51
|
Mu W, Gu P, Li H, Zhou J, Jian Y, Jia W, Ge Y. Exposure of benzo[a]pyrene induces HCC exosome-circular RNA to activate lung fibroblasts and trigger organotropic metastasis. Cancer Commun (Lond) 2024; 44:718-738. [PMID: 38840551 PMCID: PMC11260768 DOI: 10.1002/cac2.12574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Benzo[a]pyrene (B[a]P), a carcinogen pollutant produced by combustion processes, is present in the western diet with grilled meats. Chronic exposure of B[a]P in hepatocellular carcinoma (HCC) cells promotes metastasis rather than primary proliferation, implying an unknown mechanism of B[a]P-induced malignancy. Given that exosomes carry bioactive molecules to distant sites, we investigated whether and how exosomes mediate cancer-stroma communications for a toxicologically associated microenvironment. METHOD Exosomes were isolated from B[a]P stimulated BEL7404 HCC cells (7404-100Bap Exo) at an environmental relevant dose (100 nmol/L). Lung pre-education animal model was prepared via injection of exosomes and cytokines. The inflammatory genes of educated lungs were evaluated using quantitative reverse transcription PCR array. HCC LM3 cells transfected with firefly luciferase were next injected to monitor tumor burdens and organotropic metastasis. Profile of B[a]P-exposed exosomes were determined by ceRNA microarray. Interactions between circular RNA (circRNA) and microRNAs (miRNAs) were detected using RNA pull-down in target lung fibroblasts. Fluorescence in situ hybridization and RNA immunoprecipitation assay was used to evaluate the "on-off" interaction of circRNA-miRNA pairs. We further developed an adeno-associated virus inhalation model to examine mRNA expression specific in lung, thereby exploring the mRNA targets of B[a]P induced circRNA-miRNA cascade. RESULTS Lung fibroblasts exert activation phenotypes, including focal adhesion and motility were altered by 7404-100Bap Exo. In the exosome-educated in vivo model, fibrosis factors and pro-inflammatory molecules of are up-regulated when injected with exosomes. Compared to non-exposed 7404 cells, circ_0011496 was up-regulated following B[a]P treatment and was mainly packaged into 7404-100Bap Exo. Exosomal circ_0011496 were delivered and competitively bound to miR-486-5p in recipient fibroblasts. The down-regulation of miR-486-5p converted fibroblast to cancer-associated fibroblast via regulating the downstream of Twinfilin-1 (TWF1) and matrix metalloproteinase-9 (MMP9) cascade. Additionally, increased TWF1, specifically in exosomal circ_0011496 educated lungs, could promote cancer-stroma crosstalk via activating vascular endothelial growth factor (VEGF). These modulated fibroblasts promoted endothelial cells angiogenesis and recruited primary HCC cells invasion, as a consequence of a pre-metastatic niche formation. CONCLUSION We demonstrated that B[a]P-induced tumor exosomes can deliver circ_0011496 to activate miR-486-5p/TWF1/MMP9 cascade in the lung fibroblasts, generating a feedback loop that promoted HCC metastasis.
Collapse
Affiliation(s)
- Wei Mu
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Pengfei Gu
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Huating Li
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Jinjin Zhou
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yulun Jian
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes MellitusDepartment of Endocrinology and MetabolismShanghai Diabetes InstituteShanghai Clinical Center for DiabetesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yang Ge
- School of Public HealthCenter for Single‐cell OmicsShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
52
|
Zhou Z, Li C, Li C, Zhou L, Tan S, Hou W, Xie C, Wang L, Shen J, Xiong W. Mitochondria-Targeted Nanoadjuvants Induced Multi-Functional Immune-Microenvironment Remodeling to Sensitize Tumor Radio-Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400297. [PMID: 38704675 PMCID: PMC11234464 DOI: 10.1002/advs.202400297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/25/2024] [Indexed: 05/06/2024]
Abstract
It is newly revealed that collagen works as a physical barrier to tumor immune infiltration, oxygen perfusion, and immune depressor in solid tumors. Meanwhile, after radiotherapy (RT), the programmed death ligand-1 (PD-L1) overexpression and transforming growth factor-β (TGF-β) excessive secretion would accelerate DNA damage repair and trigger T cell exclusion to limit RT efficacy. However, existing drugs or nanoparticles can hardly address these obstacles of highly effective RT simultaneously, effectively, and easily. In this study, it is revealed that inducing mitochondria dysfunction by using oxidative phosphorylation inhibitors like Lonidamine (LND) can serve as a highly effective multi-immune pathway regulation strategy through PD-L1, collagen, and TGF-β co-depression. Then, IR-LND is prepared by combining the mitochondria-targeted molecule IR-68 with LND, which then is loaded with liposomes (Lip) to create IR-LND@Lip nanoadjuvants. By doing this, IR-LND@Lip more effectively sensitizes RT by generating more DNA damage and transforming cold tumors into hot ones through immune activation by PD-L1, collagen, and TGF-β co-inhibition. In conclusion, the combined treatment of RT and IR-LND@Lip ultimately almost completely suppressed the growth of bladder tumors and breast tumors.
Collapse
Affiliation(s)
- Zaigang Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
| | - Cheng Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Chao Li
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Lei Zhou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Shuo Tan
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Weibin Hou
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Congying Xie
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy TechnologyZhejiang‐Hong Kong Precision Theranostics of Thoracic Tumors Joint LaboratoryWenzhou key Laboratory of Basic Science and Translational Research of Radiation OncologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Long Wang
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiang325027China
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Wei Xiong
- Department of UrologyThe Third Xiangya Hospital of Central South UniversityChangsha410013China
| |
Collapse
|
53
|
Shi YX, Dai PH, Chen T, Yan JH. Comprehensive analysis and experimental verification reveal the molecular characteristics of EGLN3 in pan-cancer and its relationship with the proliferation and apoptosis of lung cancer. Heliyon 2024; 10:e33206. [PMID: 39021988 PMCID: PMC11253545 DOI: 10.1016/j.heliyon.2024.e33206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Egl-9 family hypoxia-inducible factor 3 (EGLN3) is involved in the regulation of tumor microenvironment and tumor progression. However, its biological function and clinical significance in various cancers remain unclear. Methods RNA-seq, immunofluorescence, and single-cell sequencing were used to investigate the expression landscape of EGLN3 in pan-cancer. The TISCH2 and CancerSEA databases were used for single-cell function analysis of EGLN3 in tumors. TIMER2.0 database was used to explain the relationship between EGLN3 expression and immune cell infiltration. In addition, the LinkedOmics database was used to perform KEGG enrichment analysis of EGLN3 in pan-cancer. siRNA was used to silence gene expression. CCK8, transwell migration assay, flow cytometry analysis, RT-PCR, and western blotting were used to explore biological function of EGLN3. Results The results showed that EGLN3 was highly expressed in a variety of tumors, and was mainly localized to the cytosol. EGLN3 expression is associated with immunoinfiltration of a variety of immune cells, including macrophages in the tumor immune microenvironment and tumor-associated fibroblasts. Functional experiments revealed that EGLN3 knockdown could inhibit cell proliferation, migration, and promote cell apoptosis. In addition, we found that Bax expression was up-regulated and Bcl-2 expression was down-regulated in the si-EGLN3 group. Taken together, as a potential oncogene, EGLN3 is involved in the regulation of tumor malignant process, especially tumor cell apoptosis. Conclusion We comprehensively investigated the expression pattern, single-cell function, immune infiltration level and regulated signaling pathway of EGLN3 in pan-cancer. We found that EGLN3 is an important hypoxia and immune-related gene that may serve as a potential target for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuan-Xiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Peng-Hui Dai
- Department of Pathology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Tao Chen
- School of Medicine, Hunan Normal University, Changsha, China
| | - Jian-Hua Yan
- Department of Cardiac Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
54
|
Chen Y, Liu X, Ainiwan Y, Li M, Pan J, Chen Y, Xiao Z, Wang Z, Xiao X, Tang J, Zeng G, Liang J, Su X, Kungulli R, Fan Y, Lin Q, Liya A, Zheng Y, Chen Z, Xu C, Zhang H, Chen G. Axl as a potential therapeutic target for adamantinomatous craniopharyngiomas: Based on single nucleus RNA-seq and spatial transcriptome profiling. Cancer Lett 2024; 592:216905. [PMID: 38677641 DOI: 10.1016/j.canlet.2024.216905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Craniopharyngiomas (CPs), particularly Adamantinomatous Craniopharyngiomas (ACPs), often exhibit a heightened risk of postoperative recurrence and severe complications of the endocrine and hypothalamic function. The primary objective of this study is to investigate potential novel targeted therapies within the microenvironment of ACP tumors. Cancer-Associated Fibroblasts (CAFs) were identified in the craniopharyngioma microenvironment, notably in regions characterized by cholesterol clefts, wet keratin, ghost cells, and fibrous stroma in ACPs. CAFs, alongside ghost cells, basaloid-like epithelium cells and calcifications, were found to secrete PROS1 and GAS6, which can activate AXL receptors on the surface of tumor epithelium cells, promoting immune suppression and tumor progression in ACPs. Additionally, the AXL inhibitor Bemcentinib effectively inhibited the proliferation organoids and enhanced the immunotherapeutic efficacy of Atezolizumab. Furthermore, neural crest-like cells were observed in the glial reactive tissue surrounding finger-like protrusions. Overall, our results revealed that the AXL might be a potentially effective therapeutic target for ACPs.
Collapse
Affiliation(s)
- Yiguang Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Xiaohai Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yilamujiang Ainiwan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Mingchu Li
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, Guangdong, 510515, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm, 10005, Sweden
| | - Zebin Xiao
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ziyu Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
| | - Xinru Xiao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Gao Zeng
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jiantao Liang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xin Su
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Roberta Kungulli
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yuxiang Fan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qingtang Lin
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - A Liya
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Yifeng Zheng
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Canli Xu
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Ge Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
55
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
56
|
Ahuja S, Sureka N, Zaheer S. Unraveling the intricacies of cancer-associated fibroblasts: a comprehensive review on metabolic reprogramming and tumor microenvironment crosstalk. APMIS 2024. [PMID: 38873945 DOI: 10.1111/apm.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are crucial component of tumor microenvironment (TME) which undergo significant phenotypic changes and metabolic reprogramming, profoundly impacting tumor growth. This review delves into CAF plasticity, diverse origins, and the molecular mechanisms driving their continuous activation. Emphasis is placed on the intricate bidirectional crosstalk between CAFs and tumor cells, promoting cancer cell survival, proliferation, invasion, and immune evasion. Metabolic reprogramming, a cancer hallmark, extends beyond cancer cells to CAFs, contributing to the complex metabolic interplay within the TME. The 'reverse Warburg effect' in CAFs mirrors the Warburg effect, involving the export of high-energy substrates to fuel cancer cells, supporting their rapid proliferation. Molecular regulations by key players like p53, Myc, and K-RAS orchestrate this metabolic adaptation. Understanding the metabolic symbiosis between CAFs and tumor cells opens avenues for targeted therapeutic strategies to disrupt this dynamic crosstalk. Unraveling CAF-mediated metabolic reprogramming provides valuable insights for developing novel anticancer therapies. This comprehensive review consolidates current knowledge, shedding light on CAFs' multifaceted roles in the TME and offering potential targets for future therapies.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
57
|
Wu J, Lu Q, Zhao J, Wu W, Wang Z, Yu G, Tian G, Gao Z, Wang Q. Enhancing the Inhibition of Breast Cancer Growth Through Synergistic Modulation of the Tumor Microenvironment Using Combined Nano-Delivery Systems. Int J Nanomedicine 2024; 19:5125-5138. [PMID: 38855730 PMCID: PMC11162247 DOI: 10.2147/ijn.s460874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jingliang Wu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
| | - Qiao Lu
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Jialin Zhao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Wendi Wu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Zhihua Wang
- School of Medicine, Weifang University of Science and Technology, Weifang, 262700, People’s Republic of China
| | - Guohua Yu
- Department of Oncology, Weifang People’s Hospital, Weifang, 261000, People’s Republic of China
| | - Guixiang Tian
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiqin Gao
- School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, People’s Republic of China
| | - Qing Wang
- Department of Stomatology, Weifang People’s Hospital, Weifang, 261000, People’s Republic of China
| |
Collapse
|
58
|
Tahsin S, Sane NS, Cernyar B, Jiang L, Zohar Y, Lee BR, Miranti CK. AR loss in prostate cancer stroma mediated by NF-κB and p38-MAPK signaling disrupts stromal morphogen production. Oncogene 2024; 43:2092-2103. [PMID: 38769192 DOI: 10.1038/s41388-024-03064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Androgen Receptor (AR) activity in prostate stroma is required to maintain prostate homeostasis. This is mediated through androgen-dependent induction and secretion of morphogenic factors that drive epithelial cell differentiation. However, stromal AR expression is lost in aggressive prostate cancer. The mechanisms leading to stromal AR loss and morphogen production are unknown. We identified TGFβ1 and TNFα as tumor-secreted factors capable of suppressing AR mRNA and protein expression in prostate stromal fibroblasts. Pharmacological and RNAi approaches identified NF-κB as the major signaling pathway involved in suppressing AR expression by TNFα. In addition, p38α- and p38δ-MAPK were identified as suppressors of AR expression independent of TNFα. Two regions of the AR promoter were responsible for AR suppression through TNFα. FGF10 and Wnt16 were identified as androgen-induced morphogens, whose expression was lost upon TNFα treatment and enhanced upon p38-MAPK inhibition. Wnt16, through non-canonical Jnk signaling, was required for prostate basal epithelial cell survival. These findings indicate that stromal AR loss is mediated by secreted factors within the TME. We identified TNFα/TGFβ as two possible factors, with TNFα mediating its effects through NF-κB or p38-MAPK to suppress AR mRNA transcription. This leads to loss of androgen-regulated stromal morphogens necessary to maintain normal epithelial homeostasis.
Collapse
Affiliation(s)
- Shekha Tahsin
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Neha S Sane
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Brent Cernyar
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Benjamin R Lee
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Cindy K Miranti
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA.
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
59
|
Del Rio D, Masi I, Caprara V, Ottavi F, Albertini Petroni G, Salvati E, Trisciuoglio D, Giannitelli SM, Bagnato A, Mauri E, Spadaro F, Rosanò L. The β-arrestin1/endothelin axis bolsters ovarian fibroblast-dependent invadosome activity and cancer cell metastatic potential. Cell Death Dis 2024; 15:358. [PMID: 38777849 PMCID: PMC11111729 DOI: 10.1038/s41419-024-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Recruitment of fibroblasts to tumors and their activation into cancer-associated fibroblasts (CAFs) is a strategy used by tumor cells to direct extracellular matrix (ECM) remodeling, invasion, and metastasis, highlighting the need to investigate the molecular mechanisms driving CAF function. Endothelin-1 (ET-1) regulates the communication between cancer and stroma and facilitates the progression of serous ovarian cancer (SOC). By binding to Endothelin A (ETA) and B (ETB) receptors, ET-1 enables the recruitment of β-arrestin1 (β-arr1) and the formation of signaling complexes that coordinate tumor progression. However, how ET-1 receptors might "educate" human ovarian fibroblasts (HOFs) to produce altered ECM and promote metastasis remains to be elucidated. This study identifies ET-1 as a pivotal factor in the activation of CAFs capable of proteolytic ECM remodeling and the generation of heterotypic spheroids containing cancer cells with a propensity to metastasize. An autocrine/paracrine ET-1/ETA/BR/β-arr1 loop enhances HOF proliferation, upregulates CAF marker expression, secretes pro-inflammatory cytokines, and increases collagen contractility, and cell motility. Furthermore, ET-1 facilitates ECM remodeling by promoting the lytic activity of invadosome and activation of integrin β1. In addition, ET-1 signaling supports the formation of heterotypic HOF/SOC spheroids with enhanced ability to migrate through the mesothelial monolayer, and invade, representing metastatic units. The blockade of ETA/BR or β-arr1 silencing prevents CAF activation, invadosome function, mesothelial clearance, and the invasive ability of heterotypic spheroids. In vivo, therapeutic inhibition of ETA/BR using bosentan (BOS) significantly reduces the metastatic potential of combined HOFs/SOC cells, associated with enhanced apoptotic effects on tumor cells and stromal components. These findings support a model in which ET-1/β-arr1 reinforces tumor/stroma interaction through CAF activation and fosters the survival and metastatic properties of SOC cells, which could be counteracted by ETA/BR antagonists.
Collapse
Affiliation(s)
- Danila Del Rio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Ilenia Masi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Valentina Caprara
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Flavia Ottavi
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Gabriele Albertini Petroni
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Erica Salvati
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Daniela Trisciuoglio
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy
| | - Sara Maria Giannitelli
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico di Roma, Rome, 00128, Italy
| | - Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Emanuele Mauri
- Department of Chemistry Materials and Chemical Engineering, University Politecnico di Milano, 20133, Milano, Italy
| | - Francesca Spadaro
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Laura Rosanò
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome, 00185, Italy.
| |
Collapse
|
60
|
Musiu C, Lupo F, Agostini A, Lionetto G, Bevere M, Paiella S, Carbone C, Corbo V, Ugel S, De Sanctis F. Cellular collusion: cracking the code of immunosuppression and chemo resistance in PDAC. Front Immunol 2024; 15:1341079. [PMID: 38817612 PMCID: PMC11137177 DOI: 10.3389/fimmu.2024.1341079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024] Open
Abstract
Despite the efforts, pancreatic ductal adenocarcinoma (PDAC) is still highly lethal. Therapeutic challenges reside in late diagnosis and establishment of peculiar tumor microenvironment (TME) supporting tumor outgrowth. This stromal landscape is highly heterogeneous between patients and even in the same patient. The organization of functional sub-TME with different cellular compositions provides evolutive advantages and sustains therapeutic resistance. Tumor progressively establishes a TME that can suit its own needs, including proliferation, stemness and invasion. Cancer-associated fibroblasts and immune cells, the main non-neoplastic cellular TME components, follow soluble factors-mediated neoplastic instructions and synergize to promote chemoresistance and immune surveillance destruction. Unveiling heterotypic stromal-neoplastic interactions is thus pivotal to breaking this synergism and promoting the reprogramming of the TME toward an anti-tumor milieu, improving thus the efficacy of conventional and immune-based therapies. We underscore recent advances in the characterization of immune and fibroblast stromal components supporting or dampening pancreatic cancer progression, as well as novel multi-omic technologies improving the current knowledge of PDAC biology. Finally, we put into context how the clinic will translate the acquired knowledge to design new-generation clinical trials with the final aim of improving the outcome of PDAC patients.
Collapse
Affiliation(s)
- Chiara Musiu
- Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Lupo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Antonio Agostini
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gabriella Lionetto
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Michele Bevere
- ARC-Net Research Centre, University of Verona, Verona, Italy
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona, Verona, Italy
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
61
|
Mei J, Cai Y, Xu R, Li Q, Chu J, Luo Z, Sun Y, Shi Y, Xu J, Li D, Liang S, Jiang Y, Liu J, Qian Z, Zhou J, Wan M, Yang Y, Zhu Y, Zhang Y, Yin Y. Conserved immuno-collagenic subtypes predict response to immune checkpoint blockade. Cancer Commun (Lond) 2024; 44:554-575. [PMID: 38507505 PMCID: PMC11110954 DOI: 10.1002/cac2.12538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) has revolutionized the treatment of various cancer types. Despite significant preclinical advancements in understanding mechanisms, identifying the molecular basis and predictive biomarkers for clinical ICB responses remains challenging. Recent evidence, both preclinical and clinical, underscores the pivotal role of the extracellular matrix (ECM) in modulating immune cell infiltration and behaviors. This study aimed to create an innovative classifier that leverages ECM characteristics to enhance the effectiveness of ICB therapy. METHODS We analyzed transcriptomic collagen activity and immune signatures in 649 patients with cancer undergoing ICB therapy. This analysis led to the identification of three distinct immuno-collagenic subtypes predictive of ICB responses. We validated these subtypes using the transcriptome data from 9,363 cancer patients from The Cancer Genome Atlas (TCGA) dataset and 1,084 in-house samples. Additionally, novel therapeutic targets were identified based on these established immuno-collagenic subtypes. RESULTS Our categorization divided tumors into three subtypes: "soft & hot" (low collagen activity and high immune infiltration), "armored & cold" (high collagen activity and low immune infiltration), and "quiescent" (low collagen activity and immune infiltration). Notably, "soft & hot" tumors exhibited the most robust response to ICB therapy across various cancer types. Mechanistically, inhibiting collagen augmented the response to ICB in preclinical models. Furthermore, these subtypes demonstrated associations with immune activity and prognostic predictive potential across multiple cancer types. Additionally, an unbiased approach identified B7 homolog 3 (B7-H3), an available drug target, as strongly expressed in "armored & cold" tumors, relating with poor prognosis. CONCLUSION This study introduces histopathology-based universal immuno-collagenic subtypes capable of predicting ICB responses across diverse cancer types. These findings offer insights that could contribute to tailoring personalized immunotherapeutic strategies for patients with cancer.
Collapse
Affiliation(s)
- Jie Mei
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yun Cai
- Departments of GynecologyWuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Rui Xu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Qing Li
- Departments of OncologyXuzhou Central HospitalThe Xuzhou School of Clinical Medicine of Nanjing Medical UniversityXuzhouJiangsuP. R. China
| | - Jiahui Chu
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- The First Clinical Medicine CollegeNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Zhiwen Luo
- Department of Sports MedicineHuashan Hospital Affiliated to Fudan UniversityShanghaiP. R. China
| | - Yaying Sun
- Department of Sports MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Yuxin Shi
- Departments of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Junying Xu
- Departments of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Di Li
- Shanghai Outdo Biotech Co., Ltd., National Engineering Center for BiochipShanghaiP. R. China
| | - Shuai Liang
- Departments of OncologyThe Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Ying Jiang
- Departments of GynecologyWuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxiJiangsuP. R. China
| | - Jiayu Liu
- Departments of GynecologyWuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxiJiangsuP. R. China
| | - Zhiwen Qian
- Departments of GynecologyWuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
| | - Jiaofeng Zhou
- Department of PhysiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Mengyun Wan
- Department of PhysiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yunlong Yang
- Department of Cellular and Genetic MedicineSchool of Basic Medical Sciences, Fudan UniversityShanghaiP. R. China
| | - Yichao Zhu
- Department of PhysiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingJiangsuP. R. China
| | - Yan Zhang
- Departments of GynecologyWuxi Maternal and Child Health Care Hospital, Wuxi Medical Center, Nanjing Medical UniversityWuxiJiangsuP. R. China
- Departments of GynecologyWuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxiJiangsuP. R. China
| | - Yongmei Yin
- Department of OncologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuP. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical UniversityNanjingJiangsuP. R. China
| |
Collapse
|
62
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
63
|
Yamaguchi H, Miyazaki M. Heterocellular Adhesion in Cancer Invasion and Metastasis: Interactions between Cancer Cells and Cancer-Associated Fibroblasts. Cancers (Basel) 2024; 16:1636. [PMID: 38730588 PMCID: PMC11082996 DOI: 10.3390/cancers16091636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer invasion is a requisite for the most malignant progression of cancer, that is, metastasis. The mechanisms of cancer invasion were originally studied using in vitro cell culture systems, in which cancer cells were cultured using artificial extracellular matrices (ECMs). However, conventional culture systems do not precisely recapitulate in vivo cancer invasion because the phenotypes of cancer cells in tumor tissues are strongly affected by the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most abundant cell type in the TME and accelerate cancer progression through invasion, metastasis, therapy resistance, and immune suppression. Thus, the reciprocal interactions between CAFs and cancer cells have been extensively studied, leading to the identification of factors that mediate cellular interactions, such as growth factors, cytokines, and extracellular vesicles. In addition, the importance of direct heterocellular adhesion between cancer cells and CAFs in cancer progression has recently been elucidated. In particular, CAFs are directly associated with cancer cells, allowing them to invade the ECM and metastasize to distant organs. In this review, we summarize the recent progress in understanding the molecular and cellular mechanisms of the direct heterocellular interaction in CAF-led cancer invasion and metastasis, with an emphasis on gastric cancer.
Collapse
Affiliation(s)
- Hideki Yamaguchi
- Department of Cancer Cell Research, Sasaki Institute, Sasaki Foundation, 2-2 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan;
| | | |
Collapse
|
64
|
Røgenes H, Finne K, Winge I, Akslen LA, Östman A, Milosevic V. Development of 42 marker panel for in-depth study of cancer associated fibroblast niches in breast cancer using imaging mass cytometry. Front Immunol 2024; 15:1325191. [PMID: 38711512 PMCID: PMC11070582 DOI: 10.3389/fimmu.2024.1325191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024] Open
Abstract
Imaging Mass Cytometry (IMC) is a novel, and formidable high multiplexing imaging method emerging as a promising tool for in-depth studying of tissue architecture and intercellular communications. Several studies have reported various IMC antibody panels mainly focused on studying the immunological landscape of the tumor microenvironment (TME). With this paper, we wanted to address cancer associated fibroblasts (CAFs), a component of the TME very often underrepresented and not emphasized enough in present IMC studies. Therefore, we focused on the development of a comprehensive IMC panel that can be used for a thorough description of the CAF composition of breast cancer TME and for an in-depth study of different CAF niches in relation to both immune and breast cancer cell communication. We established and validated a 42 marker panel using a variety of control tissues and rigorous quantification methods. The final panel contained 6 CAF-associated markers (aSMA, FAP, PDGFRa, PDGFRb, YAP1, pSMAD2). Breast cancer tissues (4 cases of luminal, 5 cases of triple negative breast cancer) and a modified CELESTA pipeline were used to demonstrate the utility of our IMC panel for detailed profiling of different CAF, immune and cancer cell phenotypes.
Collapse
Affiliation(s)
- Hanna Røgenes
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Kenneth Finne
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Winge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Oncology and Pathology, Karolinska Institutet, Solna, Sweden
| | - Vladan Milosevic
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
65
|
Chen C, Liu J, Lin X, Xiang A, Ye Q, Guo J, Rui T, Xu J, Hu S. Crosstalk between cancer-associated fibroblasts and regulated cell death in tumors: insights into apoptosis, autophagy, ferroptosis, and pyroptosis. Cell Death Discov 2024; 10:189. [PMID: 38649701 PMCID: PMC11035635 DOI: 10.1038/s41420-024-01958-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), the main stromal component of the tumor microenvironment (TME), play multifaceted roles in cancer progression through paracrine signaling, exosome transfer, and cell interactions. Attractively, recent evidence indicates that CAFs can modulate various forms of regulated cell death (RCD) in adjacent tumor cells, thus involving cancer proliferation, therapy resistance, and immune exclusion. Here, we present a brief introduction to CAFs and basic knowledge of RCD, including apoptosis, autophagy, ferroptosis, and pyroptosis. In addition, we further summarize the different types of RCD in tumors that are mediated by CAFs, as well as the effects of these modes of RCD on CAFs. This review will deepen our understanding of the interactions between CAFs and RCD and might offer novel therapeutic avenues for future cancer treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Liu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Xia Lin
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Aizhai Xiang
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Qianwei Ye
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jufeng Guo
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Tao Rui
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Jian Xu
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shufang Hu
- Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| |
Collapse
|
66
|
Badillo O, Helfridsson L, Niemi J, Hellström M. Exploring dendritic cell subtypes in cancer immunotherapy: unraveling the role of mature regulatory dendritic cells. Ups J Med Sci 2024; 129:10627. [PMID: 38716077 PMCID: PMC11075441 DOI: 10.48101/ujms.v129.10627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
Dendritic cells (DCs) possess a specialized function in presenting antigens and play pivotal roles in both innate and adaptive immune responses. Their ability to cross-present antigens from tumor cells to naïve T cells is instrumental in generating specific T-cell-mediated antitumor responses, crucial for controlling tumor growth and preventing tumor cell dissemination. However, within a tumor immune microenvironment (TIME), the functions of DCs can be significantly compromised. This review focuses on the profile, function, and activation of DCs, leveraging recent studies that reveal insights into their phenotype acquisition, transcriptional state, and functional programs through single-cell RNA sequence (scRNA-seq) analysis. Additionally, the therapeutic potential of DC-mediated tumor antigen sensing in priming antitumor immunity is discussed.
Collapse
Affiliation(s)
- Oscar Badillo
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Liam Helfridsson
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jenni Niemi
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Mats Hellström
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
67
|
Li J, Ma R, Wang X, Lu Y, Chen J, Feng D, Zhou J, Xia K, Klein O, Xie H, Lu P. Sprouty genes regulate activated fibroblasts in mammary epithelial development and breast cancer. Cell Death Dis 2024; 15:256. [PMID: 38600092 PMCID: PMC11006910 DOI: 10.1038/s41419-024-06637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.
Collapse
Affiliation(s)
- Jiyong Li
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Rongze Ma
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Xuebing Wang
- Institute of Aix-Marseille, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Chen
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Deyi Feng
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Jiecan Zhou
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- The First Affiliated Hospital, Pharmacy Department, Hengyang Medical School, University of South China, Hu Nan Sheng, China
| | - Kun Xia
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China
| | - Ophir Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, UCSF Box 0422, 513 Parnassus Avenue, HSE1508, San Francisco, CA, 94143, California, USA
- Department of Pediatrics and Guerin Children's, Cedars-Sinai Medical Center, 8700 Gracie Allen Dr., Los Angeles, CA, USA
| | - Hao Xie
- Institute of Aix-Marseille, Wuhan University of Technology, Wuhan, 430070, China
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Pengfei Lu
- MOE Key Lab of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics of the School of Life Sciences, Hu Nan Sheng, China.
- Institute of Cell Biology, University of South China, Hu Nan Sheng, China.
- Institute for Future Sciences, Hengyang Medical School, University of South China, Hu Nan Sheng, China.
| |
Collapse
|
68
|
Zhou L, Yi M. Editorial: Harnessing tumor microenvironment for gynecologic cancer therapy. Front Immunol 2024; 15:1407128. [PMID: 38650941 PMCID: PMC11034365 DOI: 10.3389/fimmu.2024.1407128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Linying Zhou
- Department of Gynecology, Longquan People’s Hospital, Lishui, China
| | - Ming Yi
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
69
|
Hulo P, Deshayes S, Fresquet J, Chéné AL, Blandin S, Boisgerault N, Fonteneau JF, Treps L, Denis MG, Bennouna J, Fradin D, Pons-Tostivint E, Blanquart C. Use of non-small cell lung cancer multicellular tumor spheroids to study the impact of chemotherapy. Respir Res 2024; 25:156. [PMID: 38581044 PMCID: PMC10998296 DOI: 10.1186/s12931-024-02791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Lung cancers represent the main cause of cancer related-death worldwide. Recently, immunotherapy alone or in combination with chemotherapy has deeply impacted the therapeutic care leading to an improved overall survival. However, relapse will finally occur, with no efficient second line treatment so far. New therapies development based on the comprehension of resistance mechanisms is necessary. However, the difficulties to obtain tumor samples before and after first line treatment hamper to clearly understand the consequence of these molecules on tumor cells and also to identify adapted second line therapies. METHODS To overcome this difficulty, we developed multicellular tumor spheroids (MCTS) using characterized Non-Small Cell Lung Cancer (NSCLC) cell lines, monocytes from healthy donors and fibroblasts. MCTS were treated with carboplatin-paclitaxel or -gemcitabine combinations according to clinical administration schedules. The treatments impact was studied using cell viability assay, histological analyses, 3'RNA sequencing, real-time PCR, flow cytometry and confocal microscopy. RESULTS We showed that treatments induced a decrease in cell viability and strong modifications in the transcriptomic profile notably at the level of pathways involved in DNA damage repair and cell cycle. Interestingly, we also observed a modification of genes expression considered as hallmarks of response to immune check point inhibitors and immunogenicity, particularly an increase in CD274 gene expression, coding for PD-L1. This result was validated at the protein level and shown to be restricted to tumor cells on MCTS containing fibroblasts and macrophages. This increase was also observed in an additional cell line, expressing low basal CD274 level. CONCLUSIONS This study shows that MCTS are interesting models to study the impact of first line therapies using conditions close to clinical practice and also to identify more adapted second line or concomitant therapies for lung cancer treatment.
Collapse
Affiliation(s)
- Pauline Hulo
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
- Medical oncology, Nantes Université, CHU Nantes, Nantes, F-44000, France
| | - Sophie Deshayes
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
| | - Judith Fresquet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
| | - Anne-Laure Chéné
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
- Service de pneumologie, L'institut du thorax, Hôpital Guillaume et René Laennec, CHU Nantes, Nantes, France
| | - Stéphanie Blandin
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, SFR Bonamy, Nantes, F-44000, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
| | - Lucas Treps
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
| | - Marc G Denis
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
- Department of Biochemistry, Nantes Université, CHU Nantes, Nantes, F-44000, France
| | - Jaafar Bennouna
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
- Medical oncology, Nantes Université, CHU Nantes, Nantes, F-44000, France
| | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France
| | - Elvire Pons-Tostivint
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France.
- Medical oncology, Nantes Université, CHU Nantes, Nantes, F-44000, France.
| | - Christophe Blanquart
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, Nantes, CRCI2NA, F- 44000, France.
| |
Collapse
|
70
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
71
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
72
|
Liu J, Ouyang Y, Xia Z, Mai W, Song H, Zhou F, Shen L, Chen K, Li X, Zhuang SM, Liao J. FAP is a prognostic marker, but not a viable therapeutic target for clinical translation in HNSCC. Cell Oncol (Dordr) 2024; 47:623-638. [PMID: 37856075 DOI: 10.1007/s13402-023-00888-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE PD-1 targeted immunotherapy has imparted a survival benefit to advanced head and neck squamous cell carcinoma (HNSCC), but less than 20% patients produce a durable response to this therapy. Here we aimed to investigate the potential biomarkers for predicting the clinical outcome and resistance to PD-1 targeted immunotherapy in HNSCC patients, and to examine the involvement of FAP+ cancer-associated fibroblasts (CAFs). METHODS Bioinformatics methods were applied to analyze multiple datasets and explore the role of PD-1 and FAP in HNSCC. Immunohistochemistry was used to detect the expression of FAP protein. Fap gene knockout mice (Fap-/-) and L929 cells with different levels of Fap overexpression (L929-Fap-Low/High) were established to demonstrate the role of FAP+ CAFs in tumor development and immune checkpoint blockade (ICB) resistance. RESULTS The expression level of PD-1 gene was positively correlated with better overall survival and therapeutic response to PD-1 blockade in HNSCC, but not all tumors with high expression of both PD-1 and PD-L1 were responsive. Moreover, FAP gene was overexpressed in pan-cancer tissues, and could serve as a prognostic biomarker for several cancers, including HNSCC. However, FAP protein was undetectable in mouse MTCQ1 tumors and barely expressed in human HNSCC tumors. Furthermore, FAP+ CAFs did not promote tumor growth or enhance the resistance to PD-1 inhibitor treatment. CONCLUSION Although FAP+ CAFs have attracted increasing attention for their role in cancer, the feasibility and efficacy of FAP-targeting therapies for HNSCC remain doubtful.
Collapse
Affiliation(s)
- Jie Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
- Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China
| | - Zijin Xia
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wenhao Mai
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongrui Song
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fang Zhou
- Central Sterile Supply Department, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lichun Shen
- Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kaiting Chen
- Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaochen Li
- Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Min Zhuang
- Department of General Surgery of Otorhinolaryngology Head and Neck, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China.
| | - Jing Liao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
73
|
Shen B, Mei J, Xu R, Cai Y, Wan M, Zhou J, Ding J, Zhu Y. B7-H3 is associated with the armored-cold phenotype and predicts poor immune checkpoint blockade response in melanoma. Pathol Res Pract 2024; 256:155267. [PMID: 38520953 DOI: 10.1016/j.prp.2024.155267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Melanoma is the most suitable tumor type for immunotherapy, but not all melanoma patients could respond to immunotherapy. B7 homolog 3 (B7-H3) belongs to the B7 family and is overexpressed in a number of malignant tumors, but the expression pattern of B7-H3 in melanoma has not been well summarized. The expression of B7-H3 was investigated in melanoma and its correlations with features of the tumor microenvironment (TME) by using various public databases, including the Cancer Genome Atlas (TCGA), the GEPIA, and the Human Protein Atlas databases. In addition, the in-house melanoma tissue microarray was applied to validate the results from public databases. Based on the public and in-house cohorts, we found that B7-H3 was overexpressed in melanoma tumor tissues and high B7-H3 expression was related to poor clinical outcome. Moreover, B7-H3 was negatively correlated with levels of tumor-infiltrating lymphocytes (TILs) and positively correlated with collagen infiltration. With clinical translational value, the predictive value of B7-H3 for conventional immunotherapy was detected using the Kaplan-Meier plotter tool, and the results showed that melanoma patients with high B7-H3 expression were insensitive to anti-PD-1 and anti-CTLA-4 immunotherapy. In conclusion, we first investigate the expression of B7-H3 in melanoma and its correlations with the TME features, and indicate B7-H3 as a promising therapeutic target in melanoma patients that are insensitive to conventional immunotherapy.
Collapse
Affiliation(s)
- Bozhi Shen
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jie Mei
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Rui Xu
- The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
| | - Yun Cai
- Department of Laboratory Medicine, Changzhou Jintan First People's Hospital, Changzhou 213200, China
| | - Mengyun Wan
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Ji Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Junli Ding
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
74
|
Kearney JF, Trembath HE, Chan PS, Morrison AB, Xu Y, Luan CF, McCabe IC, Zarmer SA, Kim HJ, Peng XL, Yeh JJ. Myofibroblastic cancer-associated fibroblast subtype heterogeneity in pancreatic cancer. J Surg Oncol 2024; 129:860-868. [PMID: 38233984 PMCID: PMC11307498 DOI: 10.1002/jso.27582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a fibrotic stroma that has both tumor-promoting and tumor-restraining properties. Different types of cancer-associated fibroblasts (CAFs) have been described. Here, we investigated whether CAFs within the same subtype exhibit heterogeneous functions. METHODS We evaluated the gene and protein expression differences in two myofibroblastic CAF (myCAF) lines using single-cell and bulk RNA-sequencing. We utilized proliferation and migration assays to determine the effect of different CAF lines on a tumor cell line. RESULTS We found that myCAF lines express an activated stroma subtype gene signature, which is associated with a shorter survival in patients. Although both myCAF lines expressed α-smooth muscle actin (α-SMA), platelet-derived growth factor-α (PDGFR-α), fibroblast-activated protein (FAP), and vimentin, we observed heterogeneity between the two lines. Similarly, despite being consistent with myCAF gene expression overall, heterogeneity within specific genes was observed. We found that these differences extended to the functional level where the two myCAF lines had different effects on the same tumor cell line. The myCAF216 line, which had slightly increased inflammatory CAF-like gene expression and higher protein expression of α-SMA, PDGFR-α, and FAP was found to restrain migration of tumor cells. CONCLUSIONS We found that two myCAF lines with globally similar expression characteristics had different effects on the same tumor cell line, one promoting and the other restraining migration. Our study highlights that there may be unappreciated heterogeneity within CAF subtypes. Further investigation and attention to specific genes or proteins that may drive this heterogeneity will be important.
Collapse
Affiliation(s)
- Joseph F. Kearney
- The University of North Carolina at Chapel Hill Department of Surgery, Chapel Hill, North Carolina, USA
| | - Hannah E. Trembath
- The University of North Carolina at Chapel Hill Department of Surgery, Chapel Hill, North Carolina, USA
| | - Priscilla S. Chan
- The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Ashley B. Morrison
- The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Yi Xu
- The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Chang Fei Luan
- The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Ian C. McCabe
- The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Sandra A. Zarmer
- The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Hong Jin Kim
- The University of North Carolina at Chapel Hill Department of Surgery, Chapel Hill, North Carolina, USA
| | - Xianlu L. Peng
- The University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Jen Jen Yeh
- The University of North Carolina at Chapel Hill Department of Surgery, Chapel Hill, North Carolina, USA
| |
Collapse
|
75
|
Zhu J, Yang W, Ma J, He H, Liu Z, Zhu X, He X, He J, Chen Z, Jin X, Wang X, He K, Wei W, Hu J. Pericyte signaling via soluble guanylate cyclase shapes the vascular niche and microenvironment of tumors. EMBO J 2024; 43:1519-1544. [PMID: 38528180 PMCID: PMC11021551 DOI: 10.1038/s44318-024-00078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
Pericytes and endothelial cells (ECs) constitute the fundamental components of blood vessels. While the role of ECs in tumor angiogenesis and the tumor microenvironment is well appreciated, pericyte function in tumors remains underexplored. In this study, we used pericyte-specific deletion of the nitric oxide (NO) receptor, soluble guanylate cyclase (sGC), to investigate via single-cell RNA sequencing how pericytes influence the vascular niche and the tumor microenvironment. Our findings demonstrate that pericyte sGC deletion disrupts EC-pericyte interactions, impairing Notch-mediated intercellular communication and triggering extensive transcriptomic reprogramming in both pericytes and ECs. These changes further extended their influence to neighboring cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) through paracrine signaling, collectively suppressing tumor growth. Inhibition of pericyte sGC has minimal impact on quiescent vessels but significantly increases the vulnerability of angiogenic tumor vessels to conventional anti-angiogenic therapy. In conclusion, our findings elucidate the role of pericytes in shaping the tumor vascular niche and tumor microenvironment and support pericyte sGC targeting as a promising strategy for improving anti-angiogenic therapy for cancer treatment.
Collapse
Affiliation(s)
- Jing Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jianyun Ma
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Hao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Xiaolan Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyang He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhan Chen
- Pathology Department, Cixi People's Hospital, Zhejiang, China
| | - Xiaoliang Jin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kaiwen He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| | - Junhao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| |
Collapse
|
76
|
Wei H, Ren H. Precision treatment of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 585:216636. [PMID: 38278471 DOI: 10.1016/j.canlet.2024.216636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous tumor comprising pancreatic cancer cells, fibroblasts, immune cells, vascular epithelial cells, and other cells in the mesenchymal tissue. PDAC is difficult to treat because of the complexity of the tissue components; therefore, achieving therapeutic effects with a single therapeutic method or target is problematic. Recently, precision therapy has provided new directions and opportunities for treating PDAC using genetic information from an individual's disease to guide treatment. It selects and applies appropriate therapeutic methods for each patient, with an aim to minimize medical damage and costs, while maximizing patient benefits. Molecular targeted therapy is effective in most clinical studies; however, it has been ineffective in large-scale randomized controlled trials of PDAC, mainly because the enrolled populations were not stratified on a molecular basis. Molecular stratification allows the identification of the PDAC population being treated, optimizing therapeutic effect. However, a systematic review of precision therapies for patients with highly heterogeneous PDAC backgrounds has not been conducted. Here, we review the molecular background and current potential therapeutic targets related to PDAC and provide new directions for PDAC precision therapy.
Collapse
Affiliation(s)
- Hongyun Wei
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China; Key Laboratory of Pancreatic Diseases, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| | - He Ren
- Key Laboratory of Pancreatic Diseases, Center of Tumor Immunology and Cytotherapy, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China.
| |
Collapse
|
77
|
Valenzuela Alvarez MJP, Gutierrez LM, Bayo JM, Cantero MJ, Garcia MG, Bolontrade MF. Osteosarcoma cells exhibit functional interactions with stromal cells, fostering a lung microenvironment conducive to the establishment of metastatic tumor cells. Mol Biol Rep 2024; 51:467. [PMID: 38551765 DOI: 10.1007/s11033-024-09315-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/02/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Osteosarcoma (OS) stands out as the most common bone tumor, with approximately 20% of the patients receiving a diagnosis of metastatic OS at their initial assessment. A significant challenge lies in the frequent existence of undetected metastases during the initial diagnosis. Mesenchymal stem cells (MSCs) possess unique abilities that facilitate tumor growth, and their interaction with OS cells is crucial for metastatic spread. METHODS AND RESULTS We demonstrated that, in vitro, MSCs exhibited a heightened migration response toward the secretome of non-metastatic OS cells. When challenged to a secretome derived from lungs preloaded with OS cells, MSCs exhibited greater migration toward lungs colonized with metastatic OS cells. Moreover, in vivo, MSCs displayed preferential migratory and homing behavior toward lungs colonized by metastatic OS cells. Metastatic OS cells, in turn, demonstrated an increased migratory response to the MSCs' secretome. This behavior was associated with heightened cathepsin D (CTSD) expression and the release of active metalloproteinase 2 (MMP2) by metastatic OS cells. CONCLUSIONS Our assessment focused on two complementary tumor capabilities crucial to metastatic spread, emphasizing the significance of inherent cell features. The findings underscore the pivotal role of signaling integration within the niche, with a complex interplay of migratory responses among established OS cells in the lungs, prometastatic OS cells in the primary tumor, and circulating MSCs. Pulmonary metastases continue to be a significant factor contributing to OS mortality. Understanding these mechanisms and identifying differentially expressed genes is essential for pinpointing markers and targets to manage metastatic spread and improve outcomes for patients with OS.
Collapse
Affiliation(s)
- Matías J P Valenzuela Alvarez
- Remodeling Processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Hospital Italiano Buenos Aires (HIBA)-Instituto Universitario del Hospital Italiano (IUHI), 4240, C1199ACL, Potosí, CABA, Argentina
| | - Luciana M Gutierrez
- Remodeling Processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Hospital Italiano Buenos Aires (HIBA)-Instituto Universitario del Hospital Italiano (IUHI), 4240, C1199ACL, Potosí, CABA, Argentina
| | - Juan M Bayo
- IIMT-CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Perón 1500, EPB1629AHJ, Pilar, Argentina
| | - María J Cantero
- IIMT-CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Perón 1500, EPB1629AHJ, Pilar, Argentina
| | - Mariana G Garcia
- IIMT-CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Av. Perón 1500, EPB1629AHJ, Pilar, Argentina
| | - Marcela F Bolontrade
- Remodeling Processes and cellular niches laboratory, Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)-CONICET-Hospital Italiano Buenos Aires (HIBA)-Instituto Universitario del Hospital Italiano (IUHI), 4240, C1199ACL, Potosí, CABA, Argentina.
| |
Collapse
|
78
|
Godina C, Belting M, Vallon-Christersson J, Isaksson K, Bosch A, Jernström H. Caveolin-1 gene expression provides additional prognostic information combined with PAM50 risk of recurrence (ROR) score in breast cancer. Sci Rep 2024; 14:6675. [PMID: 38509243 PMCID: PMC10954762 DOI: 10.1038/s41598-024-57365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Combining information from the tumor microenvironment (TME) with PAM50 Risk of Recurrence (ROR) score could improve breast cancer prognostication. Caveolin-1 (CAV1) is a marker of an active TME. CAV1 is a membrane protein involved in cell signaling, extracellular matrix organization, and tumor-stroma interactions. We sought to investigate CAV1 gene expression in relation to PAM50 subtypes, ROR score, and their joint prognostic impact. CAV1 expression was compared between PAM50 subtypes and ROR categories in two cohorts (SCAN-B, n = 5326 and METABRIC, n = 1980). CAV1 expression was assessed in relation to clinical outcomes using Cox regression and adjusted for clinicopathological predictors. Effect modifications between CAV1 expression and ROR categories on clinical outcome were investigated using multiplicative and additive two-way interaction analyses. Differential gene expression and gene set enrichment analyses were applied to compare high and low expressing CAV1 tumors. All samples expressed CAV1 with the highest expression in the Normal-like subtype. Gene modules consistent with epithelial-mesenchymal transition (EMT), hypoxia, and stromal activation were associated with high CAV1 expression. CAV1 expression was inversely associated with ROR category. Interactions between CAV1 expression and ROR categories were observed in both cohorts. High expressing CAV1 tumors conferred worse prognosis only within the group classified as ROR high. ROR gave markedly different prognostic information depending on the underlying CAV1 expression. CAV1, a potential mediator between the malignant cells and TME, could be a useful biomarker that enhances and further refines PAM50 ROR risk stratification in patients with ROR high tumors and a potential therapeutic target.
Collapse
Affiliation(s)
- Christopher Godina
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden.
| | - Mattias Belting
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Skåne, Sweden
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Vallon-Christersson
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
| | - Karolin Isaksson
- Department of Clinical Sciences Lund, Surgery, Lund University and Kristianstad Hospital, Kristianstad, Sweden
| | - Ana Bosch
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Skåne, Sweden
| | - Helena Jernström
- Department of Clinical Sciences Lund, Oncology, Lund University and Skåne University Hospital, Barngatan 4, 221 85, Lund, Sweden.
| |
Collapse
|
79
|
Cords L, Engler S, Haberecker M, Rüschoff JH, Moch H, de Souza N, Bodenmiller B. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell 2024; 42:396-412.e5. [PMID: 38242124 PMCID: PMC10929690 DOI: 10.1016/j.ccell.2023.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/02/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Despite advances in treatment, lung cancer survival rates remain low. A better understanding of the cellular heterogeneity and interplay of cancer-associated fibroblasts (CAFs) within the tumor microenvironment will support the development of personalized therapies. We report a spatially resolved single-cell imaging mass cytometry (IMC) analysis of CAFs in a non-small cell lung cancer cohort of 1,070 patients. We identify four prognostic patient groups based on 11 CAF phenotypes with distinct spatial distributions and show that CAFs are independent prognostic factors for patient survival. The presence of tumor-like CAFs is strongly correlated with poor prognosis. In contrast, inflammatory CAFs and interferon-response CAFs are associated with inflamed tumor microenvironments and higher patient survival. High density of matrix CAFs is correlated with low immune infiltration and is negatively correlated with patient survival. In summary, our data identify phenotypic and spatial features of CAFs that are associated with patient outcome in NSCLC.
Collapse
Affiliation(s)
- Lena Cords
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland; Life Science Zurich Graduate School, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland
| | - Stefanie Engler
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland
| | - Martina Haberecker
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Natalie de Souza
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, 8049 Zurich, Switzerland.
| |
Collapse
|
80
|
Han X, Zhang G, Wu X, Xu S, Liu J, Wang K, Liu T, Wu P. Microfluidics-enabled fluorinated assembly of EGCG-ligands-siTOX nanoparticles for synergetic tumor cells and exhausted t cells regulation in cancer immunotherapy. J Nanobiotechnology 2024; 22:90. [PMID: 38439048 PMCID: PMC10910710 DOI: 10.1186/s12951-024-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
Immune checkpoint inhibitor (ICI)-derived evolution offers a versatile means of developing novel immunotherapies that targets programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) axis. However, one major challenge is T cell exhaustion, which contributes to low response rates in "cold" tumors. Herein, we introduce a fluorinated assembly system of LFNPs/siTOX complexes consisting of fluorinated EGCG (FEGCG), fluorinated aminolauric acid (LA), and fluorinated polyethylene glycol (PEG) to efficiently deliver small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) for synergistic tumor cells and exhausted T cells regulation. Using a microfluidic approach, a library of LFNPs/siTOX complexes were prepared by altering the placement of the hydrophobe (LA), the surface PEGylation density, and the siTOX ratio. Among the different formulations tested, the lead formulation, LFNPs3-3/siTOX complexes, demonstrated enhanced siRNA complexation, sensitive drug release, improved stability and delivery efficacy, and acceptable biosafety. Upon administration by the intravenous injection, this formulation was able to evoke a robust immune response by inhibiting PD-L1 expression and mitigating T cell exhaustion. Overall, this study provides valuable insights into the fluorinated assembly and concomitant optimization of the EGCG-based delivery system. Furthermore, it offers a promising strategy for cancer immunotherapy, highlighting its potential in improving response rates in ''cold'' tumors.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Guozheng Zhang
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaozhen Wu
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Shufeng Xu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Jiahuan Liu
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Sydney, NSW, 2145, Australia.
| | - Pengkai Wu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
81
|
Wolf D, Salcher S, Pircher A. The multivisceral landscape of colorectal cancer metastasis: implications for targeted therapies. J Clin Invest 2024; 134:e178331. [PMID: 38426495 PMCID: PMC10904034 DOI: 10.1172/jci178331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Colorectal cancer (CRC) is among the most common cancer types and the second deadliest malignancy for both sexes. Metastatic disease poses substantial therapeutic challenges, and peritoneal spread, in particular, reduces quality of life and has a dismal outcome. In this issue of the JCI, Berlin and authors have made considerable advancements in understanding the cellular and molecular composition of multivisceral CRC metastasis in a sophisticated murine orthotopic organoid model and in humans. The study provides unprecedented insights into the complex biology of the disease and points toward the development of compartmentalized immune-therapeutic strategies.
Collapse
Affiliation(s)
- Dominik Wolf
- Internal Medicine V, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Stefan Salcher
- Internal Medicine V, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Andreas Pircher
- Internal Medicine V, Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University of Innsbruck (MUI), Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| |
Collapse
|
82
|
Patrignani P, Tacconelli S, Contursi A, Piazuelo E, Bruno A, Nobili S, Mazzei M, Milillo C, Hofling U, Hijos-Mallada G, Sostres C, Lanas A. Optimizing aspirin dose for colorectal cancer patients through deep phenotyping using novel biomarkers of drug action. Front Pharmacol 2024; 15:1362217. [PMID: 38495101 PMCID: PMC10941341 DOI: 10.3389/fphar.2024.1362217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Background: Low-dose aspirin's mechanism of action for preventing colorectal cancer (CRC) is still debated, and the optimal dose remains uncertain. We aimed to optimize the aspirin dose for cancer prevention in CRC patients through deep phenotyping using innovative biomarkers for aspirin's action. Methods: We conducted a Phase II, open-label clinical trial in 34 CRC patients of both sexes randomized to receive enteric-coated aspirin 100 mg/d, 100 mg/BID, or 300 mg/d for 3 ± 1 weeks. Biomarkers were evaluated in blood, urine, and colorectal biopsies at baseline and after dosing with aspirin. Novel biomarkers of aspirin action were assessed in platelets and colorectal tissues using liquid chromatography-mass spectrometry to quantify the extent of cyclooxygenase (COX)-1 and COX-2 acetylation at Serine 529 and Serine 516, respectively. Results: All aspirin doses caused comparable % acetylation of platelet COX-1 at Serine 529 associated with similar profound inhibition of platelet-dependent thromboxane (TX)A2 generation ex vivo (serum TXB2) and in vivo (urinary TXM). TXB2 was significantly reduced in CRC tissue by aspirin 300 mg/d and 100 mg/BID, associated with comparable % acetylation of COX-1. Differently, 100 mg/day showed a lower % acetylation of COX-1 in CRC tissue and no significant reduction of TXB2. Prostaglandin (PG)E2 biosynthesis in colorectal tumors and in vivo (urinary PGEM) remained unaffected by any dose of aspirin associated with the variable and low extent of COX-2 acetylation at Serine 516 in tumor tissue. Increased expression of tumor-promoting genes like VIM (vimentin) and TWIST1 (Twist Family BHLH Transcription Factor 1) vs. baseline was detected with 100 mg/d of aspirin but not with the other two higher doses. Conclusion: In CRC patients, aspirin 300 mg/d or 100 mg/BID had comparable antiplatelet effects to aspirin 100 mg/d, indicating similar inhibition of the platelet's contribution to cancer. However, aspirin 300 mg/d and 100 mg/BID can have additional anticancer effects by inhibiting cancerous tissue's TXA2 biosynthesis associated with a restraining impact on tumor-promoting gene expression. EUDRACT number: 2018-002101-65. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03957902.
Collapse
Affiliation(s)
- Paola Patrignani
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University Medical School, Chieti, Italy
| | - Stefania Tacconelli
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University Medical School, Chieti, Italy
| | - Annalisa Contursi
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University Medical School, Chieti, Italy
| | - Elena Piazuelo
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Annalisa Bruno
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University Medical School, Chieti, Italy
| | - Stefania Nobili
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University Medical School, Chieti, Italy
| | - Matteo Mazzei
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University Medical School, Chieti, Italy
| | - Cristina Milillo
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Psychological Sciences, Health, and Territory, “G. d’Annunzio” University, Chieti, Italy
| | - Ulrika Hofling
- Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, “G. d’Annunzio” University Medical School, Chieti, Italy
| | - Gonzalo Hijos-Mallada
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, Zaragoza, Spain
| | - Carlos Sostres
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, Zaragoza, Spain
| | - Angel Lanas
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
83
|
Ghosh A, Mitra AK. Metastasis and cancer associated fibroblasts: taking it up a NOTCH. Front Cell Dev Biol 2024; 11:1277076. [PMID: 38269089 PMCID: PMC10806909 DOI: 10.3389/fcell.2023.1277076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
Metastasis is the least understood aspect of cancer biology. 90% of cancer related deaths occur due extensive metastatic burden in patients. Apart from metastasizing cancer cells, the pro-tumorigenic and pro-metastatic role of the tumor stroma plays a crucial part in this complex process often leading to disease relapse and therapy resistance. Cellular signaling processes play a crucial role in the process of tumorigenesis and metastasis when aberrantly turned on, not just in the cancer cells, but also in the cells of the tumor microenvironment (TME). One of the most conserved pathways includes the Notch signaling pathway that plays a crucial role in the development and progression of many cancers. In addition to its well documented role in cancer cells, recent evidence suggests crucial involvement of Notch signaling in the stroma as well. This review aims to highlight the current findings focusing on the oncogenic role of notch signaling in cancer cells and the TME, with a specific focus on cancer associated fibroblasts (CAFs), which constitute a major part of the tumor stroma and are important for tumor progression. Recent efforts have focused on the development of anti-cancer and anti-metastatic therapies targeting TME. Understanding the importance of Notch signaling in the TME would help identify important drivers for stromal reprogramming, metastasis and importantly, drive future research in the effort to develop TME-targeted therapies utilizing Notch.
Collapse
Affiliation(s)
- Argha Ghosh
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Bloomington, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
84
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a rising incidence and is one of the most lethal human malignancies. Much is known regarding the biology and pathophysiology of PDAC, but translating this knowledge to the clinic to improve patient outcomes has been challenging. In this Review, we discuss advances and practice-changing trials for PDAC. We briefly review therapeutic failures as well as ongoing research to refine the standard of care, including novel biomarkers and clinical trial designs. In addition, we highlight contemporary areas of research, including poly(ADP-ribose) polymerase inhibitors, KRAS-targeted therapies and immunotherapies. Finally, we discuss the future of pancreatic cancer research and areas for improvement in the next decade.
Collapse
Affiliation(s)
- Z Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eileen M O'Reilly
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
85
|
Lay E, Grant T, Walko G, Jungwirth U. Generation of 3D Fibroblast-Derived Extracellular Matrix and Analysis of Tumor Cell-Matrix Interactions and Signaling. Methods Mol Biol 2024; 2800:11-25. [PMID: 38709474 DOI: 10.1007/978-1-0716-3834-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Fibroblasts are the major producers of the extracellular matrix and regulate its organization. Aberrant signaling in diseases such as fibrosis and cancer can impact the deposition of the matrix proteins, which can in turn act as an adhesion scaffold and signaling reservoir promoting disease progression. To study the composition and organization of the extracellular matrix as well as its interactions with (tumor) cells, this protocol describes the generation and analysis of 3D fibroblast-derived matrices and the investigation of (tumor) cells seeded onto the 3D scaffolds by immunofluorescent imaging and cell adhesion, colony formation, migration, and invasion/transmigration assays.
Collapse
Affiliation(s)
- Emily Lay
- Department of Life Sciences, University of Bath, Bath, UK
| | - Tressan Grant
- Department of Life Sciences, University of Bath, Bath, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Gernot Walko
- Department of Life Sciences, University of Bath, Bath, UK
- Barts Centre for Squamous Cancer, Institute of Dentistry, Queen Mary University of London, London, UK
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, UK
| | - Ute Jungwirth
- Department of Life Sciences, University of Bath, Bath, UK.
- Cancer Research Horizons Therapeutic Innovation, Newcastle Drug Discovery Group, Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
| |
Collapse
|
86
|
Chalkidi N, Melissari MT, Henriques A, Stavropoulou A, Kollias G, Koliaraki V. Activation and Functions of Col6a1+ Fibroblasts in Colitis-Associated Cancer. Int J Mol Sci 2023; 25:148. [PMID: 38203319 PMCID: PMC10778587 DOI: 10.3390/ijms25010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) comprise a group of heterogeneous subpopulations with distinct identities indicative of their diverse origins, activation patterns, and pro-tumorigenic functions. CAFs originate mainly from resident fibroblasts, which are activated upon different stimuli, including growth factors and inflammatory mediators, but the extent to which they also maintain some of their homeostatic properties, at least at the earlier stages of carcinogenesis, is not clear. In response to cytokines, such as interleukin 1 (IL-1) and tumor necrosis factor (TNF), as well as microbial products, CAFs acquire an immunoregulatory phenotype, but its specificity and pathophysiological significance in individual CAF subsets is yet to be determined. In this study, we analyzed the properties of Col6a1-positive fibroblasts in colitis-associated cancer. We found that Col6a1+ cells partly maintain their homeostatic features during adenoma development, while their activation is characterized by the acquisition of a distinct proangiogenic signature associated with their initial perivascular location. In vitro and in vivo experiments showed that Col6a1+ cells respond to innate immune stimuli and exert pro-tumorigenic functions. However, Col6a1+-specific inhibition of TNF receptor 1 (TNFR1) or IL-1 receptor (IL-1R) signaling does not significantly affect tumorigenesis, suggesting that activation of other subsets acts in a compensatory way or that multiple immune stimuli are necessary to drive the proinflammatory activation of this subset. In conclusion, our results show that adenoma-associated CAF subsets can partly maintain the properties of homeostatic fibroblasts while they become activated to support tumor growth through distinct and compensatory mechanisms.
Collapse
Affiliation(s)
- Niki Chalkidi
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - Maria-Theodora Melissari
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - Ana Henriques
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - Athanasia Stavropoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre (BSRC) “Alexander Fleming”, 16672 Vari, Greece
| |
Collapse
|
87
|
Melchionna R, Trono P, Di Carlo A, Di Modugno F, Nisticò P. Transcription factors in fibroblast plasticity and CAF heterogeneity. J Exp Clin Cancer Res 2023; 42:347. [PMID: 38124183 PMCID: PMC10731891 DOI: 10.1186/s13046-023-02934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
88
|
Guo H, Liu Y, Li X, Wang H, Mao D, Wei L, Ye X, Qu D, Huo J, Chen Y. Magnetic Metal-Organic Framework-Based Nanoplatform with Platelet Membrane Coating as a Synergistic Programmed Cell Death Protein 1 Inhibitor against Hepatocellular Carcinoma. ACS NANO 2023; 17:23829-23849. [PMID: 37991391 PMCID: PMC10722610 DOI: 10.1021/acsnano.3c07885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Programmed cell death protein 1 (PD-1) inhibitors are the most common immune-checkpoint inhibitors and considered promising drugs for hepatocellular carcinoma (HCC). However, in clinical settings, they have a low objective response rate (15%-20%) for patients with HCC; this is because of the insufficient level and activity of tumor-infiltrating T lymphocytes (TILs). The combined administration of oxymatrine (Om) and astragaloside IV (As) can increase the levels of TILs by inhibiting the activation of cancer-associated fibroblasts (CAFs) and improve the activity of TILs by enhancing their mitochondrial function. In the present study, we constructed a magnetic metal-organic framework (MOF)-based nanoplatform with platelet membrane (Pm) coating (PmMN@Om&As) to simultaneously deliver Om and As into the HCC microenvironment. We observed that PmMN@Om&As exhibited a high total drug-loading capacity (33.77 wt %) and good immune escape. Furthermore, it can target HCC tissues in a magnetic field and exert long-lasting effects. The HCC microenvironment accelerated the disintegration of PmMN@Om&As and the release of Om&As, thereby increasing the level and activity of TILs by regulating CAFs and the mitochondrial function of TILs. In addition, the carrier could synergize with Om&As by enhancing the oxygen consumption rate and proton efflux rate of TILs, thereby upregulating the mitochondrial function of TILs. Combination therapy with PmMN@Om&As and α-PD-1 resulted in a tumor suppression rate of 84.15% and prolonged the survival time of mice. Our study provides a promising approach to improving the antitumor effect of immunotherapy in HCC.
Collapse
Affiliation(s)
- Hong Guo
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Jiangsu
Clinical Innovation Center of Digestive Cancer of Traditional Chinese
Medicine, Nanjing 210028, China
| | - Xia Li
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hong Wang
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Dengxuan Mao
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Liangyin Wei
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xietao Ye
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ding Qu
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Multi-component
of Traditional Chinese Medicine and Microecology Researh Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Jiege Huo
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu
Clinical Innovation Center of Digestive Cancer of Traditional Chinese
Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated
Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu
Clinical Innovation Center of Digestive Cancer of Traditional Chinese
Medicine, Nanjing 210028, China
| |
Collapse
|
89
|
Du Y, Sun H, Shi Z, Sui X, Liu B, Zheng Z, Liu Y, Xuan Z, Zhong M, Fu M, Bai Y, Zhang Q, Shao C. Targeting the hedgehog pathway in MET mutation cancers and its effects on cells associated with cancer development. Cell Commun Signal 2023; 21:313. [PMID: 37919751 PMCID: PMC10623711 DOI: 10.1186/s12964-023-01333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
The mutation of MET plays a crucial role in the initiation of cancer, while the Hedgehog (Hh) pathway also plays a significant role in cell differentiation and the maintenance of tumor stem cells. Conventional chemotherapy drugs are primarily designed to target the majority of cell populations within tumors rather than tumor stem cells. Consequently, after a brief period of remission, tumors often relapse. Moreover, the exclusive targeting of tumor stemness cell disregards the potential for other tumor cells to regain stemness and acquire drug resistance. As a result, current drugs that solely target the HGF/c-MET axis and the Hh pathway demonstrate only moderate efficacy in specific types of cancer. Mounting evidence indicates that these two pathways not only play important roles in cancer but also exert significant influence on the development of resistance to single-target therapies through the secretion of their own ligands. In this comprehensive review, we analyze and compare the potential impact of the Hh pathway on the tumor microenvironment (TME) in HGF/c-MET-driven tumor models, as well as the interplay between different cell types. Additionally, we further substantiate the potential and necessity of dual-pathway combination therapy as a critical target in MET addicted cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Yifan Du
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Huimin Sun
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zhiyuan Shi
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Xiuyuan Sui
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Bin Liu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zeyuan Zheng
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Yankuo Liu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Zuodong Xuan
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Min Zhong
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Yang Bai
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Qian Zhang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
90
|
Wang Z, Zhang M, Liu L, Yang Y, Qiu J, Yu Y, Li J. Prognostic and immunological role of cancer-associated fibroblasts-derived exosomal protein in esophageal squamous cell carcinoma. Int Immunopharmacol 2023; 124:110837. [PMID: 37634448 DOI: 10.1016/j.intimp.2023.110837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are a crucial component of the tumor microenvironment (TME) and play significant roles in tumor initiation, progression, and immune evasion. Despite this, the specific exosomal proteins derived from CAFs and their functions in esophageal squamous cell carcinoma (ESCC) remain unknown. Therefore, this study aims to investigate the impact and prognostic significance of CAFs-derived exosomal proteins in ESCC. MATERIALS AND METHODS Exosomes obtained from CAFs and normal fibroblasts (NFs) were isolated using ultracentrifugation, and the protein expression profiles of the exosomes were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Tumor proliferation was assessed using CCK-8 and colony formation assays, while cell invasion and migration were evaluated using transwell assays. Lasso regression analysis was employed to establish a signature based on CAFs-derived exosomal proteins using the TCGA database. The immunological and prognostic roles of this signature were comprehensively investigated through survival analysis, gene set enrichment analysis (GSEA), immune analysis, immunotherapy response analysis, and drug sensitivity analysis. The GSE160269 dataset was utilized for single-cell transcriptome analysis to further elucidate the role of the signature in the TME. Additionally, cDNA microarray analysis was utilized to validate the prognostic value of the signature. RESULTS Our findings demonstrate that exosomes derived from CAFs significantly enhance the proliferation, invasion, and migration of esophageal cancer cells. We identified 842 differentially expressed exosomal proteins through LC-MS/MS analysis, and two key proteins were utilized to establish a risk signature. Survival analysis revealed a significantly worse prognosis in the high-risk group, with multivariate analysis indicating that the risk score serves as an independent prognostic factor. Moreover, we observed a significant correlation between the risk score and immune cell infiltration, immunotherapy response, and sensitivity to chemotherapeutic treatments in the study population. Lastly, single-cell transcriptome analysis further revealed the expression patterns of TNFRSF10B and ILF3 in different cell subpopulations. CONCLUSION In conclusion, our study has successfully established a robust prognostic signature based on CAFs-derived exosomal proteins, which can serve as a reliable biomarker for predicting prognosis and evaluating the immune microenvironment in ESCC.
Collapse
Affiliation(s)
- Zhiping Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Mengyan Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Lingyun Liu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yan Yang
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Jianjian Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Yilin Yu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| | - Jiancheng Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
91
|
Chen B, Liu X, Yu P, Xie F, Kwan JSH, Chan WN, Fang C, Zhang J, Cheung AHK, Chow C, Leung GWM, Leung KT, Shi S, Zhang B, Wang S, Xu D, Fu K, Wong CC, Wu WKK, Chan MWY, Tang PMK, Tsang CM, Lo KW, Tse GMK, Yu J, To KF, Kang W. H. pylori-induced NF-κB-PIEZO1-YAP1-CTGF axis drives gastric cancer progression and cancer-associated fibroblast-mediated tumour microenvironment remodelling. Clin Transl Med 2023; 13:e1481. [PMID: 37983931 PMCID: PMC10659770 DOI: 10.1002/ctm2.1481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common tumours in East Asia countries and is associated with Helicobacter pylori infection. H. pylori utilizes virulence factors, CagA and VacA, to up-regulate pro-inflammatory cytokines and activate NF-κB signaling. Meanwhile, the PIEZO1 upregulation and cancer-associated fibroblast (CAF) enrichment were found in GC progression. However, the mechanisms of PIEZO1 upregulation and its involvement in GC progression have not been fully elucidated. METHODS The CAF enrichment and clinical significance were investigated in animal models and primary samples. The expression of NF-κB and PIEZO1 in GC was confirmed by immunohistochemistry staining, and expression correlation was analysed in multiple GC datasets. GSEA and Western blot analysis revealed the YAP1-CTGF axis regulation by PIEZO1. The stimulatory effects of CTGF on CAFs were validated by the co-culture system and animal studies. Patient-derived organoid and peritoneal dissemination models were employed to confirm the role of the PIEZO1-YAP1-CTGF cascade in GC. RESULTS Both CAF signature and PIEZO1 were positively correlated with H. pylori infection. PIEZO1, a mechanosensor, was confirmed as a direct downstream of NF-κB to promote the transformation from intestinal metaplasia to GC. Mechanistic studies revealed that PIEZO1 transduced the oncogenic signal from NF-κB into YAP1 signaling, a well-documented oncogenic pathway in GC progression. PIEZO1 expression was positively correlated with the YAP1 signature (CTGF, CYR61, and c-Myc, etc.) in primary samples. The secreted CTGF by cancer cells stimulated the CAF infiltration to form a stiffened collagen-enrichment microenvironment, thus activating PIEZO1 to form a positive feedback loop. Both PIEZO1 depletion by shRNA and CTGF inhibition by Procyanidin C1 enhanced the efficacy of 5-FU in suppressing the GC cell peritoneal metastasis. CONCLUSION This study elucidates a novel driving PIEZO1-YAP1-CTGF force, which opens a novel therapeutic avenue to block the transformation from precancerous lesions to GC. H. pylori-NF-κB activates the PIEZO1-YAP1-CTGF axis to remodel the GC microenvironment by promoting CAF infiltration. Targeting PIEZO1-YAP1-CTGF plus chemotherapy might serve as a potential therapeutic option to block GC progression and peritoneal metastasis.
Collapse
|
92
|
Sodir NM, Pathria G, Adamkewicz JI, Kelley EH, Sudhamsu J, Merchant M, Chiarle R, Maddalo D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov 2023; 13:2339-2355. [PMID: 37682219 PMCID: PMC10618746 DOI: 10.1158/2159-8290.cd-23-0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is considered a multifaceted target in cancer, spurring the notion that the development of direct inhibitors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response. SIGNIFICANCE The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hinders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the depth and the durability of tumor response to therapy.
Collapse
Affiliation(s)
- Nicole M. Sodir
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Gaurav Pathria
- Department of Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Elizabeth H. Kelley
- Department of Discovery Chemistry, Genentech, South San Francisco, California
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Mark Merchant
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, South San Francisco, California
| |
Collapse
|
93
|
Shen C, Bi Y, Chai W, Zhang Z, Yang S, Liu Y, Wu Z, Peng F, Fan Z, Hu H. Construction and validation of a metabolism-associated gene signature for predicting the prognosis, immune landscape, and drug sensitivity in bladder cancer. BMC Med Genomics 2023; 16:264. [PMID: 37880682 PMCID: PMC10601123 DOI: 10.1186/s12920-023-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023] Open
Abstract
Tumor Metabolism is strongly correlated with prognosis. Nevertheless, the prognostic and therapeutic value of metabolic-associated genes in BCa patients has not been fully elucidated. First, in this study, metabolism-related differential expressed genes DEGs with prognostic value in BCa were determined. Through the consensus clustering algorithm, we identified two molecular clusters with significantly different clinicopathological features and survival prognosis. Next, a novel metabolism-related prognostic model was established. Its reliable predictive performance in BCa was verified by multiple external datasets. Multivariate Cox analysis exhibited that risk score were independent prognostic factors. Interestingly, GSEA enrichment analysis of GO, KEGG, and Hallmark gene sets showed that the biological processes and pathways associated with ECM and collagen binding in the high-risk group were significantly enriched. Notely, the model was also significantly correlated with drug sensitivity, immune cell infiltration, and immunotherapy efficacy prediction by the wilcox rank test and chi-square test. Based on the 7 immune infiltration algorithm, we found that Neutrophils, Myeloid dendritic cells, M2 macrophages, Cancer-associated fibroblasts, etc., were more concentrated in the high-risk group. Additionally, in the IMvigor210, GSE111636, GSE176307, or our Truce01 (registration number NCT04730219) cohorts, the expression levels of multiple model genes were significantly correlated with objective responses to anti-PD-1/anti-PD-L1 immunotherapy. Finally, the expression of interested model genes were verified in 10 pairs of BCa tissues and para-carcinoma tissues by the HPA and real-time fluorescent quantitative PCR. Altogether, the signature established and validated by us has high predictive power for the prognosis, immunotherapy responsiveness, and chemotherapy sensitivity of BCa.
Collapse
Affiliation(s)
- Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Yuxin Bi
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Wang Chai
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Yuejiao Liu
- Department of Pharmacy, Zhu Xianyi Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Zhouliang Wu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China
| | - Fei Peng
- Department of Critical Care Medicine, the Peoples Hospital of Yuxi City, Yunnan, China
| | - Zhenqian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Jianshan Street, Hexi, Tianjin, 300211, People's Republic of China.
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, 300211, China.
| |
Collapse
|
94
|
Hajiabadi S, Alidadi S, Montakhab Farahi Z, Ghahramani Seno MM, Farzin H, Haghparast A. Immunotherapy with STING and TLR9 agonists promotes synergistic therapeutic efficacy with suppressed cancer-associated fibroblasts in colon carcinoma. Front Immunol 2023; 14:1258691. [PMID: 37901237 PMCID: PMC10611477 DOI: 10.3389/fimmu.2023.1258691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/31/2023] Open
Abstract
The innate immune sensing of nucleic acids using effective immunoadjuvants is critical for increasing protective immune responses against cancer. Stimulators of interferon genes (STING) and toll-like receptor 9 (TLR9) agonists are considered promising candidates in several preclinical tumor models with the potential to be used in clinical settings. However, the effects of such treatment on tumor stroma are currently unknown. In this study, we investigated the immunotherapeutic effects of ADU-S100 as a STING agonist and CpG ODN1826 as a TLR9 agonist in a preclinical model of colon carcinoma. Tumor-bearing mice were treated intratumorally on days 10 and 16 post-tumor inoculation with ADU-S100 and CpG ODN1826. Cytokine profiles in the tumor and spleen, tumor cell apoptosis, the infiltration of immune cells, and cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) were evaluated to identify the immunological mechanisms after treatment. The powerful antitumor activity of single and combination treatments, the upregulation of the expression of pro-inflammatory cytokines in the tumor and spleen, and the recruitment and infiltration of the TME by immune cells revealed the synergism of immunoadjuvants in the eradication of the colon carcinoma model. Remarkably, the significant downregulation of CAFs in the TME indicated that suppression of tumorigenesis occurred after immunoadjuvant therapy. The results illustrate the potential of targeting the STING and TLR9 pathways as powerful immunoadjuvants in the treatment of preclinical colon carcinoma and the possibility of harnessing these pathways in future therapeutic approaches.
Collapse
Affiliation(s)
- Sare Hajiabadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Soodeh Alidadi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zohreh Montakhab Farahi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Hamidreza Farzin
- Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
95
|
Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity 2023; 56:2188-2205. [PMID: 37820582 DOI: 10.1016/j.immuni.2023.09.011] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
The cancer-immunity cycle provides a framework to understand the series of events that generate anti-cancer immune responses. It emphasizes the iterative nature of the response where the killing of tumor cells by T cells initiates subsequent rounds of antigen presentation and T cell stimulation, maintaining active immunity and adapting it to tumor evolution. Any step of the cycle can become rate-limiting, rendering the immune system unable to control tumor growth. Here, we update the cancer-immunity cycle based on the remarkable progress of the past decade. Understanding the mechanism of checkpoint inhibition has evolved, as has our view of dendritic cells in sustaining anti-tumor immunity. We additionally account for the role of the tumor microenvironment in facilitating, not just suppressing, the anti-cancer response, and discuss the importance of considering a tumor's immunological phenotype, the "immunotype". While these new insights add some complexity to the cycle, they also provide new targets for research and therapeutic intervention.
Collapse
Affiliation(s)
| | - Daniel S Chen
- Engenuity Life Sciences, Burlingame, CA, USA; Synthetic Design Lab, Burlingame, CA, USA
| | | | | |
Collapse
|
96
|
Kayamori K, Katsube KI, Hirai H, Harada H, Ikeda T. Role of Stromal Fibroblast-Induced WNT7A Associated with Cancer Cell Migration Through the AKT/CLDN1 Signaling Axis in Oral Squamous Cell Carcinoma. J Transl Med 2023; 103:100228. [PMID: 37541622 DOI: 10.1016/j.labinv.2023.100228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Wnt signaling plays a crucial role in the progression of various cancers, including oral squamous cell carcinoma (OSCC). However, the tumor microenvironment (TME) regulating Wnt signaling has not yet been fully elucidated. In this study, we investigated whether cancer-associated fibroblasts (CAFs), the primary components of the TME, activate Wnt signaling and promote tumor progression in OSCC. We conducted a Transwell coculture assay using human OSCC cell lines and normal human dermal fibroblasts (NHDFs). NHDFs stimulated WNT7A expression in several OSCC cell lines, especially HO-1-N-1 and HSC-5. An immunohistochemical study using 122 human OSCC samples indicated that high WNT7A expression in tumor cells was significantly associated with invasion depth and poor prognosis. Moreover, WNT7A expression in OSCC cells was positively correlated with α-smooth muscle actin expression in CAFs. WNT7A knockdown in OSCC cells demonstrated that OSCC cells cocultured with NHDFs significantly promoted tumor cell migration and invasion, which was dependent on WNT7A expression in OSCC cells. We also isolated HSC-5 cells from the coculture and conducted microarray analysis to investigate the factors that promote tumor progression induced by WNT7A. Among the various differentially expressed genes, we identified a downregulated gene encoding CLDN1 and confirmed that WNT7A negatively regulated CLDN1 expression in OSCC cells and CLDN1 knockdown in OSCC cells promoted their migration. Phosphokinase array analysis showed that WNT7A activates protein kinase B (AKT) phosphorylation. Activating AKT signaling using the SC79 agonist induced CLDN1 downregulation in OSCC cells. In the coculture assay, the AKT inhibitor MK2206 significantly recovered CLDN1 expression downregulated by WNT7A, resulting in OSCC cell migration suppression. These results suggest that CAFs stimulate OSCC cells to produce WNT7A, following CLDN1 expression downregulation by activating AKT signaling, promoting cancer cell migration. These findings highlight the importance of molecular therapies targeting the TME in OSCC.
Collapse
Affiliation(s)
- Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Ken-Ichi Katsube
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Faculty of Human Care, Tohto University, Saitama, Japan
| | - Hideaki Hirai
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
97
|
Kok SY, Nakayama M, Morita A, Oshima H, Oshima M. Genetic and nongenetic mechanisms for colorectal cancer evolution. Cancer Sci 2023; 114:3478-3486. [PMID: 37357016 PMCID: PMC10475778 DOI: 10.1111/cas.15891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/27/2023] Open
Abstract
The stepwise accumulation of key driver mutations is responsible for the development and malignant progression of colorectal cancer in primary sites. Genetic mouse model studies have revealed combinations of driver gene mutations that induce phenotypic changes in tumors toward malignancy. However, cancer evolution is regulated by not only genetic alterations but also nongenetic mechanisms. For example, certain populations of metastatic cancer cells show a loss of malignant characteristics even after the accumulation of driver mutations, and such cells are eliminated in a negative selection manner. Furthermore, a polyclonal metastasis model has recently been proposed, in which cell clusters consisting of genetically heterogeneous cells break off from the primary site, disseminate to distant organs, and develop into heterogenous metastatic tumors. Such nongenetic mechanisms for malignant progression have been elucidated using genetically engineered mouse models as well as organoid transplantation experiments. In this review article, we discuss the role of genetic alterations in the malignant progression of primary intestinal tumors and nongenetic mechanisms for negative selection and polyclonal metastasis, which we learned from model studies.
Collapse
Affiliation(s)
- Sau Yee Kok
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Mizuho Nakayama
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Atsuya Morita
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
| | - Hiroko Oshima
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Masanobu Oshima
- Division of GeneticsCancer Research Institute, Kanazawa UniversityKanazawaJapan
- WPI Nano Life Science Institute (NanoLSI), Kanazawa UniversityKanazawaJapan
| |
Collapse
|
98
|
Huang L, Xie Q, Deng J, Wei WF. The role of cancer-associated fibroblasts in bladder cancer progression. Heliyon 2023; 9:e19802. [PMID: 37809511 PMCID: PMC10559166 DOI: 10.1016/j.heliyon.2023.e19802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key stromal cells in the tumor microenvironment (TME) that critically contribute to cancer initiation and progression. In bladder cancer (BCa), there is emerging evidence that BCa CAFs are actively involved in cancer cell proliferation, invasion, metastasis, and chemotherapy resistance. This review outlines the present knowledge of BCa CAFs, with a particular emphasis on their origin and function in BCa progression, and provides further insights into their clinical application.
Collapse
Affiliation(s)
- Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Qun Xie
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Wen-Fei Wei
- Department of Gynecology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
99
|
Martino F, Lupi M, Giraudo E, Lanzetti L. Breast cancers as ecosystems: a metabolic perspective. Cell Mol Life Sci 2023; 80:244. [PMID: 37561190 PMCID: PMC10415483 DOI: 10.1007/s00018-023-04902-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer and one of the major causes of cancer death. Despite enormous progress in its management, both from the therapeutic and early diagnosis viewpoints, still around 700,000 patients succumb to the disease each year, worldwide. Late recurrency is the major problem in BC, with many patients developing distant metastases several years after the successful eradication of the primary tumor. This is linked to the phenomenon of metastatic dormancy, a still mysterious trait of the natural history of BC, and of several other types of cancer, by which metastatic cells remain dormant for long periods of time before becoming reactivated to initiate the clinical metastatic disease. In recent years, it has become clear that cancers are best understood if studied as ecosystems in which the impact of non-cancer-cell-autonomous events-dependent on complex interaction between the cancer and its environment, both local and systemic-plays a paramount role, probably as significant as the cell-autonomous alterations occurring in the cancer cell. In adopting this perspective, a metabolic vision of the cancer ecosystem is bound to improve our understanding of the natural history of cancer, across space and time. In BC, many metabolic pathways are coopted into the cancer ecosystem, to serve the anabolic and energy demands of the cancer. Their study is shedding new light on the most critical aspect of BC management, of metastatic dissemination, and that of the related phenomenon of dormancy and fostering the application of the knowledge to the development of metabolic therapies.
Collapse
Affiliation(s)
- Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
- Department of Science and Drug Technology, University of Torino, Turin, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
100
|
McFarland J, Alečković M, Coricor G, Srinivasan S, Tso M, Lee J, Nguyen TH, Mejía Oneto JM. Click Chemistry Selectively Activates an Auristatin Protodrug with either Intratumoral or Systemic Tumor-Targeting Agents. ACS CENTRAL SCIENCE 2023; 9:1400-1408. [PMID: 37521794 PMCID: PMC10375897 DOI: 10.1021/acscentsci.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 08/01/2023]
Abstract
The Click Activated Protodrugs Against Cancer (CAPAC) platform enables the activation of powerful cancer drugs at tumors. CAPAC utilizes a click chemistry reaction between tetrazine and trans-cyclooctene. The reaction between activator, linked to a tumor-targeting agent, and protodrug leads to the targeted activation of the drug. Here, tumor targeting is achieved by intratumoral injection of a tetrazine-modified hyaluronate (SQL70) or by infusion of a tetrazine-modified HER2-targeting antigen-binding fragment (SQT01). Monomethyl auristatin E (a cytotoxin hindered in its clinical use by severe toxicity) was modified with a trans-cyclooctene to form the protodrug SQP22, which reduced its cytotoxicity in vitro and in vivo. Treatment of SQP22 paired with SQL70 demonstrated antitumor effects in Karpas 299 and RENCA murine tumor models, establishing the requirement of click chemistry for protodrug activation. SQP22 paired with SQT01 induced antitumor effects in the HER2-positive NCI-N87 xenograft model, showing that tumor-targeted activation could be accomplished via systemic dosing. Observed toxicities were limited, with transient myelosuppression and moderate body weight loss detected. This study highlights the capabilities of the CAPAC platform by demonstrating the activity of SQP22 with two differentiated targeting approaches and underscores the power of click chemistry to precisely control the activation of drugs at tumors.
Collapse
|