: 10.1007/s12032-022-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/08/2022] [Indexed: 10/14/2022]
Abstract
Abnormally activated Hedgehog (Hh) pathway has been linked to multiple types of cancers including medulloblastoma (MB). Current Hh-targeted drug development projects mainly focus on antagonizing the upstream oncoprotein Smoothened (Smo). However, the effectiveness of Smo inhibitors is compromised by primary and acquired resistance, which is caused by mutations of Smo or other downstream components. Here, we conducted a cellular screening of small-molecule compounds and identified ABT-737 as a selective Hh inhibitor resulting in active suppression of human Hh-dependent MB cells. Mechanistically, ABT-737 suppressed Hh signals far-downstream of Smo and Sufu at Gli transcriptional effector level. In line with this, ABT-737 potentially inhibited wild-type and drug-resistant mutant Smo. More importantly, ABT-737 also delayed the growth of drug-refractory Hh-dependent MB xenografts derived from genetically engineered mouse model in vivo. These findings identify ABT-737 as a therapeutical substance for cancers with excessive Hh signaling activity, especially for those with primary or acquired resistance to Smo inhibitors in clinic.
Collapse
|
57
|
Lemos T, Merchant A. The hedgehog pathway in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:960943. [PMID: 36091167 PMCID: PMC9453489 DOI: 10.3389/fonc.2022.960943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Hedgehog (HH) pathway is a promising therapeutic target in hematological malignancies. Activation of the pathway has been tied to greater chances of relapse and poorer outcomes in several hematological malignancies and inhibiting the pathway has improved outcomes in several clinical trials. One inhibitor targeting the pathway via the protein Smoothened (SMO), glasdegib, has been approved by the FDA for use with a low dose cytarabine regiment in some high-risk acute myeloid leukemia patients (AML). If further clinical trials in glasdegib produce positive results, there may soon be more general use of HH inhibitors in the treatment of hematological malignancies.While there is clinical evidence that HH inhibitors may improve outcomes and help prevent relapse, a full understanding of any mechanism of action remains elusive. The bulk of AML cells exhibit primary resistance to SMO inhibition (SMOi), leading some to hypothesize that that clinical activity of SMOi is mediated through modulation of self-renewal and chemoresistance in rare cancer stem cells (CSC). Direct evidence that CSC are being targeted in patients by SMOi has proven difficult to produce, and here we present data to support the alternative hypothesis that suggests the clinical benefit observed with SMOi is being mediated through stromal cells in the tumor microenvironment.This paper's aims are to review the history of the HH pathway in hematopoiesis and hematological malignancy, to highlight the pre-clinical and clinical evidence for its use a therapeutic target, and to explore the evidence for stromal activation of the pathway acting to protect CSCs and enable self-renewal of AML and other diseases. Finally, we highlight gaps in the current data and present hypotheses for new research directions.
Collapse
Affiliation(s)
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
58
|
Canonical Hedgehog Pathway and Noncanonical GLI Transcription Factor Activation in Cancer. Cells 2022; 11:cells11162523. [PMID: 36010600 PMCID: PMC9406872 DOI: 10.3390/cells11162523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
The Hedgehog signaling pathway is one of the fundamental pathways required for development and regulation of postnatal regeneration in a variety of tissues. The pathway has also been associated with cancers since the identification of a mutation in one of its components, PTCH, as the cause of Basal Cell Nevus Syndrome, which is associated with several cancers. Our understanding of the pathway in tumorigenesis has expanded greatly since that initial discovery over two decades ago. The pathway has tumor-suppressive and oncogenic functions depending on the context of the cancer. Furthermore, noncanonical activation of GLI transcription factors has been reported in a number of tumor types. Here, we review the roles of canonical Hedgehog signaling pathway and noncanonical GLI activation in cancers, particularly epithelial cancers, and discuss an emerging concept of the distinct outcomes that these modes have on cancer initiation and progression.
Collapse
|
59
|
Advances in Management and Therapeutics of Cutaneous Basal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14153720. [PMID: 35954384 PMCID: PMC9367462 DOI: 10.3390/cancers14153720] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Basal cell carcinoma (BCC) is the most common malignancy in humans with a range of treatment options available. Tumor and patient characteristics aid in risk-stratification, which influences treatment considerations. Here, we review the advancements in surgical, topical, field, immunotherapeutic, molecular-targeted, and experimental treatment modalities that can be employed in the correct clinical setting for the treatment of BCC. Abstract Basal cell carcinoma (BCC), the most common cancer in humans, is a malignant neoplasm of cells derived from the basal layer of the epidermis. Tumor characteristics such as histologic subtype, primary versus recurrent tumor, anatomic location, size, and patient attributes determine the risk level and acceptable treatment options. Surgical options offer histologic confirmation of tumor clearance. Standard excision provides post-treatment histologic assessment, while Mohs micrographic surgery (MMS) provides complete margin assessment intraoperatively. Additional treatment options may be employed in the correct clinical context. Small and low-risk BCCs, broad field cancerization, locally-advanced disease, metastatic disease, cosmetic concerns, or morbidity with surgical approaches raise consideration of other treatment modalities. We review herein a range of treatment approaches and advances in treatments for BCC, including standard excision, MMS, electrodesiccation and curettage, ablative laser treatment, radiation therapy, targeted molecular therapies, topical therapies, field therapies, immunotherapy, and experimental therapies.
Collapse
|
60
|
Swiderska-Syn M, Mir-Pedrol J, Oles A, Schleuger O, Salvador AD, Greiner SM, Seward C, Yang F, Babcock BR, Shen C, Wynn DT, Sanchez-Mejias A, Gershon TR, Martin V, McCrea HJ, Lindsey KG, Krieg C, Rodriguez-Blanco J. Noncanonical activation of GLI signaling in SOX2 + cells drives medulloblastoma relapse. SCIENCE ADVANCES 2022; 8:eabj9138. [PMID: 35857834 PMCID: PMC9299538 DOI: 10.1126/sciadv.abj9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.
Collapse
Affiliation(s)
- Marzena Swiderska-Syn
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Júlia Mir-Pedrol
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Alexander Oles
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Olga Schleuger
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - April D. Salvador
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sean M. Greiner
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Cara Seward
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fan Yang
- Molecular Oncology Program, The Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Benjamin R. Babcock
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Daniel T. Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Avencia Sanchez-Mejias
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vanesa Martin
- Department of Anatomy and Cell Biology, University of Oviedo, Oviedo, Asturias 33006, Spain
| | - Heather J. McCrea
- Department of Clinical Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Kathryn G. Lindsey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
61
|
Kaushik I, Srivastava SK. GABA A receptor agonist suppresses pediatric medulloblastoma progression by inhibiting PKA-Gli1 signaling axis. Mol Ther 2022; 30:2584-2602. [PMID: 35331907 PMCID: PMC9263240 DOI: 10.1016/j.ymthe.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 01/20/2023] Open
Abstract
The Sonic hedgehog-activated subgroup of medulloblastoma (SHH-MB) is one of the most common malignant pediatric brain tumors. Recent clinical studies and genomic databases indicate that GABAA receptor holds significant clinical relevance as a therapeutic target for pediatric MB. Herein, we report that "moxidectin," a GABAA receptor agonist, inhibits the proliferation of Daoy, UW426, UW228, ONS76, and PFSK1 SHH-MB cells by inducing apoptosis. Immunoblotting and immunofluorescence microscopy demonstrated that moxidectin significantly induced GABAA receptor expression and inhibited cyclic AMP (cAMP)-mediated protein kinase A (PKA)-cAMP response element-binding protein (CREB)-Gli1 signaling in SHH-MB. Gli1 and the downstream effector cancer stem cell (CSC) molecules such as Pax6, Oct4, Sox2, and Nanog were also inhibited by moxidectin treatment. Interestingly, moxidectin also inhibited the expression of MDR1. Mechanistic studies using pharmacological or genetic inhibitors/activators of PKA and Gli1 confirmed that the anti-proliferative and apoptotic effects of moxidectin were mediated through inhibition of PKA-Gli1 signaling. Oral administration of 2.5 mg/kg moxidectin suppressed the growth of SHH-MB tumors by 55%-80% in subcutaneous and intracranial tumor models in mice. Ex vivo analysis of excised tumors confirmed the observations made in the in vitro studies. Moxidectin is an FDA-approved drug with an established safety record, therefore any positive findings from our studies will prompt its further clinical investigation for the treatment of MB patients.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
62
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
63
|
Gong B, Guo D, Zheng C, Ma Z, Zhang J, Qu Y, Li X, Li G, Zhang L, Wang Y. Complement C3a activates astrocytes to promote medulloblastoma progression through TNF-α. J Neuroinflammation 2022; 19:159. [PMID: 35725556 PMCID: PMC9208237 DOI: 10.1186/s12974-022-02516-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 06/05/2022] [Indexed: 12/16/2022] Open
Abstract
Background Medulloblastoma (MB) is the most common malignant brain tumor in children. Approximately one-third of MB patients remain incurable. Understanding the molecular mechanism of MB tumorigenesis is, therefore, critical for developing specific and effective treatment strategies. Our previous work demonstrated that astrocytes constitute the tumor microenvironment (TME) of MB and play an indispensable role in MB progression. However, the underlying mechanisms by which astrocytes are regulated and activated to promote MB remain elusive. Methods By taking advantage of Math1-Cre/Ptch1loxp/loxp mice, which spontaneously develop MB, primary MB cells and astrocytes were isolated and then subjected to administration and coculture in vitro. Immunohistochemistry was utilized to determine the presence of C3a in MB sections. MB cell proliferation was evaluated by immunofluorescent staining. GFAP and cytokine expression levels in C3a-stimulated astrocytes were assessed by immunofluorescent staining, western blotting, q-PCR and ELISA. C3a receptor and TNF-α receptor expression was determined by PCR and immunofluorescent staining. p38 MAPK pathway activation was detected by western blotting. Transplanted MB mice were treated with a C3a receptor antagonist or TNF-α receptor antagonist to investigate their role in MB progression in vivo. Results We found that complement C3a, a fragment released from intact complement C3 following complement activation, was enriched in both human and murine MB tumor tissue, and its receptor was highly expressed on tumor-associated astrocytes (TAAs). We demonstrated that C3a activated astrocytes and promoted MB cell proliferation via the p38 MAPK pathway. Moreover, we discovered that C3a upregulated the production of proinflammatory cytokines, such as IL-6 and TNF-α in astrocytes. Application of the conditioned medium of C3a-stimulated astrocytes promoted MB cell proliferation, which was abolished by preincubation with a TNF-α receptor antagonist, indicating a TNF-α-dependent event. Indeed, we further demonstrated that administration of a selective C3a receptor or TNF-α receptor antagonist to mice subcutaneously transplanted with MB suppressed tumor progression in vivo. Conclusions C3a was released during MB development. C3a triggered astrocyte activation and TNF-α production via the p38 pathway, which promoted MB cell proliferation. Our findings revealed the novel role of C3a-mediated TNF-α production by astrocytes in MB progression. These findings imply that targeting C3a and TNF-α may represent a potential novel therapeutic approach for human MB. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02516-9.
Collapse
Affiliation(s)
- Biao Gong
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Duancheng Guo
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chaonan Zheng
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhen Ma
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jie Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yanghui Qu
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinhua Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Gen Li
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Zhang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Yuan Wang
- Laboratory of Molecular Neuropathology, Pediatric Cancer Center, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
64
|
Guerrero-Juarez CF, Lee GH, Liu Y, Wang S, Karikomi M, Sha Y, Chow RY, Nguyen TTL, Iglesias VS, Aasi S, Drummond ML, Nie Q, Sarin K, Atwood SX. Single-cell analysis of human basal cell carcinoma reveals novel regulators of tumor growth and the tumor microenvironment. SCIENCE ADVANCES 2022; 8:eabm7981. [PMID: 35687691 PMCID: PMC9187229 DOI: 10.1126/sciadv.abm7981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/27/2022] [Indexed: 05/27/2023]
Abstract
How basal cell carcinoma (BCC) interacts with its tumor microenvironment to promote growth is unclear. We use singe-cell RNA sequencing to define the human BCC ecosystem and discriminate between normal and malignant epithelial cells. We identify spatial biomarkers of tumors and their surrounding stroma that reinforce the heterogeneity of each tissue type. Combining pseudotime, RNA velocity-PAGA, cellular entropy, and regulon analysis in stromal cells reveals a cancer-specific rewiring of fibroblasts, where STAT1, TGF-β, and inflammatory signals induce a noncanonical WNT5A program that maintains the stromal inflammatory state. Cell-cell communication modeling suggests that tumors respond to the sudden burst of fibroblast-specific inflammatory signaling pathways by producing heat shock proteins, whose expression we validated in situ. Last, dose-dependent treatment with an HSP70 inhibitor suppresses in vitro vismodegib-resistant BCC cell growth, Hedgehog signaling, and in vivo tumor growth in a BCC mouse model, validating HSP70's essential role in tumor growth and reinforcing the critical nature of tumor microenvironment cross-talk in BCC progression.
Collapse
Affiliation(s)
- Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Gun Ho Lee
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingzi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Shuxiong Wang
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Matthew Karikomi
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Yutong Sha
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
| | - Rachel Y. Chow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Tuyen T. L. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Venus Sosa Iglesias
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Sumaira Aasi
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael L. Drummond
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Kavita Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Scott X. Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
- Department of Dermatology, University of California, Irvine, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
65
|
Wilson M, Johnson RP, Senft SC, Pan EY, Krakowski AC. Advanced basal cell carcinoma: What dermatologists need to know about treatment. J Am Acad Dermatol 2022; 86:S14-S24. [PMID: 35577406 DOI: 10.1016/j.jaad.2022.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
The treatment of advanced basal cell carcinoma (BCC) often requires therapies beyond local surgical excision or radiation due to the invasiveness of the tumor. Historically, cytotoxic chemotherapy was used to treat advanced BCC, but with limited data, no standard regimens were established. The discovery of cyclopamine, a natural inhibitor in the Hedgehog pathway, led to the development of the 2 currently approved Hedgehog inhibitors, vismodegib and sonidegib. Both agents are indicated for locally advanced BCC, while vismodegib is also indicated for metastatic BCC. In patients who progress on hedgehog inhibitors or cannot tolerate hedgehog inhibitors, the programmed cell death protein 1 inhibitor cemiplimab can be used to treat locally advanced or metastatic disease. Complex cases of locally advanced or metastatic BCC may be best discussed through a multidisciplinary approach in order to determine the optimal treatment approach for the individual patient.
Collapse
|
66
|
George J, Chen Y, Abdelfattah N, Yamamoto K, Gallup TD, Adamson SI, Rybinski B, Srivastava A, Kumar P, Lee MG, Baskin DS, Jiang W, Choi JM, Flavahan W, Chuang JH, Kim BY, Xu J, Jung SY, Yun K. Cancer stem cells, not bulk tumor cells, determine mechanisms of resistance to SMO inhibitors. CANCER RESEARCH COMMUNICATIONS 2022; 2:402-416. [PMID: 36688010 PMCID: PMC9853917 DOI: 10.1158/2767-9764.crc-22-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
The emergence of treatment resistance significantly reduces the clinical utility of many effective targeted therapies. Although both genetic and epigenetic mechanisms of drug resistance have been reported, whether these mechanisms are stochastically selected in individual tumors or governed by a predictable underlying principle is unknown. Here, we report that the dependence of cancer stem cells (CSCs), not bulk tumor cells, on the targeted pathway determines the molecular mechanism of resistance in individual tumors. Using both spontaneous and transplantable mouse models of sonic hedgehog (SHH) medulloblastoma (MB) treated with an SHH/Smoothened inhibitor, sonidegib/LDE225, we show that genetic-based resistance occurs only in tumors that contain SHH-dependent CSCs (SD-CSCs). In contrast, SHH MBs containing SHH-dependent bulk tumor cells but SHH-independent CSCs (SI-CSCs) acquire resistance through epigenetic reprogramming. Mechanistically, elevated proteasome activity in SMOi-resistant SI-CSC MBs alters the tumor cell maturation trajectory through enhanced degradation of specific epigenetic regulators, including histone acetylation machinery components, resulting in global reductions in H3K9Ac, H3K14Ac, H3K56Ac, H4K5Ac, and H4K8Ac marks and gene expression changes. These results provide new insights into how selective pressure on distinct tumor cell populations contributes to different mechanisms of resistance to targeted therapies. This insight provides a new conceptual framework to understand responses and resistance to SMOis and other targeted therapies.
Collapse
Affiliation(s)
- Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Yaohui Chen
- Department of Neurosurgery, Houston Methodist Neurological Institute and Institute for Academic Medicine, Houston, Texas
- The Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist, Houston Texas
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas
| | - Keiko Yamamoto
- The Jackson Laboratory-Mammalian Genetics, Bar Harbor, Maine
| | - Thomas D. Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott I. Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut
| | - Brad Rybinski
- Department of Internal Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Anuj Srivastava
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S. Baskin
- Department of Neurosurgery, Houston Methodist Neurological Institute and Institute for Academic Medicine, Houston, Texas
- The Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist, Houston Texas
- Department of Neurosurgery, Weill Cornell Medical College, New York, New York
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jong Min Choi
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - William Flavahan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Internal Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiaqiong Xu
- Center for Outcomes Research, Houston Methodist Research Institute, Houston Texas
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas
- Department of Neurology, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
67
|
Verkouteren BJA, Sinx KAE, Reinders MGHC, Aarts MJB, Mosterd K. Update on Hedgehog Pathway Inhibitor Therapy for Patients with Basal Cell Naevus Syndrome or High-frequency Basal Cell Carcinoma. Acta Derm Venereol 2022; 102:980. [PMID: 35535645 PMCID: PMC9631257 DOI: 10.2340/actadv.v102.980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Some patients with basal cell carcinoma develop a large number of basal cell carcinomas during their lives. The most common underlying genetic disease that causes multiple basal cell carcinomas is basal cell naevus syndrome. Basal cell naevus syndrome is caused by a germline mutation in patched-1 (PTCH1), a tumour suppressor gene of the hedgehog signalling pathway. However, in a significant portion of patients with multiple basal cell carcinomas, no underlying genetic cause is found. Nevertheless, these patients can experience a treatment burden comparable to that of patients with basal cell naevus syndrome. They are referred to as high-frequency basal cell carcinoma patients. Hedgehog pathway inhibitors were the first group of targeted therapy for basal cell carcinomas. This study reviews the literature on hedgehog pathway inhibitor therapy for patients with basal cell naevus syndrome and high-frequency basal cell carcinoma, to provide an overview on efficacy, safety, dosing regimens, tumour resistance and reoccurrence, and health-related quality of life.
Collapse
Affiliation(s)
- Babette J A Verkouteren
- Department of Dermatology, Maastricht University Medical Center+, P. Debyelaan 25, NL-6229 HX Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
68
|
Smit MJ, Martini TEI, Armandari I, Bočkaj I, Zomerman WW, de Camargo Magalhães ES, Siragna Z, Meeuwsen TGJ, Scherpen FJG, Schoots MH, Ritsema M, den Dunnen WFA, Hoving EW, Paridaen JTML, de Haan G, Guryev V, Bruggeman SWM. The developmental stage of the medulloblastoma cell-of-origin restricts Hedgehog pathway usage and drug sensitivity. J Cell Sci 2022; 135:275628. [PMID: 35535520 PMCID: PMC9234672 DOI: 10.1242/jcs.258608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Sonic hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage, which depends on Hedgehog signaling for its perinatal expansion. Whereas SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations. To investigate whether the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as a function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream SHH pathway component Smoothened, whereas sensitivity to downstream components SUFU and GLI family proteins was retained. Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients. Summary: There is a relationship between the age of the medulloblastoma patient and the developmental age of the tumor cell-of-origin, and this influences the SHH pathway signaling route used by the tumor.
Collapse
Affiliation(s)
- Marlinde J Smit
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tosca E I Martini
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Inna Armandari
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Irena Bočkaj
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Walderik W Zomerman
- Department of Pediatrics/Pediatric Oncology and Hematology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Eduardo S de Camargo Magalhães
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21949-590, Brazil
| | - Zillah Siragna
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Tiny G J Meeuwsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Frank J G Scherpen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Mirthe H Schoots
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Martha Ritsema
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.,Present address: Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066CX Amsterdam, the Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| | - Sophia W M Bruggeman
- European Research Institute for the Biology of Ageing/ERIBA, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
69
|
Trieu KG, Tsai SY, Eberl M, Ju V, Ford NC, Doane OJ, Peterson JK, Veniaminova NA, Grachtchouk M, Harms PW, Swartling FJ, Dlugosz AA, Wong SY. Basal cell carcinomas acquire secondary mutations to overcome dormancy and progress from microscopic to macroscopic disease. Cell Rep 2022; 39:110779. [PMID: 35508126 PMCID: PMC9127636 DOI: 10.1016/j.celrep.2022.110779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Basal cell carcinomas (BCCs) frequently possess immense mutational burdens; however, the functional significance of most of these mutations remains unclear. Here, we report that loss of Ptch1, the most common mutation that activates upstream Hedgehog (Hh) signaling, initiates the formation of nascent BCC-like tumors that eventually enter into a dormant state. However, rare tumors that overcome dormancy acquire the ability to hyperactivate downstream Hh signaling through a variety of mechanisms, including amplification of Gli1/2 and upregulation of Mycn. Furthermore, we demonstrate that MYCN overexpression promotes the progression of tumors induced by loss of Ptch1. These findings suggest that canonical mutations that activate upstream Hh signaling are necessary, but not sufficient, for BCC to fully progress. Rather, tumors likely acquire secondary mutations that further hyperactivate downstream Hh signaling in order to escape dormancy and enter a trajectory of uncontrolled expansion. Trieu et al. generate BCC mouse models in which rare macroscopic tumors form alongside numerous failed microscopic lesions. Successful macroscopic tumors acquire secondary changes that elevate Gli1, Gli2, and/or Mycn levels, causing hyperactivation of downstream Hedgehog (Hh) signaling. Loss of p53 and Notch1 also contributes to tumor progression.
Collapse
Affiliation(s)
- Kenneth G Trieu
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shih-Ying Tsai
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markus Eberl
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Virginia Ju
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noah C Ford
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Owen J Doane
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie K Peterson
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalia A Veniaminova
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Grachtchouk
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, 751 05 Uppsala, Sweden
| | - Andrzej A Dlugosz
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sunny Y Wong
- Department of Dermatology, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
70
|
In GK, Nallagangula A, Choi JS, Tachiki L, Blackburn MJ, Capone S, Bollin KB, Reuben DY, Shirai K, Zhang-Nunes S, Ragab O, Terando A, Hu JC, Lee H, Bhatia S, Chandra S, Lutzky J, Gibney GT. Clinical activity of PD-1 inhibition in the treatment of locally advanced or metastatic basal cell carcinoma. J Immunother Cancer 2022; 10:jitc-2022-004839. [PMID: 35545318 PMCID: PMC9096532 DOI: 10.1136/jitc-2022-004839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background Basal cell carcinoma (BCC) is the most common malignancy worldwide, yet the management of patients with advanced or metastatic disease is challenging, with limited treatment options. Recently, programmed death receptor 1 (PD-1) inhibition has demonstrated activity in BCC after prior Hedgehog inhibitor treatment. Methods We conducted a multicenter, retrospective analysis of BCC patients treated with PD-1 inhibitor therapy. We examined the efficacy and safety of PD-1 therapy, as well as clinical and pathological variables in association with outcomes. Progression-free survival (PFS), overall survival (OS) and duration of response (DOR) were calculated using Kaplan-Meier methodology. Toxicity was graded per Common Terminology Criteria for Adverse Events V.5.0. Results A total of 29 patients with BCC who were treated with PD-1 inhibition were included for analysis, including 20 (69.0%) with locally advanced and 9 (31.0%) with metastatic disease. The objective response rate was 31.0%, with five partial responses (17.2%), and four complete responses (13.8%). Nine patients had stable disease (31.0%), with a disease control rate of 62.1%. The median DOR was not reached. Median PFS was 12.2 months (95% CI 0.0 to 27.4). Median OS was 32.4 months (95% CI 18.1 to 46.7). Two patients (6.9%) developed grade 3 or higher toxicity, while four patients (13.8%) discontinued PD-1 inhibition because of toxicity. Higher platelets (p=0.022) and any grade toxicity (p=0.024) were significantly associated with disease control rate. Conclusions The clinical efficacy of PD-1 inhibition among patients with advanced or metastatic BCC in this real-world cohort were comparable to published trial data. Further investigation of PD-1 inhibition is needed to define its optimal role for patients with this disease.
Collapse
Affiliation(s)
- Gino Kim In
- Division of Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Aparna Nallagangula
- Division of Medical Oncology, University of Miami, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Jacob Seung Choi
- Division of Hematology and Oncology, Northwestern University, Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Lisa Tachiki
- Division of Oncology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Matthew J Blackburn
- Division of Hematology and Oncology, Georgetown University, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - Stephen Capone
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kathryn B Bollin
- Division of Hematology/Oncology, Scripps Clinic, Scripps MD Anderson Cancer Center, San Diego, California, USA
| | - Daniel Y Reuben
- Division of Hematology & Oncology, Medical University of South Carolina, Hollings Cancer Center, Charleston, South Carolina, USA
| | - Keisuke Shirai
- Section of Hematology/Oncology, Dartmouth University, Norris Cotton Cancer Center, Lebanon, New Hampshire, USA
| | - Sandy Zhang-Nunes
- Department of Ophthalmology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Omar Ragab
- Department of Radiation Oncology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Alicia Terando
- Section of Surgical Oncology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Jenny C Hu
- Department of Dermatology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Han Lee
- Department of Dermatology, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | - Shailender Bhatia
- Division of Oncology, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sunandana Chandra
- Division of Hematology and Oncology, Northwestern University, Robert H Lurie Comprehensive Cancer Center, Chicago, Illinois, USA
| | - Jose Lutzky
- Division of Medical Oncology, University of Miami, Sylvester Comprehensive Cancer Center, Miami, Florida, USA
| | - Geoffrey Thomas Gibney
- Division of Hematology and Oncology, Georgetown University, Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| |
Collapse
|
71
|
Zhang C, Zhu X, Hou S, Pan W, Liao W. Functionalization of Nanomaterials for Skin Cancer Theranostics. Front Bioeng Biotechnol 2022; 10:887548. [PMID: 35557870 PMCID: PMC9086318 DOI: 10.3389/fbioe.2022.887548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 12/02/2022] Open
Abstract
Skin cancer has drawn attention for the increasing incident rates and high morbidity worldwide. Timely diagnosis and efficient treatment are of paramount importance for prompt and effective therapy. Thus, the development of novel skin cancer diagnosis and treatment strategies is of great significance for both fundamental research and clinical practice. Recently, the emerging field of nanotechnology has profoundly impact on early diagnosis and better treatment planning of skin cancer. In this review, we will discuss the current encouraging advances in functional nanomaterials for skin cancer theranostics. Challenges in the field and safety concerns of nanomaterials will also be discussed.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinlin Zhu
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shuming Hou
- Orthopaedic Oncology Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wanqing Liao, ; Weihua Pan,
| | - Wanqing Liao
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Wanqing Liao, ; Weihua Pan,
| |
Collapse
|
72
|
Yurchenko AA, Pop OT, Ighilahriz M, Padioleau I, Rajabi F, Sharpe HJ, Poulalhon N, Dreno B, Khammari A, Delord M, Alberti A, Soufir N, Battistella M, Mourah S, Bouquet F, Savina A, Besse A, Mendez-Lopez M, Grange F, Monestier S, Mortier L, Meyer N, Dutriaux C, Robert C, Saiag P, Herms F, Lambert J, de Sauvage FJ, Dumaz N, Flatz L, Basset-Seguin N, Nikolaev SI. Frequency and Genomic Aspects of Intrinsic Resistance to Vismodegib in Locally Advanced Basal Cell Carcinoma. Clin Cancer Res 2022; 28:1422-1432. [PMID: 35078858 PMCID: PMC9365352 DOI: 10.1158/1078-0432.ccr-21-3764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Vismodegib is approved for the treatment of locally advanced basal cell carcinoma (laBCC), but some cases demonstrate intrinsic resistance (IR) to the drug. We sought to assess the frequency of IR to vismodegib in laBCC and its underlying genomic mechanisms. EXPERIMENTAL DESIGN Response to vismodegib was evaluated in a cohort of 148 laBCC patients. Comprehensive genomic and transcriptomic profiling was performed in a subset of five intrinsically resistant BCC (IR-BCC). RESULTS We identified that IR-BCC represents 6.1% of laBCC in the studied cohort. Prior treatment with chemotherapy was associated with IR. Genetic events that were previously associated with acquired resistance (AR) in BCC or medulloblastoma were observed in three out of five IR-BCC. However, IR-BCCs were distinct by highly rearranged polyploid genomes. Functional analyses identified hyperactivation of the HIPPO-YAP and WNT pathways at RNA and protein levels in IR-BCC. In vitro assay on the BCC cell line further confirmed that YAP1 overexpression increases the cell proliferation rate. CONCLUSIONS IR to vismodegib is a rare event in laBCC. IR-BCCs frequently harbor resistance mutations in the Hh pathway, but also are characterized by hyperactivation of the HIPPO-YAP and WNT pathways.
Collapse
Affiliation(s)
- Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Oltin T. Pop
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Ismael Padioleau
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Fatemeh Rajabi
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | | - Nicolas Poulalhon
- Service de dermatologie, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Brigitte Dreno
- Department of Dermato-Oncology, CHU Nantes, Nantes Université, CIC 1413, Inserm UMR 1302/EMR6001 INCIT, F-44000 Nantes, France
| | - Amir Khammari
- Department of Dermato-Oncology, CHU Nantes, Nantes Université, CIC 1413, Inserm UMR 1302/EMR6001 INCIT, F-44000 Nantes, France
| | - Marc Delord
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Department of Population Health Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | | | - Maxime Battistella
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service d'anatomie pathologique, Hôpital Saint-Louis, Claude Vellefaux, Paris, France
| | - Samia Mourah
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Département de Génomique des Tumeurs Solides, Hôpital Saint-Louis, Claude Vellefaux, Paris, France
| | | | | | - Andrej Besse
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Max Mendez-Lopez
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Florent Grange
- Service de dermatologie, CHU Reims, Rue du general Koenig, Reims, France
- Service de Dermatologie, centre hospitalier de Valence, Valence, France
| | | | - Laurent Mortier
- Service de dermatologie, CHU Lille, Clin Dermato Hop Huriez, Rue Michel Polonovski, Lille, France
| | - Nicolas Meyer
- Service de dermatologie, Institut Univeristaire du Cancer et CHU de Toulouse, Hôpital Larrey, Toulouse, France
| | | | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Medical Oncology, Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, APHP, and EA 4340 “Biomarkers in Cancerology and Hemato-oncology,” UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Florian Herms
- Service de dermatologie, Hôpital Saint-Louis, Paris, France
| | - Jerome Lambert
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, Paris, France
| | | | | | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Nicole Basset-Seguin
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service de dermatologie, Hôpital Saint-Louis, Paris, France
| | - Sergey I. Nikolaev
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
73
|
Krausert S, Brabetz S, Mack NL, Schmitt-Hoffner F, Schwalm B, Peterziel H, Mangang A, Holland-Letz T, Sieber L, Korshunov A, Oehme I, Jäger N, Witt O, Pfister SM, Kool M. Predictive modeling of resistance to SMO-inhibition in a patient-derived orthotopic xenograft model of SHH medulloblastoma. Neurooncol Adv 2022; 4:vdac026. [PMID: 35475274 PMCID: PMC9034118 DOI: 10.1093/noajnl/vdac026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background Inhibition of the sonic hedgehog (SHH) pathway with Smoothened (SMO) inhibitors is a promising treatment strategy in SHH-activated medulloblastoma, especially in adult patients. However, the problem is that tumors frequently acquire resistance to the treatment. To understand the underlying resistance mechanisms and to find ways to overcome the resistance, preclinical models that became resistant to SMO inhibition are needed. Methods To induce SMO inhibitor resistant tumors, we have treated a patient-derived xenograft (PDX) model of SHH medulloblastoma, sensitive to SMO inhibition, with 20 mg/kg Sonidegib using an intermitted treatment schedule. Vehicle-treated and resistant models were subjected to whole-genome and RNA sequencing for molecular characterization and target engagement. In vitro drug screens (76 drugs) were performed using Sonidegib-sensitive and -resistant lines to find other drugs to target the resistant lines. One of the top hits was then validated in vivo. Results Nine independent Sonidegib-resistant PDX lines were generated. Molecular characterization of the resistant models showed that eight models developed missense mutations in SMO and one gained an inactivating point mutation in MEGF8, which acts downstream of SMO as a repressor in the SHH pathway. The in vitro drug screen with Sonidegib-sensitive and -resistant lines identified good efficacy for Selinexor in the resistant line. Indeed, in vivo treatment with Selinexor revealed that it is more effective in resistant than in sensitive models. Conclusions We report the first human SMO inhibitor resistant medulloblastoma PDX models, which can be used for further preclinical experiments to develop the best strategies to overcome the resistance to SMO inhibitors in patients.
Collapse
Affiliation(s)
- Sonja Krausert
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Germany
| | - Sebastian Brabetz
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Germany
| | - Norman L Mack
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Felix Schmitt-Hoffner
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Germany
| | - Benjamin Schwalm
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Heike Peterziel
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Aileen Mangang
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Sieber
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg and Clinical Cooperation Unit Neuropathology, German Cancer Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Oehme
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Olaf Witt
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
74
|
Han C, Ding X, Li M, Luo N, Qi Y, Wang C. Afatinib, an effective treatment for patient with lung squamous cell carcinoma harboring uncommon EGFR G719A and R776C co-mutations. J Cancer Res Clin Oncol 2022; 148:1265-1268. [PMID: 35230510 DOI: 10.1007/s00432-021-03864-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is a crucial driven gene in non-small cell lung cancer (NSCLC), and the EGFR mutation rate in lung squamous cell carcinoma (SCC) is only 3 ~ 6.92%. Uncommon EGFR mutations, such as S768I, L861Q and G719X, accounting for approximately 15% of NSCLC harboring EGFR mutation. Afatinib, a second-generation EGFR-tyrosine kinase inhibitor (TKI), has been approved for NSCLC harboring uncommon mutations by the FDA in 2018. In our report, the lung SCC patient harboring uncommon compound EGFR mutation (G719A and R776C) benefited from afatinib. CASE PRESENTATION A case of a lung SCC patient harboring uncommon compound EGFR mutation (G719A and R776C) benefited from afatinib, and new MYC amplification was detected by next-generation sequencing (NGS) after disease progression. CONCLUSIONS This case first identified a patient with lung squamous cell carcinoma harboring uncommon compound EGFR mutation (G719A and R776C) benefited from afatinib and achieved 11 months of progression-free survival (PFS). Then, new MYC amplification was detected after disease progression, indicating that MYC amplification may be one of the reasons for afatinib resistance.
Collapse
Affiliation(s)
- Chao Han
- Department of Neurosurgery, Cheeloo College of Medicine, The Second Hospital, Shandong University, Jinan, China
| | - Xuan Ding
- Department of Neurosurgery, Cheeloo College of Medicine, The Second Hospital, Shandong University, Jinan, China
| | - Mengmeng Li
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd,, Nanjing, China
| | - Ningning Luo
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd,, Nanjing, China
| | - Yingxue Qi
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd; Nanjing Simcere Medical Laboratory Science Co., Ltd; The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd,, Nanjing, China
| | - Chengwei Wang
- Department of Neurosurgery, Cheeloo College of Medicine, The Second Hospital, Shandong University, Jinan, China.
| |
Collapse
|
75
|
Paudel S, Raina K, Tiku VR, Maurya A, Orlicky DJ, You Z, Rigby CM, Deep G, Kant R, Raina B, Agarwal C, Agarwal R. Chemopreventive efficacy of silibinin against basal cell carcinoma growth and progression in UVB-irradiated Ptch+/- mice. Carcinogenesis 2022; 43:557-570. [PMID: 35184170 PMCID: PMC9234765 DOI: 10.1093/carcin/bgac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.
Collapse
Affiliation(s)
- Sandeep Paudel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Vasundhara R Tiku
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Akhilendra Maurya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Zhiying You
- Department of Medicine, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Cindy M Rigby
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Cancer Biology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Bupinder Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- To whom correspondence should be addressed. Tel: +1 303 724 4055; Fax +1 303 724 7266;
| |
Collapse
|
76
|
Nguyen NM, Cho J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int J Mol Sci 2022; 23:ijms23031733. [PMID: 35163655 PMCID: PMC8835893 DOI: 10.3390/ijms23031733] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. Unfortunately, however, their reputation has been tarnished by the emergence of resistance during therapy, necessitating clarification of mechanisms underlying the drug resistance. In this review, we briefly overview canonical and non-canonical Hh pathways and their inhibitors as targeted cancer therapy. In addition, we summarize the mechanisms of resistance to Smoothened (SMO) inhibitors, including point mutations of the drug binding pocket or downstream molecules of SMO, and non-canonical mechanisms to reinforce Hh pathway output. A distinct mechanism involving loss of primary cilia is also described to maintain GLI activity in resistant tumors. Finally, we address the main strategies to circumvent the drug resistance. These strategies include the development of novel and potent inhibitors targeting different components of the canonical Hh pathway or signaling molecules of the non-canonical pathway. Further studies are necessary to avoid emerging resistance to Hh inhibitors and establish an optimal customized regimen with improved therapeutic efficacy to treat various types of cancer, including basal cell carcinoma.
Collapse
|
77
|
Ramelyte E, Restivo G, Mannino M, Levesque MP, Dummer R. Advances in the drug management of basal cell carcinoma. Expert Opin Pharmacother 2022; 23:573-582. [PMID: 35081851 DOI: 10.1080/14656566.2022.2032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common skin cancer in humans. Recently, BCCs were suggested to be classified into 'easy to treat' and 'difficult to treat,' and different therapeutic options are suggested for their management. AREAS COVERED In this review, the authors discuss treatment options that are approved, recommended for, or are still in development for treatment of BCC. The review covers approved local therapies, such as imiquimod and 5-fluorouracil, and systemic therapies, such as hedgehog inhibitors. New medical agents, investigated in clinical trials, are reviewed. These include: targeted therapies, such as GLI antagonists or anti-VEGFR agents, immunotherapies, such as checkpoint inhibitors, recombinant cytokines or silencing RNA, as well as intralesional virotherapies with modified adeno- or herpes viruses. EXPERT OPINION The progress made in recent years has improved the management of patients with advanced BCC; however, neither tumor targeting nor immune system engaging agents provide a cure. New treatment approaches directed not only to known targets but also the tumor microenvironment are in development and are anticipated to improve the management of difficult to treat BCC.
Collapse
Affiliation(s)
- Egle Ramelyte
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Maria Mannino
- Department of Dermatology, Catholic University of the Sacred Heart, Rome, Italy
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
78
|
Shahoumi LA. Oral Cancer Stem Cells: Therapeutic Implications and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:685236. [PMID: 35048028 PMCID: PMC8757826 DOI: 10.3389/froh.2021.685236] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is currently one of the 10 most common malignancies worldwide, characterized by a biologically highly diverse group of tumors with non-specific biomarkers and poor prognosis. The incidence rate of HNSCC varies widely throughout the world, with an evident prevalence in developing countries such as those in Southeast Asia and Southern Africa. Tumor relapse and metastasis following traditional treatment remain major clinical problems in oral cancer management. Current evidence suggests that therapeutic resistance and metastasis of cancer are mainly driven by a unique subpopulation of tumor cells, termed cancer stem cells (CSCs), or cancer-initiating cells (CICs), which are characterized by their capacity for self-renewal, maintenance of stemness and increased tumorigenicity. Thus, more understanding of the molecular mechanisms of CSCs and their behavior may help in developing effective therapeutic interventions that inhibit tumor growth and progression. This review provides an overview of the main signaling cascades in CSCs that drive tumor repropagation and metastasis in oral cancer, with a focus on squamous cell carcinoma. Other oral non-SCC tumors, including melanoma and malignant salivary gland tumors, will also be considered. In addition, this review discusses some of the CSC-targeted therapeutic strategies that have been employed to combat disease progression, and the challenges of targeting CSCs, with the aim of improving the clinical outcomes for patients with oral malignancies. Targeting of CSCs in head and neck cancer (HNC) represents a promising approach to improve disease outcome. Some CSC-targeted therapies have already been proven to be successful in pre-clinical studies and they are now being tested in clinical trials, mainly in combination with conventional treatment regimens. However, some studies revealed that CSCs may not be the only players that control disease relapse and progression of HNC. Further, clinical research studying a combination of therapies targeted against head and neck CSCs may provide significant advances.
Collapse
Affiliation(s)
- Linah A Shahoumi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
79
|
Zhu X, Leboeuf M, Liu F, Grachtchouk M, Seykora JT, Morrisey EE, Dlugosz AA, Millar SE. HDAC1/2 Control Proliferation and Survival in Adult Epidermis and Pre‒Basal Cell Carcinoma through p16 and p53. J Invest Dermatol 2022; 142:77-87.e10. [PMID: 34284046 PMCID: PMC8688286 DOI: 10.1016/j.jid.2021.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
HDAC inhibitors show therapeutic promise for skin malignancies; however, the roles of specific HDACs in adult epidermal homeostasis and in disease are poorly understood. We find that homozygous epidermal codeletion of Hdac1 and Hdac2 in adult mouse epidermis causes reduced basal cell proliferation, apoptosis, inappropriate differentiation, and eventual loss of Hdac1/2-null keratinocytes. Hdac1/2-deficient epidermis displays elevated acetylated p53 and increased expression of the senescence gene p16. Loss of p53 partially restores basal proliferation, whereas p16 deletion promotes long-term survival of Hdac1/2-null keratinocytes. In activated GLI2-driven pre-basal cell carcinoma, Hdac1/2 deletion dramatically reduces proliferation and increases apoptosis, and knockout of either p53 or p16 partially rescues both proliferation and basal cell viability. Topical application of the HDAC inhibitor romidepsin to the normal epidermis or to GLI2ΔN-driven lesions produces similar defects to those caused by genetic Hdac1/2 deletion, and these are partially rescued by loss of p16. These data reveal essential roles for HDAC1/2 in maintaining proliferation and survival of adult epidermal and basal cell carcinoma progenitors and suggest that the efficacy of therapeutic HDAC1/2 inhibition will depend in part on the mutational status of p53 and p16.
Collapse
Affiliation(s)
- Xuming Zhu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Leboeuf
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Fang Liu
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marina Grachtchouk
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John T. Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Edward E. Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sarah E. Millar
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Corresponding author:
| |
Collapse
|
80
|
Characterization of Smoothened Phosphorylation and Activation. Methods Mol Biol 2022; 2374:121-137. [PMID: 34562248 PMCID: PMC8941978 DOI: 10.1007/978-1-0716-1701-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The GPCR-family protein Smoothened (Smo) is an obligatory signal transducer of the Hedgehog (Hh) signaling pathway. Binding of Hh to its receptor Patched (Ptc) alleviates Ptc-mediated inhibition of Smo, allowing Smo to activate the Cubitus interruptus (Ci)/Gli family of zinc finger transcription factors. The activation of Smo is an early and crucial event in Hh signal transduction. Studies have shown that Hh induces cell surface/ciliary accumulation and phosphorylation of Smo by multiple kinases, including protein kinase A (PKA), casein kinase 1 (CK1), casein kinase 2 (CK2), G protein-coupled receptor kinase 2 (Gprk2/GRK2), and atypical PKC (aPKC). Here, we describe the assays used to examine the phosphorylation and activity of Smo, including in vitro kinase assay, phospho-specific antibodies, luciferase reporter assay, cell surface accumulation, and ciliary localization assays. These assays provide powerful tools to study Smo phosphorylation and activation, leading to mechanistic insight into Smo regulation.
Collapse
|
81
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
82
|
Ray S, Chaturvedi NK, Bhakat KK, Rizzino A, Mahapatra S. Subgroup-Specific Diagnostic, Prognostic, and Predictive Markers Influencing Pediatric Medulloblastoma Treatment. Diagnostics (Basel) 2021; 12:diagnostics12010061. [PMID: 35054230 PMCID: PMC8774967 DOI: 10.3390/diagnostics12010061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant central nervous system tumor in pediatric patients. Mainstay of therapy remains surgical resection followed by craniospinal radiation and chemotherapy, although limitations to this therapy are applied in the youngest patients. Clinically, tumors are divided into average and high-risk status on the basis of age, metastasis at diagnosis, and extent of surgical resection. However, technological advances in high-throughput screening have facilitated the analysis of large transcriptomic datasets that have been used to generate the current classification system, dividing patients into four primary subgroups, i.e., WNT (wingless), SHH (sonic hedgehog), and the non-SHH/WNT subgroups 3 and 4. Each subgroup can further be subdivided on the basis of a combination of cytogenetic and epigenetic events, some in distinct signaling pathways, that activate specific phenotypes impacting patient prognosis. Here, we delve deeper into the genetic basis for each subgroup by reviewing the extent of cytogenetic events in key genes that trigger neoplastic transformation or that exhibit oncogenic properties. Each of these discussions is further centered on how these genetic aberrations can be exploited to generate novel targeted therapeutics for each subgroup along with a discussion on challenges that are currently faced in generating said therapies. Our future hope is that through better understanding of subgroup-specific cytogenetic events, the field may improve diagnosis, prognosis, and treatment to improve overall quality of life for these patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Nagendra K. Chaturvedi
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
| | - Kishor K. Bhakat
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Angie Rizzino
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sidharth Mahapatra
- Department of Pediatrics, University of Nebraska Medical Center, 601 S Saddle Creek Road, Omaha, NE 68198, USA; (S.R.); (N.K.C.)
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA; (K.K.B.); (A.R.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-(402)-599-7754
| |
Collapse
|
83
|
Evaluation of Hedgehog Pathway Inhibition on Nevoid Basal Cell Carcinoma Syndrome Fibroblasts and Basal Cell Carcinoma-Associated Fibroblasts: Are Vismodegib and Sonidegib Useful to Target Cancer-Prone Fibroblasts? Cancers (Basel) 2021; 13:cancers13225858. [PMID: 34831015 PMCID: PMC8616531 DOI: 10.3390/cancers13225858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activating mutations in the Hh pathway underlies the development of sporadic and familial skin BCC. For these oncogenic proliferations displaying ligand-independent activation of the intracellular pathway, two molecules have been approved for therapeutic purposes: vismodegib and sonidegib. Improper Hh signalling occurs in many human tumours also via a paracrine mechanism (ligand-dependent) in which the secretion of Hh ligands by stromal cells support tumour growth. On the other hand, the mobilization of neoplastic stroma by cancer cells is sustained by the activation of Hh signalling in surrounding fibroblasts suggesting a central role of this bidirectional crosstalk in carcinogenesis. Additionally, loss-of-function mutations in the PTCH1 gene in the context of NBCCS, an autosomal dominant disorder predisposing to multiple BCCs, determine tumour permissive phenotypes in dermal fibroblasts. Here, profiling syndromic and BCC-associated fibroblasts unveiled an extraordinary similarity characterized by overexpression of several Hh target genes and a marked pro-inflammatory outline. Both cell types exposed to Hh inhibitors displayed reversion of the tumour-prone phenotype. Under vismodegib and sonidegib treatment, the Wnt/β-catenin pathway, frequently over-active in tumour stroma, resulted down-regulated by pAKT-GSK3β axis and consequent increase of β-catenin turnover. Overall, this study demonstrated that vismodegib and sonidegib impacting on fibroblast tumour supportive functions might be considered in therapy for BCC independently to the mutation status of Hh components in neoplastic cells.
Collapse
|
84
|
Hedgehog Pathway Inhibitors against Tumor Microenvironment. Cells 2021; 10:cells10113135. [PMID: 34831357 PMCID: PMC8619966 DOI: 10.3390/cells10113135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting the hedgehog (HH) pathway to treat aggressive cancers of the brain, breast, pancreas, and prostate has been ongoing for decades. Gli gene amplifications have been long discovered within malignant glioma patients, and since then, inhibitors against HH pathway-associated molecules have successfully reached the clinical stage where several of them have been approved by the FDA. Albeit this success rate implies suitable progress, clinically used HH pathway inhibitors fail to treat patients with metastatic or recurrent disease. This is mainly due to heterogeneous tumor cells that have acquired resistance to the inhibitors along with the obstacle of effectively targeting the tumor microenvironment (TME). Severe side effects such as hyponatremia, diarrhea, fatigue, amenorrhea, nausea, hair loss, abnormal taste, and weight loss have also been reported. Furthermore, HH signaling is known to be involved in the regulation of immune cell maturation, angiogenesis, inflammation, and polarization of macrophages and myeloid-derived suppressor cells. It is critical to determine key mechanisms that can be targeted at different levels of tumor development and progression to address various clinical issues. Hence current research focus encompasses understanding how HH controls TME to develop TME altering and combinatorial targeting strategies. In this review, we aim to discuss the pros and cons of targeting HH signaling molecules, understand the mechanism involved in treatment resistance, reveal the role of the HH pathway in anti-tumor immune response, and explore the development of potential combination treatment of immune checkpoint inhibitors with HH pathway inhibitors to target HH-driven cancers.
Collapse
|
85
|
Frappaz D, Barritault M, Montané L, Laigle-Donadey F, Chinot O, Le Rhun E, Bonneville-Levard A, Hottinger AF, Meyronnet D, Bidaux AS, Garin G, Pérol D. MEVITEM-a phase I/II trial of vismodegib + temozolomide vs temozolomide in patients with recurrent/refractory medulloblastoma with Sonic Hedgehog pathway activation. Neuro Oncol 2021; 23:1949-1960. [PMID: 33825892 PMCID: PMC8563312 DOI: 10.1093/neuonc/noab087] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vismodegib specifically inhibits Sonic Hedgehog (SHH). We report results of a phase I/II evaluating vismodegib + temozolomide (TMZ) in immunohistochemically defined SHH recurrent/refractory adult medulloblastoma. METHODS TMZ-naïve patients were randomized 2:1 to receive vismodegib + TMZ (arm A) or TMZ (arm B). Patients previously treated with TMZ were enrolled in an exploratory cohort of vismodegib (arm C). If the safety run showed no excessive toxicity, a Simon's 2-stage phase II design was planned to explore the 6-month progression-free survival (PFS-6). Stage II was to proceed if arm A PFS-6 was ≥3/9 at the end of stage I. RESULTS A total of 24 patients were included: arm A (10), arm B (5), and arm C (9). Safety analysis showed no excessive toxicity. At the end of stage I, the PFS-6 of arm A was 20% (2/10 patients, 95% unilateral lower confidence limit: 3.7%) and the study was prematurely terminated. The overall response rates (ORR) were 40% (95% CI, 12.2-73.8) and 20% (95% CI, 0.5-71.6) in arm A and B, respectively. In arm C, PFS-6 was 37.5% (95% CI, 8.8-75.5) and ORR was 22.2% (95% CI, 2.8-60.0). Among 11 patients with an expected sensitivity according to new generation sequencing (NGS), 3 had partial response (PR), 4 remained stable disease (SD) while out of 7 potentially resistant patients, 1 had PR and 1 SD. CONCLUSION The addition of vismodegib to TMZ did not add toxicity but failed to improve PFS-6 in SHH recurrent/refractory medulloblastoma. Prediction of sensitivity to vismodegib needs further refinements.
Collapse
Affiliation(s)
| | | | - Laure Montané
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| | | | - Olivier Chinot
- Neuro-Oncology Unit, La Timone Marseille, Marseille, France
| | - Emilie Le Rhun
- University of Lille, U-1192, F-59000 Lille, Lille, France
- Inserm, U-1192, F-59000 Lille, Lille, France
- General and Stereotaxic Neurosurgery Service, CHU Lille, Lille, France
- Oscar Lambret Center, Lille, France
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Andreas F Hottinger
- Brain and Spine Tumor Center, Departments of Clinical Neurosciences & Oncology, CHUV Lausanne University Hospital, Lausanne, Switzerland
| | | | | | - Gwenaële Garin
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| | - David Pérol
- Clinical Research Platform (DRCI) of Centre Léon Bérard, Lyon, France
| |
Collapse
|
86
|
Gorenjak M, Fijačko N, Bogomir Marko P, Živanović M, Potočnik U. De novo mutation in KITLG gene causes a variant of Familial Progressive Hyper- and Hypo-pigmentation (FPHH). Mol Genet Genomic Med 2021; 9:e1841. [PMID: 34716665 PMCID: PMC8683634 DOI: 10.1002/mgg3.1841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/09/2021] [Accepted: 10/17/2021] [Indexed: 11/30/2022] Open
Abstract
Familial Progressive Hyper‐ and Hypopigmentation is a pigmentary disorder characterized by a mix of hypo‐ and hyperpigmented lesions, café‐au‐lait spots and hypopigmented ash‐leaf macules. The disorder was previously linked to KITLG and various mutations have been reported to segregate in different families. Furthermore, association between KITLG mutations and malignancies was also suggested. Exome and SANGER sequencing were performed for identification of KITLG mutations. Functional in silico analyses were additionally performed to assess the findings. We identified a de novo mutation in exon 4 of KITLG gene causing NM_000899.4:c.[329A>T] (chr12:88912508A>T) leading to NP_000890.1:p.(Asp110Val) substitution in the 3rd alpha helix. It was predicted as pathogenic, located in a conserved region and causing an increase in hydrophobicity in the KITLG protein. Our findings clearly confirm an additional hot spot of KITLG mutations in the 3rd alpha helix, which very likely increases the risk of malignancies. To our knowledge the present study provides the strongest evidence of association of the KITLG mutation with both Familial Progressive Hyper‐ and Hypopigmentation and malignancy due to its’ location on somatic cancer mutation locus. Additionally we also address difficulties with classification of the unique phenotype and propose a subtype within broader diagnosis.
Collapse
Affiliation(s)
- Mario Gorenjak
- Faculty of Medicine, Centre for Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia
| | - Nino Fijačko
- Faculty of Health Sciences, Department of Nursing, Maribor, Slovenia
| | - Pij Bogomir Marko
- Department of Dermatology and Venereal Diseases, University Clinical Centre Maribor, Maribor, Slovenia
| | - Milanka Živanović
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Uroš Potočnik
- Faculty of Medicine, Centre for Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia.,Faculty of Chemistry and Chemical Engineering, Laboratory of Biochemistry, Molecular Biology and Genomics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
87
|
Kumar V, Wang Q, Sethi B, Lin F, Kumar V, Coulter DW, Dong Y, Mahato RI. Polymeric nanomedicine for overcoming resistance mechanisms in hedgehog and Myc-amplified medulloblastoma. Biomaterials 2021; 278:121138. [PMID: 34634662 DOI: 10.1016/j.biomaterials.2021.121138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023]
Abstract
Chemoresistance and inadequate therapeutics transport across the blood brain barrier (BBB) remain the major barriers to treating medulloblastoma (MB). Hedgehog (Hh) and IGF/PI3K pathways regulate tumor cell proliferation and resistance in MB. Current Hh inhibitors are effective initially to treat SHH-MB but acquire resistance. Herein, we showed that Hh inhibitor MDB5 and BRD4/PI3K dual inhibitor SF2523 synergistically inhibited the proliferation of DAOY and HD-MB03 cells when used in combination. Treatment of these MB cells with the combination of MDB5 and SF2523 significantly decreased colony formation and expression of MYCN, p-AKT, and cyclin D1 but significantly increased in Bax expression, compared to individual drugs. We used our previously reported copolymer mPEG-b-PCC-g-DC copolymer, which showed 8.7 ± 1.0 and 6.5 ± 0.1% loading for MDB5 and SF2523 when formulated into nanoparticles (NPs). There was sustained drug release from NPs, wherein 100% of MDB5 was released in 50 h, but only 60% of SF2523 was released in 80 h. Targeted NPs prepared by mixing 30:70 ratio of COG-133-PEG-b-PBC and mPEG-b-PCC-g-DC copolymer delivered a significantly higher drug concentration in the cerebellum at 6 and 24h after intravenous injection into orthotopic SHH-MB tumor-bearing NSG mice. Moreover, systemic administration of COG-133-NPs loaded with MDB5 and SF2523 resulted in decreased tumor burden compared to non-targeted drug-loaded NPs, without any hepatic toxicity. In conclusion, our nanomedicine of MDB5 and SF2523 offers a novel therapeutic strategy to treat chemoresistant MB.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qiyue Wang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Feng Lin
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinod Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Donald W Coulter
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
88
|
Kuonen F, Li NY, Haensel D, Patel T, Gaddam S, Yerly L, Rieger K, Aasi S, Oro AE. c-FOS drives reversible basal to squamous cell carcinoma transition. Cell Rep 2021; 37:109774. [PMID: 34610301 PMCID: PMC8515919 DOI: 10.1016/j.celrep.2021.109774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023] Open
Abstract
While squamous transdifferentiation within subpopulations of adenocarcinomas represents an important drug resistance problem, its underlying mechanism remains poorly understood. Here, using surface markers of resistant basal cell carcinomas (BCCs) and patient single-cell and bulk transcriptomic data, we uncover the dynamic roadmap of basal to squamous cell carcinoma transition (BST). Experimentally induced BST identifies activator protein 1 (AP-1) family members in regulating tumor plasticity, and we show that c-FOS plays a central role in BST by regulating the accessibility of distinct AP-1 regulatory elements. Remarkably, despite prominent changes in cell morphology and BST marker expression, we show using inducible model systems that c-FOS-mediated BST demonstrates reversibility. Blocking EGFR pathway activation after c-FOS induction partially reverts BST in vitro and prevents BST features in both mouse models and human tumors. Thus, by identifying the molecular basis of BST, our work reveals a therapeutic opportunity targeting plasticity as a mechanism of tumor resistance.
Collapse
MESH Headings
- Animals
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Carcinoma, Basal Cell/veterinary
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/veterinary
- Cell Transdifferentiation/drug effects
- Chromatin Assembly and Disassembly
- Drug Resistance, Neoplasm/genetics
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Mucin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-fos/antagonists & inhibitors
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-fos/metabolism
- RNA Interference
- RNA, Small Interfering/metabolism
- Signal Transduction/drug effects
- Transcription Factor AP-1/metabolism
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- François Kuonen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland.
| | - Nancy Yanzhe Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel Haensel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tiffany Patel
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sadhana Gaddam
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Yerly
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, 1011 Lausanne, Switzerland
| | - Kerri Rieger
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sumaira Aasi
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
89
|
Patidegib in Dermatology: A Current Review. Int J Mol Sci 2021; 22:ijms221910725. [PMID: 34639065 PMCID: PMC8509734 DOI: 10.3390/ijms221910725] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Basal cell carcinoma is one of the most common types of non-melanoma skin cancers, which can be locally destructive despite low-rate metastasis. Surgery is the treatment of choice, but it lacks of efficacy on advanced cases. Hedgehog pathway inhibitors are a class of drugs providing a new therapeutic option for patients affected by advanced disease. Besides systemic therapy, such as vismodegib and sonidegib, also topical inhibitors have been developed. Patidegib is able to decrease tumor burden, reducing the adverse effects induced by systemic targeted therapies. Methods: We performed comprehensive research to summarize the use of patidegib in advanced and recurrent aggressive basal cell carcinomas. Only English language human studies were included in the search. Results: Seven trials reported the application of patidegib. Both topical and systemic patidegib demonstrated safety, tolerability, and efficacy in naïve patients with stage II and III basal cell carcinomas, while stage IV disease and not-naïve patients did not show any benefit. Conclusion: Unlike systemic Hedgehog pathway inhibitors, patidegib 2% gel is not associated with systemic adverse effects and allows a better patient management. Considering the multidisciplinary management of neoplasia, in the era of precision medicine, it is mandatory to confide in pharmacogenomics to obtain personalized combined or sequential therapies.
Collapse
|
90
|
Doan HQ, Chen L, Nawas Z, Lee HH, Silapunt S, Migden M. Switching Hedgehog inhibitors and other strategies to address resistance when treating advanced basal cell carcinoma. Oncotarget 2021; 12:2089-2100. [PMID: 34611482 PMCID: PMC8487719 DOI: 10.18632/oncotarget.28080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/28/2021] [Indexed: 11/25/2022] Open
Abstract
Although basal cell carcinoma (BCC) is often managed successfully with surgery, patients with locally advanced BCC (laBCC) or metastatic BCC (mBCC) who are not candidates for surgery or radiotherapy have limited treatment options. Most BCCs result from aberrant Hedgehog pathway activation in keratinocyte tumor cells, caused by sporadic or inherited mutations. Mutations in the patched homologue 1 gene that remove its inhibitory regulation of Smoothened homologue (SMO) or mutations in SMO that make it constitutively active, lead to Hedgehog pathway dysregulation and downstream activation of GLI1/2 transcription factors, promoting cell differentiation and proliferation. Hedgehog inhibitors (HHIs) block overactive signaling of this pathway by inhibiting SMO and are currently the only approved treatments for advanced BCC. Two small-molecule SMO inhibitors, vismodegib and sonidegib, have shown efficacy and safety in clinical trials of advanced BCC patients. Although these agents are effective and tolerable for many patients, HHI resistance occurs in some patients. Mechanisms of resistance include mutations in SMO, noncanonical cell identity switching leading to tumor cell resistance, and non-canonical pathway crosstalk causing Hedgehog pathway activation. Approaches to managing HHI resistance include switching HHIs, HHI and radiotherapy combination therapy, photodynamic therapy, and targeting Hedgehog pathway downstream effectors. Increasing understanding of the control of downstream effectors has identified new therapy targets and potential agents for evaluation in BCC. Identification of biomarkers of resistance or response is needed to optimize HHI use in patients with advanced BCC. This review examines HHI resistance, its underlying mechanisms, and methods of management for patients with advanced BCC.
Collapse
Affiliation(s)
- Hung Q Doan
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Dermatology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Leon Chen
- US Dermatology Partners, Houston, TX, USA
| | - Zeena Nawas
- Department of Dermatology, Baylor College of Medicine, Houston, TX, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sirunya Silapunt
- Department of Dermatology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Michael Migden
- Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Dermatology, University of Texas McGovern Medical School, Houston, TX, USA.,Departments of Dermatology and Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
91
|
Kilgour JM, Shah A, Urman NM, Eichstadt S, Do HN, Bailey I, Mirza A, Li S, Oro AE, Aasi SZ, Sarin KY. Phase II Open-Label, Single-Arm Trial to Investigate the Efficacy and Safety of Topical Remetinostat Gel in Patients with Basal Cell Carcinoma. Clin Cancer Res 2021; 27:4717-4725. [PMID: 34362809 PMCID: PMC8416931 DOI: 10.1158/1078-0432.ccr-21-0560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE The mainstay of treatment for basal cell carcinoma (BCC) is surgical excision, which can result in significant associated morbidity, particularly for patients with recurrent tumors. We previously conducted a drug repositioning screen using molecular data from human BCCs and identified histone deacetylase (HDAC) inhibitors as a potential treatment for BCC. Here we conduct the first proof-of-principle study of a topical pan-HDAC inhibitor, remetinostat, in human BCC. PATIENTS AND METHODS We conducted a phase II, open-label, single-arm, single-institution trial of a topical HDAC inhibitor. Participants with at least one BCC were recruited. All participants applied 1% remetinostat gel three times daily for 6 weeks, with measurements of tumor diameter conducted at baseline and week 8. Surgical excision of the remaining tumor was conducted at the end of the study and microscopic evaluation was performed. RESULTS Thirty-three per-protocol tumors from 25 participants were included in the analysis. The overall response rate, defined as the proportion of tumors achieving more than 30% decrease in the longest diameter from baseline to week 8, was 69.7% [90% confidence interval (CI), 54%-82.5%]. On pathologic examination, 54.8% of tumors demonstrated complete resolution. Pharmacodynamic analysis demonstrated similar levels of acetylated histone H3 in skin tissue before and after treatment, however, phosphorylation was increased. No systemic adverse events were reported. CONCLUSIONS The HDAC inhibitor remetinostat is a well-tolerated and effective topical treatment for reducing BCC disease burden in a clinically significant manner. This provides in-human validation of HDAC inhibitors as a therapy for BCC.
Collapse
Affiliation(s)
- James M Kilgour
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Aatman Shah
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicole M Urman
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Shaundra Eichstadt
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| | - Hanh N Do
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Irene Bailey
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Amar Mirza
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Shufeng Li
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Anthony E Oro
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California
| | - Kavita Y Sarin
- Department of Dermatology, Stanford Medicine Outpatient Center, Stanford University, Redwood City, California.
| |
Collapse
|
92
|
Peer E, Aichberger SK, Vilotic F, Gruber W, Parigger T, Grund-Gröschke S, Elmer DP, Rathje F, Ramspacher A, Zaja M, Michel S, Hamm S, Aberger F. Casein Kinase 1D Encodes a Novel Drug Target in Hedgehog-GLI-Driven Cancers and Tumor-Initiating Cells Resistant to SMO Inhibition. Cancers (Basel) 2021; 13:cancers13164227. [PMID: 34439381 PMCID: PMC8394935 DOI: 10.3390/cancers13164227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Uncontrolled activation of hedgehog (HH)—GLI signaling contributes to the development of several human malignancies. Targeted inhibition of the HH—GLI signaling cascade with small-molecule inhibitors can reduce cancer growth, but patient relapse is very common due to the development of drug resistance. Therefore, a high unmet medical need exists for new drug targets and inhibitors to achieve efficient and durable responses. In the current study, we identified CSNK1D as a novel drug target in the HH—GLI signaling pathway. Genetic and pharmacological inhibition of CSNK1D activity leads to suppression of oncogenic HH—GLI signaling, even in cancer cells in which already approved HH inhibitors are no longer effective due to resistance mechanisms. Inhibition of CSNK1D function reduces the malignant properties of so-called tumor-initiating cells, thereby limiting cancer growth and presumably metastasis. The results of this study form the basis for the development of efficient CSNK1D inhibitors for the therapy of HH—GLI-associated cancers. Abstract (1) Background: Aberrant activation of the hedgehog (HH)—GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) in basal cell carcinoma and acute myeloid leukemia. However, frequent development of drug resistance and severe adverse effects of SMO inhibitors pose major challenges that require alternative treatment strategies targeting HH—GLI in TIC downstream of SMO. We therefore investigated members of the casein kinase 1 (CSNK1) family as novel drug targets in HH—GLI-driven malignancies. (2) Methods: We genetically and pharmacologically inhibited CSNK1D in HH-dependent cancer cells displaying either sensitivity or resistance to SMO inhibitors. To address the role of CSNK1D in oncogenic HH signaling and tumor growth and initiation, we quantitatively analyzed HH target gene expression, performed genetic and chemical perturbations of CSNK1D activity, and monitored the oncogenic transformation of TIC in vitro and in vivo using 3D clonogenic tumor spheroid assays and xenograft models. (3) Results: We show that CSNK1D plays a critical role in controlling oncogenic GLI activity downstream of SMO. We provide evidence that inhibition of CSNK1D interferes with oncogenic HH signaling in both SMO inhibitor-sensitive and -resistant tumor settings. Furthermore, genetic and pharmacologic perturbation of CSNK1D decreases the clonogenic growth of GLI-dependent TIC in vitro and in vivo. (4) Conclusions: Pharmacologic targeting of CSNK1D represents a novel therapeutic approach for the treatment of both SMO inhibitor-sensitive and -resistant tumors.
Collapse
Affiliation(s)
- Elisabeth Peer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Sophie Karoline Aichberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Filip Vilotic
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Wolfgang Gruber
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Thomas Parigger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Salzburg Cancer Research Institute, Cancer Cluster Salzburg, IIIrd Medical Department, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Sandra Grund-Gröschke
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Dominik Patrick Elmer
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Florian Rathje
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
| | - Andrea Ramspacher
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Mirko Zaja
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Susanne Michel
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Svetlana Hamm
- 4SC AG, Planegg-Martinsried, 82152 Planegg, Germany; (M.Z.); (S.M.); (S.H.)
| | - Fritz Aberger
- Department of Bioscience, Cancer Cluster Salzburg, Paris-Lodron University Salzburg, 5020 Salzburg, Austria; (E.P.); (S.K.A.); (F.V.); (W.G.); (T.P.); (S.G.-G.); (D.P.E.); (F.R.); (A.R.)
- Correspondence: ; Tel.: +43-662-8044-5792
| |
Collapse
|
93
|
Pereira V, Torrejon J, Kariyawasam D, Berlanga P, Guerrini-Rousseau L, Ayrault O, Varlet P, Tauziède-Espariat A, Puget S, Bolle S, Beccaria K, Blauwblomme T, Brugières L, Grill J, Geoerger B, Dufour C, Abbou S. Clinical and molecular analysis of smoothened inhibitors in Sonic Hedgehog medulloblastoma. Neurooncol Adv 2021; 3:vdab097. [PMID: 34409296 PMCID: PMC8367281 DOI: 10.1093/noajnl/vdab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Smoothened inhibitors (SMOi) have shown activity in Sonic Hedgehog (SHH) medulloblastoma, however this therapeutic class was not developed in children due to severe effects reported on growth. We hereby report long-term follow-up of young patients treated with SMOi for recurrent medulloblastoma. Methods Clinical data on response and toxicity from patients treated with vismodegib or sonidegib from 2011 to 2019 for a SHH medulloblastoma were retrospectively reviewed. Methylation analysis and whole exome sequencing were performed whenever possible. Results All patients with a somatic PTCH1 mutation responded to SMOi (6/8), including 2 prolonged complete responses. One patient was free of disease 8.2 years after treatment. SMOi was challenged again for 3 patients. Two of them had a response, one with SMOi alone, the other one in combination with temozolomide despite previous progression under monotherapy. SMO resistance mutations were found in patients from biopsy at relapse. Combination with temozolomide or surgery plus radiotherapy was associated with very long disease control in 2 patients. The most severe adverse events were myalgia and growth plate fusion with metaphyseal sclerosis. Normal growth velocity was recovered for 1 patient although her final height was below estimated target height. Conclusions Targeting SMO in mutated PTCH1 is an interesting strategy for long-term responses. Combination of SMOi with chemotherapy or surgery and local radiotherapy is an appealing strategy to prevent early resistance and diminish SMOi exposure, especially in young patients. Inhibition of SHH pathway causes growth and development impairment but partial recovery of the growth velocity is possible.
Collapse
Affiliation(s)
- Victor Pereira
- Department of Pediatric Haematology and Oncology, Besançon University Hospital, Besançon, France.,Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Jacob Torrejon
- Curie University Institute, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Diabetology and Gynecology Department, Necker Enfant-Malades University Hospital, AP-HP, Paris, France.,Imagine Institute, Inserm U1163, Paris, France.,Cochin Institute, Inserm U1016, Paris, France
| | - Pablo Berlanga
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Léa Guerrini-Rousseau
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| | - Olivier Ayrault
- Curie University Institute, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Pascale Varlet
- Department of Neuropathology, Saint-anne Hospital, Paris, France
| | | | - Stéphanie Puget
- Department of Pediatric Neurosurgery, Necker Enfants-Malades University Hospital, AP-HP, Paris, France
| | - Stéphanie Bolle
- Department of Radiation Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery, Necker Enfants-Malades University Hospital, AP-HP, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Enfants-Malades University Hospital, AP-HP, Paris, France
| | - Laurence Brugières
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France
| | - Christelle Dufour
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| | - Samuel Abbou
- Department of Pediatric and Adolescents Oncology, Gustave Roussy Cancer Institute, Paris Saclay University, Villejuif, France.,INSERM, Molecular Predictors and New Targets in Oncology, Paris-Saclay University, Villejuif, France
| |
Collapse
|
94
|
Regulation of stability and inhibitory activity of the tumor suppressor SEF through casein-kinase II-mediated phosphorylation. Cell Signal 2021; 86:110085. [PMID: 34280495 DOI: 10.1016/j.cellsig.2021.110085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
Inflammation and cancer are intimately linked. A key mediator of inflammation is the transcription-factor NF-κB/RelA:p50. SEF (also known as IL-17RD) is a feedback antagonist of NF-κB/RelA:p50 that is emerging as an important link between inflammation and cancer. SEF acts as a buffer to prevent excessive NF-κB activity by sequestering NF-κB/RelA:p50 in the cytoplasm of unstimulated cells, and consequently attenuating the NF-κB response upon pro-inflammatory cytokine stimulation. SEF contributes to cancer progression also via modulating other signaling pathways, including those triggered by growth-factors. Despite its important role in human physiology and pathology, mechanisms that regulate SEF biochemical properties and inhibitory activity are unknown. Here we show that human SEF is an intrinsically labile protein that is stabilized via CK2-mediated phosphorylation, and identified the residues whom phosphorylation by CK2 stabilizes hSEF. Unlike endogenous SEF, ectopic SEF was rapidly degraded when overexpressed but was stabilized in the presence of excess CK2, suggesting a mechanism for limiting SEF levels depending upon CK2 processivity. Additionally, phosphorylation by CK2 potentiated hSef interaction with NF-κB in cell-free binding assays. Most importantly, we identified a CK2 phosphorylation site that was indispensable for SEF inhibition of pro-inflammatory cytokine signaling but was not required for SEF inhibition of growth-factor signaling. To our knowledge, this is the first demonstration of post-translational modifications that regulate SEF at multiple levels to optimize its inhibitory activity in a specific signaling context. These findings may facilitate the design of SEF variants for treating cytokine-dependent pathologies, including cancer and chronic inflammation.
Collapse
|
95
|
Hippo Signaling Pathway as a New Potential Target in Non-Melanoma Skin Cancers: A Narrative Review. Life (Basel) 2021; 11:life11070680. [PMID: 34357052 PMCID: PMC8306788 DOI: 10.3390/life11070680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Non-melanoma skin cancers (NMSCs), including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), are the most frequently diagnosed cancers in humans, however, their exact pathogenesis is not fully understood. In recent years, it has been hypothesized that the recently discovered Hippo pathway could play a detrimental role in cutaneous carcinogenesis, but no direct connections have been made. The Hippo pathway and its effector, YAP, are responsible for tissue growth by accelerating cell proliferation, however, YAP upregulation and overexpression have also been reported in numerous types of tumors. There is also evidence that disrupted YAP/Hippo signaling is responsible for cancer growth, invasion, and metastasis. In this short review, we will explore whether the Hippo pathway is an important regulator of skin carcinogenesis and if it could be a promising target for future therapies.
Collapse
|
96
|
Spelling Out CICs: A Multi-Organ Examination of the Contributions of Cancer Initiating Cells' Role in Tumor Progression. Stem Cell Rev Rep 2021; 18:228-240. [PMID: 34244971 DOI: 10.1007/s12015-021-10195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
Tumor invasion and metastasis remain the leading causes of mortality for patients with cancer despite current treatment strategies. In some cancer types, recurrence is considered inevitable due to the lack of effective anti-metastatic therapies. Recent studies across many cancer types demonstrate a close relationship between cancer-initiating cells (CICs) and metastasis, as well as general cancer progression. First, this review describes CICs' contribution to cancer progression. Then we discuss our recent understanding of mechanisms through which CICs promote tumor invasion and metastasis by examining the role of CICs in each stage. Finally, we examine the current understanding of CICs' contribution to therapeutic resistance and recent developments in CIC-targeting drugs. We believe this understanding is key to advancing anti-CIC clinical therapeutics.
Collapse
|
97
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
98
|
Wang W, Yan T, Guo W, Niu J, Zhao Z, Sun K, Zhang H, Yu Y, Ren T. Constitutive GLI1 expression in chondrosarcoma is regulated by major vault protein via mTOR/S6K1 signaling cascade. Cell Death Differ 2021; 28:2221-2237. [PMID: 33637972 PMCID: PMC8257592 DOI: 10.1038/s41418-021-00749-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Hedgehog signaling plays a pivotal role in embryonic pattern formation and diverse aspects of the postnatal biological process. Perturbation of the hedgehog pathway and overexpression of GLI1, a downstream transcription factor in the hedgehog pathway, are highly relevant to several malignancies including chondrosarcoma (CS). We previously found that knocking down expression of GLI1 attenuates the disrupted Indian hedgehog (IHH) signal pathway and suppresses cell survival in human CS cells. However, the underlying mechanisms regulating the expression of GLI1 are still unknown. Here, we demonstrated the implication of GLI1 in SMO-independent pathways in CS cells. A GLI1 binding protein, major vault protein (MVP), was identified using the affinity purification method. MVP promoted the nuclear transport and stabilization of GLI1 by compromising the binding affinity of GLI1 with suppressor of fused homolog (SUFU) and increased GLI1 expression via mTOR/S6K1 signaling cascade. Functionally, knockdown of MVP suppressed cell growth and induced apoptosis. Simultaneous inhibition of MVP and GLI1 strongly inhibits the growth of CS in vitro and in vivo. Moreover, IHC results showed that MVP, GLI1, and P-p70S6K1 were highly expressed and positively correlated with each other in 71 human CS tissues. Overall, our findings revealed a novel regulating mechanism for HH-independent GLI1 expression and provide a rationale for combination therapy in patients with advanced CS.
Collapse
Affiliation(s)
- Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Zhiqing Zhao
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, Beijing, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| |
Collapse
|
99
|
Abstract
A number of genes have been implicated in the pathogenesis of BCC in addition to the Hedgehog pathway, which is known to drive the initiation of this tumour. We performed in-depth analysis of 13 BCC-related genes (CSMD1, CSMD2, DPH3 promoter, PTCH1, SMO, GLI1, NOTCH1, NOTCH2, TP53, ITIH2, DPP10, STEAP4, TERT promoter) in 57 BCC lesions (26 superficial and 31 nodular) from 55 patients and their corresponding blood samples. PTCH1 and TP53 mutations were found in 71.9% and 45.6% of BCCs, respectively. A high mutation rate was also detected in CSMD1 (63.2%), NOTCH1 (43.8%) and DPP10 (35.1%), and frequent non-coding mutations were identified in TERT (57.9%) and DPH3 promoter (49.1%). CSMD1 mutations significantly co-occurred with TP53 changes (p = 0.002). A significant association was observed between the superficial type of BCC and PTCH1 (p = 0.018) and NOTCH1 (p = 0.020) mutations. In addition, PTCH1 mutations were significantly associated with intermittent sun exposure (p = 0.046) and the occurrence of single lesions (p = 0.021), while NOTCH1 mutations were more frequent in BCCs located on the trunk compared to the head/neck and extremities (p = 0.001). In conclusion, we provide further insights into the molecular alterations underlying the tumorigenic mechanism of superficial and nodular BCCs with a view towards novel rationale-based therapeutic strategies.
Collapse
|
100
|
Mo J, Liu F, Sun X, Huang H, Tan K, Zhao X, Li R, Jiang W, Sui Y, Chen X, Shen K, Zhang L, Ma J, Zhao K, Tang Y. Inhibition of the FACT Complex Targets Aberrant Hedgehog Signaling and Overcomes Resistance to Smoothened Antagonists. Cancer Res 2021; 81:3105-3120. [PMID: 33853831 DOI: 10.1158/0008-5472.can-20-3186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/05/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022]
Abstract
Hedgehog signaling is aberrantly activated in hematologic malignancies and solid tumors, and targeting it is a promising therapeutic strategy against these cancers. Resistance to clinically available hedgehog-targeted Smoothened inhibitor (SMOi) drugs has become a critical issue in hedgehog-driven cancer treatment. Our previous studies identified inhibition of BET and CDK7 as two epigenetic/transcriptional-targeted therapeutic strategies for overcoming SMOi resistance, providing a promising direction for anti-hedgehog drug development. To uncover additional strategies for inhibiting aberrant hedgehog activity, here we performed CRISPR-Cas9 screening with an single-guide RNA library targeting epigenetic and transcriptional modulators in hedgehog-driven medulloblastoma cells, combined with tumor dataset analyses. Structure specific recognition protein 1 (SSRP1), a subunit of facilitates chromatin transcription (FACT) complex, was identified as a hedgehog-induced essential oncogene and therapeutic target in hedgehog-driven cancer. The FACT inhibitor CBL0137, which has entered clinical trials for cancer, effectively suppressed in vitro and in vivo growth of multiple SMOi-responsive and SMOi-resistant hedgehog-driven cancer models. Mechanistically, CBL0137 exerted anti-hedgehog activity by targeting transcription of GLI1 and GLI2, which are core transcription factors of the hedgehog pathway. SSRP1 bound the promoter regions of GLI1 and GLI2, while CBL0137 treatment substantially disrupted these interactions. Moreover, CBL0137 synergized with BET or CDK7 inhibitors to antagonize aberrant hedgehog pathway and growth of hedgehog-driven cancer models. Taken together, these results identify FACT inhibition as a promising epigenetic/transcriptional-targeted therapeutic strategy for treating hedgehog-driven cancers and overcoming SMOi resistance. SIGNIFICANCE: This study identifies FACT inhibition as an anti-hedgehog therapeutic strategy for overcoming resistance to Smoothened inhibitors and provides preclinical support for initiating clinical trials of FACT-targeted drug CBL0137 against hedgehog-driven cancers.
Collapse
Affiliation(s)
- Jialin Mo
- Research Center of Translational Medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Fang Liu
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xi Sun
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hongting Huang
- Department of Hepatic Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Kezhe Tan
- Research Center of Translational Medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaojing Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China
| | - Rui Li
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wenyan Jiang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Yi Sui
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xiaosong Chen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, P.R. China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Kewen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| | - Yujie Tang
- Research Center of Translational Medicine, Shanghai Children's Hospital, State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|