51
|
Yang Y, Huang G, Lian J, Long C, Zhao B, Liu X, Zhang B, Ye W, Chen J, Du L, Jiang Z, Liu J, Zhang J, Hu C, Chen Q, Hong X. Circulating tumour cell clusters: isolation, biological significance and therapeutic implications. BMJ ONCOLOGY 2024; 3:e000437. [PMID: 39886139 PMCID: PMC11557725 DOI: 10.1136/bmjonc-2024-000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 01/06/2025]
Abstract
Circulating tumour cells (CTCs) and CTC clusters are considered metastatic precursors due to their ability to seed distant metastasis. However, navigating the bloodstream presents a significant challenge for CTCs, as they must endure fluid shear forces and resist detachment-induced anoikis. Consequently, while a large number of cells from the primary tumour may enter the circulation, only a tiny fraction will result in metastasis. Nevertheless, the metastatic potency dramatically increases when CTCs travel in conjunction with other cell types to form CTC clusters, including neutrophils, myeloid-derived suppressor cells, macrophages, platelets, cancer-associated fibroblasts and red blood cells found in circulation. Such heterotypic CTC clustering events have been identified in a variety of cancer types and may serve as intriguing therapeutic targets and novel biomarkers for liquid biopsy. This review summarises recent advances in microfluidic technologies designed for the isolation of CTC clusters and explores the biological properties of distinct types of CTC clusters within the circulatory system. Investigation of the mechanisms of CTC cluster-blood microenvironment interactions may offer a promising avenue for gaining fresh insights into CTC cluster-mediated metastatic progression and reveal potential opportunities for devising personalised antimetastasis treatments.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guanyin Huang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jingru Lian
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chunhao Long
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Boxi Zhao
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xuefei Liu
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Binyu Zhang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weijian Ye
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Junhao Chen
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Longxiang Du
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhuofeng Jiang
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jialing Liu
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Chengzhi Hu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Xin Hong
- Department of Biochemistry, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
52
|
Bruno A, Dovizio M, Milillo C, Aruffo E, Pesce M, Gatta M, Chiacchiaretta P, Di Carlo P, Ballerini P. Orally Ingested Micro- and Nano-Plastics: A Hidden Driver of Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:3079. [PMID: 39272937 PMCID: PMC11393928 DOI: 10.3390/cancers16173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Micro- and nano-plastics (MNPLs) can move along the food chain to higher-level organisms including humans. Three significant routes for MNPLs have been reported: ingestion, inhalation, and dermal contact. Accumulating evidence supports the intestinal toxicity of ingested MNPLs and their role as drivers for increased incidence of colorectal cancer (CRC) in high-risk populations such as inflammatory bowel disease (IBD) patients. However, the mechanisms are largely unknown. In this review, by using the leading scientific publication databases (Web of Science, Google Scholar, Scopus, PubMed, and ScienceDirect), we explored the possible effects and related mechanisms of MNPL exposure on the gut epithelium in healthy conditions and IBD patients. The summarized evidence supports the idea that oral MNPL exposure may contribute to intestinal epithelial damage, thus promoting and sustaining the chronic development of intestinal inflammation, mainly in high-risk populations such as IBD patients. Colonic mucus layer disruption may further facilitate MNPL passage into the bloodstream, thus contributing to the toxic effects of MNPLs on different organ systems and platelet activation, which may, in turn, contribute to the chronic development of inflammation and CRC development. Further exploration of this threat to human health is warranted to reduce potential adverse effects and CRC risk.
Collapse
Affiliation(s)
- Annalisa Bruno
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Melania Dovizio
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Eleonora Aruffo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-TechLab, Research Center, "G. d'Annunzio" University of Chieti-Pescara, 66110 Chieti, Italy
| | - Marco Gatta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Di Carlo
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Department of Innovative Technologies in Medicine & Dentistry, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
53
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
54
|
Safdar A, Wang P, Muhaymin A, Nie G, Li S. From bench to bedside: Platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J Control Release 2024; 373:128-144. [PMID: 38977134 DOI: 10.1016/j.jconrel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In recent decades, there has been a burgeoning interest in cell membrane coating strategies as innovative approach for targeted delivery systems in biomedical applications. Platelet membrane-coated nanoparticles (PNPs), in particular, are gaining interest as a new route for targeted therapy due to their advantages over conventional drug therapies. Their stepwise approach blends the capabilities of the natural platelet membrane (PM) with the adaptable nature of manufactured nanomaterials, resulting in a synergistic combination that enhances drug delivery and enables the development of innovative therapeutics. In this context, we present an overview of the latest advancements in designing PNPs with various structures tailored for precise drug delivery. Initially, we describe the types, preparation methods, delivery mechanisms, and specific advantages of PNPs. Next, we focus on three critical applications of PNPs in diseases: vascular disease therapy, cancer treatment, and management of infectious diseases. This review presents our knowledge of PNPs, summarizes their advancements in targeted therapies and discusses the promising potential for clinical translation of PNPs.
Collapse
Affiliation(s)
- Ammara Safdar
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Peina Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; Department of Histology and Embryology, College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China.
| | - Abdul Muhaymin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
55
|
Chen J, Liu S, Ruan Z, Wang K, Xi X, Mao J. Thrombotic events associated with immune checkpoint inhibitors and novel antithrombotic strategies to mitigate bleeding risk. Blood Rev 2024; 67:101220. [PMID: 38876840 DOI: 10.1016/j.blre.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Although immunotherapy is expanding treatment options for cancer patients, the prognosis of advanced cancer remains poor, and these patients must contend with both cancers and cancer-related thrombotic events. In particular, immune checkpoint inhibitors are associated with an increased risk of atherosclerotic thrombotic events. Given the fundamental role of platelets in atherothrombosis, co-administration of antiplatelet agents is always indicated. Platelets are also involved in all steps of cancer progression. Classical antithrombotic drugs can cause inevitable hemorrhagic side effects due to blocking integrin β3 bidirectional signaling, which regulates simultaneously thrombosis and hemostasis. Meanwhile, many promising new targets are emerging with minimal bleeding risk and desirable anti-tumor effects. This review will focus on the issue of thrombosis during immune checkpoint inhibitor treatment and the role of platelet activation in cancer progression as well as explore the mechanisms by which novel antiplatelet therapies may exert both antithrombotic and antitumor effects without excessive bleeding risk.
Collapse
Affiliation(s)
- Jiayi Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuang Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Ruan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaodong Xi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jianhua Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
56
|
Ward MP, O'Toole SA, O'Leary JJ. Potential role of the CD39-CD73 ATP-adenosine pathway in platelet mediated dissemination of circulating tumour cells. Br J Cancer 2024; 131:781-782. [PMID: 39128932 PMCID: PMC11368966 DOI: 10.1038/s41416-024-02797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Affiliation(s)
- Mark P Ward
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Dublin 8, Ireland.
- Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin, Dublin 8, Ireland.
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin, Dublin 8, Ireland.
| | - Sharon A O'Toole
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Dublin 8, Ireland
- Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin, Dublin 8, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Dublin 8, Ireland
| | - John J O'Leary
- Department of Histopathology and Morbid Anatomy, Trinity College Dublin, Dublin, Dublin 8, Ireland
- Molecular Pathology Research Laboratory, Coombe Women and Infants University Hospital, Dublin, Dublin 8, Ireland
- Trinity St. James's Cancer Institute, St James's Hospital, Dublin, Dublin 8, Ireland
| |
Collapse
|
57
|
Song MY, Zhao L, Huang WJ, Cui MM, Liu YX, Wang RT, Zhang X. Preoperative platelet distribution width predicts bone metastasis in patients with breast cancer. BMC Cancer 2024; 24:1066. [PMID: 39210343 PMCID: PMC11360324 DOI: 10.1186/s12885-024-12837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Bone metastases occur in 50-70% of patients with breast cancer (BC) and result in high mortality. Platelet distribution width (PDW), a commonly used parameter of activated platelets, has been associated with a poor prognosis in BC. We aim to investigate the prognostic role of PDW for bone metastasis in BC patients. METHODS 515 patients who received BC surgery in the Harbin Medical University Cancer Hospital from July 1, 2016, to December 31, 2017, were reviewed. Patients' characteristics and platelet indices upon enrollment in this study were collected. The Kaplan-Meier method was used to estimate the 5-year bone metastasis incidence. The univariate and multivariate Cox regression analyses were utilized to identify risk factors associated with bone metastasis. RESULTS The patients with bone metastases exhibited lower PDW levels than the patients without bone metastases. Moreover, decreased PDW was significantly correlated with histologic type, multifocal disease, and lymph node status. In addition, the patients with reduced PDW levels were more likely to develop bone metastasis. Multivariate analysis showed that PDW was an independent predictor for bone metastasis. CONCLUSION PDW is an independent predictor of bone metastasis in BC. Further research is warranted.
Collapse
Affiliation(s)
- Mei-Yue Song
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Lin Zhao
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Wen-Juan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Ming-Ming Cui
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yu-Xi Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Rui-Tao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Xin Zhang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, NO.150 Haping ST, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
58
|
Hapeman JD, Galwa R, Carneiro CS, Nedelcu AM. In vitro evidence for the potential of EGFR inhibitors to decrease the TGF-β1-induced dispersal of circulating tumour cell clusters mediated by EGFR overexpression. Sci Rep 2024; 14:19980. [PMID: 39198539 PMCID: PMC11358385 DOI: 10.1038/s41598-024-70358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer-related deaths are due to the spread of tumour cells throughout the body-a process known as metastasis. While in the vasculature, these cells are referred to as circulating tumour cells (CTCs) and can be found as either single cells or clusters of cells (often including platelets), with the latter having the highest metastatic potential. However, the biology of CTC clusters is poorly understood, and there are no therapies that specifically target them. We previously developed an in vitro model system for CTC clusters and proposed a new extravasation model that involves cluster dissociation, adherence, and single-cell invasion in response to TGF-β1 released by platelets. Here, we investigated TGF-β1-induced gene expression changes in this model, focusing on genes for which targeted drugs are available. In addition to the upregulation of the TGF-β1 signalling pathway, we found that (i) genes in the EGF/EGFR pathway, including those coding for EGFR and several EGFR ligands, were also induced, and (ii) Erlotinib and Osimertinib, two therapeutic EGFR/tyrosine kinase inhibitors, decreased the TGF-β1-induced adherence and invasion of the CTC cluster-like line despite the line expressing wild-type EGFR. Overall, we suggest that EGFR inhibitors have the potential to decrease the dispersal of CTC clusters that respond to TGF-β1 and overexpress EGFR (irrespective of its status) and thus could improve patient survival.
Collapse
Affiliation(s)
- Jorian D Hapeman
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Rakshit Galwa
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Caroline S Carneiro
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
59
|
Wang X, Wu Z, Zhang Z, Jiang Z. Prognostic and clinicopathological value of systemic immune-inflammation index in patients with osteosarcoma: a meta-analysis. Front Immunol 2024; 15:1416068. [PMID: 39211035 PMCID: PMC11357927 DOI: 10.3389/fimmu.2024.1416068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background The efficiency of systemic immune-inflammation index (SII) in predicting prognosis of osteosarcoma (OSA) patients has been extensively analyzed, but no consistent findings are obtained. Therefore, this meta-analysis focused on identifying the precise prognostic value of SII for OSA. Methods We comprehensively searched electronic databases of PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) from inception to 24 February, 2024. Meanwhile, the efficiency of SII in predicting prognosis of OSA was evaluated by calculating pooled hazard ratios (HRs) as well as 95% confidence intervals (CIs). Additionally, the correlation of SII with the OSA clinicopathological characteristics was analyzed based on pooled odds ratios (ORs) and 95%CIs. Results Six studies with 1015 cases were enrolled into this work. According to the combined data, the higher SII was markedly related to poor overall survival (OS) (HR=2.01, 95%CI=1.30-3.09, p=0.002) and Enneking stage III (OR=2.21, 95%CI=1.11-4.39, p=0.024) of patients with OSA. Nonetheless, SII was not significantly related to gender, age, pathological fracture, tumor size, tumor location, tumor differentiation, and metastasis in patients with OSA. Conclusions In summary, the higher SII is markedly related to poor OS and advanced Enneking stage in OSA patients. Systematic review registration https://inplasy.com/inplasy-2024-7-0107/, identifier INPLASY202470107.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Zhong Wu
- Clinical Laboratory, Nanxun District Hospital of Traditional Chinese Medicine, Huzhou, Zhejiang, China
| | - Zongxin Zhang
- Clinical Laboratory, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang, China
| | - Ziwei Jiang
- Clinical Laboratory, People’s Hospital of Anji, Huzhou, Zhejiang, China
| |
Collapse
|
60
|
Contini C, Manconi B, Olianas A, Guadalupi G, Schirru A, Zorcolo L, Castagnola M, Messana I, Faa G, Diaz G, Cabras T. Combined High-Throughput Proteomics and Random Forest Machine-Learning Approach Differentiates and Classifies Metabolic, Immune, Signaling and ECM Intra-Tumor Heterogeneity of Colorectal Cancer. Cells 2024; 13:1311. [PMID: 39195201 PMCID: PMC11352245 DOI: 10.3390/cells13161311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Colorectal cancer (CRC) is a frequent, worldwide tumor described for its huge complexity, including inter-/intra-heterogeneity and tumor microenvironment (TME) variability. Intra-tumor heterogeneity and its connections with metabolic reprogramming and epithelial-mesenchymal transition (EMT) were investigated with explorative shotgun proteomics complemented by a Random Forest (RF) machine-learning approach. Deep and superficial tumor regions and distant-site non-tumor samples from the same patients (n = 16) were analyzed. Among the 2009 proteins analyzed, 91 proteins, including 23 novel potential CRC hallmarks, showed significant quantitative changes. In addition, a 98.4% accurate classification of the three analyzed tissues was obtained by RF using a set of 21 proteins. Subunit E1 of 2-oxoglutarate dehydrogenase (OGDH-E1) was the best classifying factor for the superficial tumor region, while sorting nexin-18 and coatomer-beta protein (beta-COP), implicated in protein trafficking, classified the deep region. Down- and up-regulations of metabolic checkpoints involved different proteins in superficial and deep tumors. Analogously to immune checkpoints affecting the TME, cytoskeleton and extracellular matrix (ECM) dynamics were crucial for EMT. Galectin-3, basigin, S100A9, and fibronectin involved in TME-CRC-ECM crosstalk were found to be differently variated in both tumor regions. Different metabolic strategies appeared to be adopted by the two CRC regions to uncouple the Krebs cycle and cytosolic glucose metabolism, promote lipogenesis, promote amino acid synthesis, down-regulate bioenergetics in mitochondria, and up-regulate oxidative stress. Finally, correlations with the Dukes stage and budding supported the finding of novel potential CRC hallmarks and therapeutic targets.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Medical Sciences and Public Health, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (C.C.); (G.F.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Giulia Guadalupi
- Department of Surgical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (G.G.); (L.Z.)
| | - Alessandra Schirru
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| | - Luigi Zorcolo
- Department of Surgical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (G.G.); (L.Z.)
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00143 Roma, Italy;
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Roma, Italy;
| | - Gavino Faa
- Department of Medical Sciences and Public Health, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (C.C.); (G.F.)
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Giacomo Diaz
- Department of Biomedical Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy;
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, Statal University of Cagliari, 09042 Monserrato (CA), Italy; (A.O.); (A.S.)
| |
Collapse
|
61
|
Tang M, Zhang Z, Wang P, Zhao F, Miao L, Wang Y, Li Y, Li Y, Gao Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm Sin B 2024; 14:3457-3475. [PMID: 39220884 PMCID: PMC11365446 DOI: 10.1016/j.apsb.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metastasis, the apex of cancer progression, poses a formidable challenge in therapeutic endeavors. Circulating tumor cells (CTCs), resilient entities originating from primary tumors or their metastases, significantly contribute to this process by demonstrating remarkable adaptability. They survive shear stress, resist anoikis, evade immune surveillance, and thwart chemotherapy. This comprehensive review aims to elucidate the intricate landscape of CTC formation, metastatic mechanisms, and the myriad factors influencing their behavior. Integral signaling pathways, such as integrin-related signaling, cellular autophagy, epithelial-mesenchymal transition, and interactions with platelets, are examined in detail. Furthermore, we explore the realm of precision nanomedicine design, with a specific emphasis on the anoikis‒platelet interface. This innovative approach strategically targets CTC survival mechanisms, offering promising avenues for combatting metastatic cancer with unprecedented precision and efficacy. The review underscores the indispensable role of the rational design of platelet-based nanomedicine in the pursuit of restraining CTC-driven metastasis.
Collapse
Affiliation(s)
- Manqing Tang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhijie Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ping Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
62
|
Raskov H, Orhan A, Agerbæk MØ, Gögenur I. The impact of platelets on the metastatic potential of tumour cells. Heliyon 2024; 10:e34361. [PMID: 39114075 PMCID: PMC11305202 DOI: 10.1016/j.heliyon.2024.e34361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
In cancer, activation of platelets by tumor cells is critical to disease progression. Development of precise antiplatelet targeting may improve outcomes from anticancer therapy. Alongside a distinct shift in functionality such as pro-metastatic and pro-coagulant properties, platelet production is often accelerated significantly early in carcinogenesis and the cancer-associated thrombocytosis increases the risk of metastasis formation and thromboembolic events. Tumor-activated platelets facilitate the proliferation of migrating tumor cells and shield them from immune surveillance and physical stress during circulation. Additionally, platelet-tumor cell interactions promote tumor cell intravasation, intravascular arrest, and extravasation through a repertoire of adhesion molecules, growth factors and angiogenic factors. Particularly, the presence of circulating tumor cell (CTC) clusters in association with platelets is a negative prognostic indicator. The contribution of platelets to the metastatic process is an area of intense investigation and this review provides an overview of the advances in understanding platelet-tumor cell interactions and their contribution to disease progression. Also, we review the potential of targeting platelets to interfere with the metastatic process.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Mette Ørskov Agerbæk
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
63
|
Paladiya R, Khoury N, Shah M, Moond V, Patel N, Bahirwani J, Garg A, Sohal A, Vaziri H. Exploring the Protective Role of Aspirin Use in Mitigating Colorectal Cancer (CRC) Metastasis: A Nationwide Analysis (2016 to 2020). J Clin Gastroenterol 2024:00004836-990000000-00324. [PMID: 39042482 DOI: 10.1097/mcg.0000000000002045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024]
Abstract
Despite advancements in treatment strategies, the mortality from colorectal cancer (CRC) remains high. Evidence suggests that aspirin (ASA) may have a protective effect on CRC incidence and metastasis through various mechanisms. The 2016 to 2020 National Inpatient Sample was used to identify adult patients (age above 18 y) with the principal diagnosis of CRC. Patients were stratified into 2 groups based on ASA use. The outcomes studied were in-hospital mortality and rates of total, gastrointestinal (GI), non-GI, and lymphoid metastasis. A multivariate logistic regression analysis was performed to evaluate the impact of ASA use on outcomes after adjusting for patient demographics, comorbidities, and the Elixhauser Comorbidity Index (ECI). Of the 814,270 patients, 88,620 (10.8%) used ASA, with the majority being aged above 65 years (78%), male (57%), white (77.6%), and had Medicare insurance (74.5%). There was a higher prevalence of Diabetes mellitus, Hypertension, Chronic pulmonary disease, Coronary artery disease, Chronic kidney disease, Chronic heart failure, Obesity, and Smoking among aspirin users than among non-ASA users. Patients who used ASA had a lower prevalence of total (47.3% vs. 32.5%, P<0.001), GI (22.2% vs. 32.4%, P<0.001), non-GI (9.9% vs. 15.3%, P<0.001), and lymphoid (9.3% vs. 10.9%, P<0.001) metastasis compared with those who did not use ASA. After adjusting for confounding factors, patients with ASA use had lower odds of total (aOR: 0.75, 95% CI: 0.72-0.78, P<0.001), GI (aOR: 0.74, 95% CI: 0.71-0.77, P<0.001), non-GI (aOR: 0.72, 95% CI: 0.68-0.77, P<0.1), and statistically insignificant odds of lymphoid (aOR: 0.95, 95% CI: 0.90-1.00, P=0.098) metastasis. The use of ASA is associated with a decrease in the prevalence of metastasis among individuals diagnosed with CRC, but additional studies are required to elucidate the mechanism and duration of therapy needed to be effective.
Collapse
Affiliation(s)
| | - Neil Khoury
- Gastroenterology, University of Connecticut Health Center, Farmington, CT
| | - Mihir Shah
- Department of Medicine, John H Stroger Jr Hospital of Cook County, Chicago, IL
| | - Vishali Moond
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, NJ
| | - Nishit Patel
- Department of Gastroenterology, St Luke's University Health Network, Bethlehem, PA
| | - Janak Bahirwani
- Department of Gastroenterology, St Luke's University Health Network, Bethlehem, PA
| | - Ayushi Garg
- Department of Medicine, Trident Medical Center, Charleston, SC
| | - Aalam Sohal
- Department of Hepatology, Liver Institute Northwest, Seattle, WA
| | - Haleh Vaziri
- Gastroenterology, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
64
|
Huang G, Xi P, Yao Z, Zhao C, Li X, Lin X. The conditional recurrence-free survival after R0 hepatectomy for locally advanced intrahepatic cholangiocarcinoma: A competing risk analysis based on inflammation-nutritional status. Heliyon 2024; 10:e33931. [PMID: 39055818 PMCID: PMC11269833 DOI: 10.1016/j.heliyon.2024.e33931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Background Conditional survival analysis can serve as a dynamic prognostic metric, which helps to estimate the real-time survival probability over time. The present study conducted a conditional recurrence-free survival (CRFS) analysis for locally advanced intrahepatic cholangiocarcinoma (ICC) after R0 hepatectomy from an inflammatory-nutritional perspective using the competing risk method. Methods We extracted the medical data of 164 locally advanced ICC patients after R0 resection from Sun Yat-sen University Cancer Center. The calculation formula of the CRFS rate is CRFS(y/x) = RFS(y + x)/RFS(x). Univariable and multivariable COX regression analysis and competing risk analysis were conducted to identify RFS indicators. Results Considering death before recurrence as a competing risk factor, the conditional RFS rates every 6 months gradually increased over time. The 24-month RFS rate increased from 29.2 % to 49.9 %, 68.5 %, and 85.1 % given 6, 12, and 18-month already recurrence-free survival, respectively. Both in multivariate COX regression analysis and competing risk analysis, tumor diameter and number, lymph node metastasis, aggregate systemic inflammation index score (AISI), and albumin-bilirubin score (ALBI) all remained significant. For both AISI and ALBI variables, the CRFS rates in the low-value set were higher than those of the high-value set. Conclusions Conditional RFS rates of locally advanced ICC after R0 hepatectomy dynamically increased over time, which contributed to reducing survivors' psychological distress and facilitating personalized follow-up schedules. In addition, a person's inflammatory and nutritional status significantly impact the recurrence risk. Oncologists should consider the role of inflammation-nutritional status when making decisions for patients with locally advanced ICC.
Collapse
Affiliation(s)
- Guizhong Huang
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Pu Xi
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Zehui Yao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Chongyu Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing, 400037, China
| | - Xiaohui Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiaojun Lin
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| |
Collapse
|
65
|
Zhang X, Li W, Wang X, Lin J, Dang C, Diao D. Effectiveness of D-dimer in predicting distant metastasis in colorectal cancer. PLoS One 2024; 19:e0306909. [PMID: 38995895 PMCID: PMC11244829 DOI: 10.1371/journal.pone.0306909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
PURPOSE Patients with cancer often present with a hypercoagulable state, which is closely associated with tumor progression. The purpose of this study was to assess the diagnostic efficacy of D-dimer in predicting distant metastasis in colorectal cancer (CRC). METHODS This study included 529 patients diagnosed with CRC at our hospital between January 2020 and December 2022. Plasma coagulation indicators and tumor markers were collected prior to treatment and their diagnostic efficacy for predicting CRC metastasis was assessed by receiver operating characteristic (ROC) curves. Independent risk factors for evaluating tumor metastasis were obtained by multivariate logistic regression analysis. RESULTS The level of D-dimer in the metastatic group was significantly higher than that in the non-metastatic group (P<0.001). The results of the multiple logistic regression analysis indicated that lower level of prealbumin and platelet, and higher level of glucose, CEA and D-dimer were independent risk factors for distant metastasis in patients with CRC (P<0.05, respectively). The combination of prealbumin, glucose, D-dimer, platelet and tumor markers (PRE2) was found to be significantly more effective in predicting metastasis of CRC when compared to the combination of tumor marker alone (PRE1, P<0.001). CONCLUSION Plasma D-dimer may be a novel tumor marker for screening metastases of CRC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenxing Li
- Department of Radiotherapy, Oncology Department, The First Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xuan Wang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhe Lin
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengxue Dang
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongmei Diao
- Department of Oncology Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
66
|
Schaubaecher JB, Smiljanov B, Haring F, Steiger K, Wu Z, Ugurluoglu A, Luft J, Ballke S, Mahameed S, Schneewind V, Hildinger J, Canis M, Mittmann LA, Braun C, Zuchtriegel G, Kaiser R, Nicolai L, Mack M, Weichert W, Lauber K, Uhl B, Reichel CA. Procoagulant platelets promote immune evasion in triple-negative breast cancer. Blood 2024; 144:216-226. [PMID: 38648571 DOI: 10.1182/blood.2023022928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
ABSTRACT Triple-negative breast cancer (TNBC) is an aggressive tumor entity in which immune checkpoint (IC) molecules are primarily synthesized in the tumor environment. Here, we report that procoagulant platelets bear large amounts of such immunomodulatory factors and that the presence of these cellular blood components in TNBC relates to protumorigenic immune-cell activity and impaired survival. Mechanistically, tumor-released nucleic acids attract platelets to the aberrant tumor microvasculature, where they undergo procoagulant activation, thus delivering specific stimulatory and inhibitory IC molecules. This concomitantly promotes protumorigenic myeloid leukocyte responses and compromises antitumorigenic lymphocyte activity, ultimately supporting tumor growth. Interference with platelet-leukocyte interactions prevented immune cell misguidance and suppressed tumor progression, nearly as effective as systemic IC inhibition. Hence, our data uncover a self-sustaining mechanism of TNBC by using platelets to misdirect immune-cell responses. Targeting this irregular multicellular interplay may represent a novel immunotherapeutic strategy for TNBC without the adverse effects of systemic IC inhibition.
Collapse
Affiliation(s)
- Johanna B Schaubaecher
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Bojan Smiljanov
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Florian Haring
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Zhengquan Wu
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Anais Ugurluoglu
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Joshua Luft
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Simone Ballke
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Shaan Mahameed
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Vera Schneewind
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Jonas Hildinger
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Comprehensive Cancer Center, Munich Ludwig-Maximilians-Universität, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Laura A Mittmann
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Constanze Braun
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Gabriele Zuchtriegel
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Rainer Kaiser
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Medicine I, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Berlin, Germany
| | - Leo Nicolai
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Medicine I, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Berlin, Germany
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, Regensburg, Germany
| | - Wilko Weichert
- Department of Pathology, Technical University Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Bernd Uhl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| | - Christoph A Reichel
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Department of Otorhinolaryngology, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
- Comprehensive Cancer Center, Munich Ludwig-Maximilians-Universität, Ludwig-Maximilians-Universität University Hospital, Munich, Germany
| |
Collapse
|
67
|
Jiang T, Sun H, Xue S, Xu T, Xia W, Wang Y, Guo L, Lin H. Prognostic significance of hemoglobin, albumin, lymphocyte, and platelet (HALP) score in breast cancer: a propensity score-matching study. Cancer Cell Int 2024; 24:230. [PMID: 38956686 PMCID: PMC11218366 DOI: 10.1186/s12935-024-03419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/22/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The hemoglobin-albumin-lymphocyte-platelet (HALP) score functions as a comprehensive index that assesses the systemic inflammatory response, nutritional, and immune status. This study aimed to explore the relationship between preoperative HALP score and the prognosis of BC patients and to develop predictive nomograms. METHODS Clinicopathological data were collected for BC patients who underwent mastectomy between December 2010 and April 2014 from Sun Yat-sen University Cancer Center. The optimal cutoff value for HALP was determined by maximally selected rank statistics for overall survival data. Propensity score matching (PSM) was applied to develop comparable cohorts of high-HALP group and low-HALP group. Kaplan-Meier curves and Cox regression analyses were performed to determine the impact of HALP on BC patients. Prognostic nomograms were developed based on the multivariate Cox regression method. Then, the concordance index (C-index), calibration plots, and decision curves analysis (DCA) were applied to evaluate the prognostic performance of the nomograms. RESULTS A total of 1,856 patients were included as the primary cohort, and 1,470 patients were matched and considered as the PSM cohort. In the primary cohort, the 5-year overall survival (OS) and progression-free survival (PFS) rates for high-HALP group (≥ 47.89) and low-HALP group (< 47.89) were 94.4% vs. 91.0% (P = 0.005) and 87.8% vs. 82.1% (P = 0.005), respectively. Similar results were observed in PSM cohort (5-year OS, 94.3% vs. 90.8%, P = 0.015; 5-year PFS, 87.5% vs. 83.2%, P = 0.036). Notably, multivariate Cox regression analysis in the PSM cohort showed that HALP could independently predict BC patient prognosis in both OS (HR: 0.596, 95%CI [0.405-0.875], P = 0.008) and PFS (HR: 0.707, 95%CI [0.538-0.930], P = 0.013). OS and PFS nomograms showed excellent predictive performance with the C-indexes of 0.783 and 0.720, respectively. The calibration plots and DCA also indicated the good predictability of the nomograms. Finally, subgroup analysis further demonstrated a favorable impact of HALP on both OS and PFS. CONCLUSION Preoperative HALP score can be used as a reliable independent predictor of OS and PFS in BC patients, and the nomograms may provide a personalized treatment strategy.
Collapse
Affiliation(s)
- Tongchao Jiang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
- Department of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510060, Guangdong Province, China
| | - Haishuang Sun
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Shuyu Xue
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Tiankai Xu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Wen Xia
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China
| | - Ying Wang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Ling Guo
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Huanxin Lin
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| |
Collapse
|
68
|
Ye F, Wechsler J, Bouzidi A, Uzan G, Naserian S. Fast and efficient isolation of murine circulating tumor cells using screencell technology for pre-clinical analyzes. Sci Rep 2024; 14:15019. [PMID: 38951573 PMCID: PMC11217394 DOI: 10.1038/s41598-024-66032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Circulating tumor cells (CTCs) represent a rare and heterogeneous population of cancer cells that are detached from the tumor site and entered blood or lymphatic circulation. Once disseminated in distant tissues, CTCs could remain dormant or create a tumor mass causing serious danger for patients. Many technologies exist to isolate CTCs from patients' blood samples, mostly based on microfluidic systems or by sorting them according to their surface antigens, notably EpCAM, and/or cytokeratins for carcinoma. ScreenCell has developed an easy-to-use, antigen-independent, rapid, cost-effective, and efficient technology that isolates CTCs according to their bigger size compared to the blood cells. This study provides the technical information necessary to isolate and characterize CTCs from mouse blood. By using blood samples from transgenic mice with breast cancer or from WT mice in which we spiked cancer cells, we showed that ScreenCell technology is compatible with standard EDTA blood collection tubes. Furthermore, the ScreenCell Cyto kit could treat up to 500 µl and the ScreenCell MB kit up to 200 µl of mouse blood. As the ScreenCell MB kit captures unaltered live CTCs, we have shown that their DNA could be efficiently extracted, and the isolated cells could be grown in culture. In conclusion, ScreenCell provides a rapid, easy, antigen-independent, cost-effective, and efficient technology to isolate and characterize CTCs from the blood samples of cancer patients and murine models. Thanks to this technology CTCs could be captured fixed or alive. Murine cancer models are extensively used in pre-clinical studies. Therefore, this study demonstrates the crucial technical points necessary while manipulating mouse blood samples using ScreenCell technology.
Collapse
Affiliation(s)
- Fei Ye
- ScreenCell, 62, Rue de Wattignies, 75012, Paris, France
| | | | - Amira Bouzidi
- ScreenCell, 62, Rue de Wattignies, 75012, Paris, France
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sina Naserian
- ScreenCell, 62, Rue de Wattignies, 75012, Paris, France.
| |
Collapse
|
69
|
Tuerhong N, Yang Y, Wang C, Huang P, Li Q. Interactions between platelets and the cancer immune microenvironment. Crit Rev Oncol Hematol 2024; 199:104380. [PMID: 38718939 DOI: 10.1016/j.critrevonc.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/16/2024] Open
Abstract
Cancer is a leading cause of death in both China and developed countries due to its high incidence and low cure rate. Immune function is closely linked to the development and progression of tumors. Platelets, which are primarily known for their role in hemostasis, also play a crucial part in the spread and progression of tumors through their interaction with the immune microenvironment. The impact of platelets on tumor growth and metastasis depends on the type of cancer and treatment method used. This article provides an overview of the relationship between platelets and the immune microenvironment, highlighting how platelets can either protect or harm the immune response and cancer immune escape. We also explore the potential of available platelet-targeting strategies for tumor immunotherapy, as well as the promise of new platelet-targeted tumor therapy methods through further research.
Collapse
Affiliation(s)
- Nuerye Tuerhong
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Chenyu Wang
- The Second Clinical Medical College, Lanzhou university, No. 222 South Tianshui Road, Gansu, China
| | - Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China; West China Biomedical Big Data Center, Sichuan University, No. 37, GuoXue Xiang Chengdu, Sichuan, China.
| |
Collapse
|
70
|
Tang W, Long G. Retrospective study of a novel hematological parameter for predicting the survival of patients with nasopharyngeal carcinoma. PeerJ 2024; 12:e17573. [PMID: 38915379 PMCID: PMC11195549 DOI: 10.7717/peerj.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose This study aims to explore the prognostic values of routine pre-treatment hematological parameters in patients with nasopharyngeal carcinoma (NPC). Methods The hematological parameters and clinical data of patients with NPC were collected from January 2012 to December 2013 at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. The survival statistics were obtained by regularly following-up the patients. The cut-off values for the hematological parameters were calculated using X-tile software. SPSS version 24.0 was used for the statistical analysis. The relationship between the hematological parameters and the prognosis of patients with NPC was analyzed using the Kaplan-Meier method and Cox multivariate regression. The discriminating abilities of the factors, which predict the prognosis, were evaluated by utilizing the receiver operating characteristic (ROC) area under the curve (AUC). Results This study included 179 patients with NPC. Multivariate analysis shows that pretreatment platelet-to-lymphocyte ratio (PLR; hazard ratio; HR = 0.44, 95% CI [0.21-0.91], p = 0.029), serum albumin (ALB; HR = 2.49, 95% CI [1.17-5.30], p = 0.018), and globulin (GLO; HR = 0.44, 95% CI [0.21-0.90], p = 0.024) are independent predictors for 5-year overall survival (OS) in patients with NPC. In addition, pre-treatment PLR (HR = 0.47, 95% CI [0.25-0.90], p = 0.022) and pre-treatment GLO (HR = 0.37, 95% CI [0.19-0.72], p = 0.001) are associated with 5-year progression-free survival (PFS) in patients with NPC. Based on the results of the multivariate analysis, we proposed a new biomarker GLO-PLR, which is observably correlated with the T stage, N stage and clinical stage in patients with NPC. The OS resolving ability of the GLO-PLR evaluated by AUC is 0.714, which is better than those of GLO and PLR. The PFS resolving ability of the GLO-PLR evaluated by AUC was 0.696, which is also better than those of GLO and PLR. Conclusion Pre-treatment PLR, ALB, and GLO are independent predictors of 5-year OS in patients with NPC, where PLR and GLO are also independent predictors of 5-year FPS. Compared with other hematological parameters, the proposed GLO-PLR is an inexpensive, effective, objective, and easy-to-measure marker for predicting the prognosis of NPC.
Collapse
Affiliation(s)
- Wenhua Tang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
71
|
Zhao LJ, Wang ZY, Liu WT, Yu LL, Qi HN, Ren J, Zhang CG. Aspirin suppresses hepatocellular carcinoma progression by inhibiting platelet activity. World J Gastrointest Oncol 2024; 16:2742-2756. [PMID: 38994144 PMCID: PMC11236245 DOI: 10.4251/wjgo.v16.i6.2742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study. AIM To explore the impact of the antiplatelet effect of aspirin on the development of HCC. METHODS Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected. RESULTS PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation. CONCLUSION PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Yin Wang
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
| | - Wei-Ting Liu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Li-Li Yu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Hao-Nan Qi
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jie Ren
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Chen-Guang Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| |
Collapse
|
72
|
Zhao LJ, Wang ZY, Liu WT, Yu LL, Qi HN, Ren J, Zhang CG. Aspirin suppresses hepatocellular carcinoma progression by inhibiting platelet activity. World J Gastrointest Oncol 2024; 16:2730-2744. [DOI: 10.4251/wjgo.v16.i6.2730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common malignant liver disease in the world. Platelets (PLTs) are known to play a key role in the maintenance of liver homeostasis and the pathophysiological processes of a variety of liver diseases. Aspirin is the most classic antiplatelet agent. However, the molecular mechanism of platelet action and whether aspirin can affect HCC progression by inhibiting platelet activity need further study.
AIM To explore the impact of the antiplatelet effect of aspirin on the development of HCC.
METHODS Platelet-rich plasma, platelet plasma, pure platelet, and platelet lysate were prepared, and a coculture model of PLTs and HCC cells was established. CCK-8 analysis, apoptosis analysis, Transwell analysis, and real-time polymerase chain reaction (RT-PCR) were used to analyze the effects of PLTs on the growth, metastasis, and inflammatory microenvironment of HCC. RT-PCR and Western blot were used to detect the effects of platelet activation on tumor-related signaling pathways. Aspirin was used to block the activation and aggregation of PLTs both in vitro and in vivo, and the effect of PLTs on the progression of HCC was detected.
RESULTS PLTs significantly promoted the growth, invasion, epithelial-mesenchymal transition, and formation of an inflammatory microenvironment in HCC cells. Activated PLTs promoted HCC progression by activating the mitogen-activated protein kinase/protein kinase B/signal transducer and activator of transcription three (MAPK/ AKT/STAT3) signaling axis. Additionally, aspirin inhibited HCC progression in vitro and in vivo by inhibiting platelet activation.
CONCLUSION PLTs play an important role in the pathogenesis of HCC, and aspirin can affect HCC progression by inhibiting platelet activity. These results suggest that antiplatelet therapy has promising application prospects in the treatment and combined treatment of HCC.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Zhi-Yin Wang
- Hematology Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
| | - Wei-Ting Liu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Li-Li Yu
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Hao-Nan Qi
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Jie Ren
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| | - Chen-Guang Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, Henan Province, China
| |
Collapse
|
73
|
Jing PF, Chen J, Yu ED, Miao CY. Predictive value of preoperative routine examination for the prognosis of patients with pT2N0M0 or pT3N0M0 colorectal cancer. World J Gastrointest Oncol 2024; 16:2429-2438. [PMID: 38994158 PMCID: PMC11236233 DOI: 10.4251/wjgo.v16.i6.2429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In recent years, the incidence of colorectal cancer (CRC) has been increasing. With the popularization of endoscopic technology, a number of early CRC has been diagnosed. However, despite current treatment methods, some patients with early CRC still experience postoperative recurrence and metastasis. AIM To search for indicators associated with early CRC recurrence and metastasis to identify high-risk populations. METHODS A total of 513 patients with pT2N0M0 or pT3N0M0 CRC were retrospectively enrolled in this study. Results of blood routine test, liver and kidney function tests and tumor markers were collected before surgery. Patients were followed up through disease-specific database and telephone interviews. Tumor recurrence, metastasis or death were used as the end point of study to find the risk factors and predictive value related to early CRC recurrence and metastasis. RESULTS We comprehensively compared the predictive value of preoperative blood routine, blood biochemistry and tumor markers for disease-free survival (DFS) and overall survival (OS) of CRC. Cox multivariate analysis demonstrated that low platelet count was significantly associated with poor DFS [hazard ratio (HR) = 0.995, 95% confidence interval (CI): 0.991-0.999, P = 0.015], while serum carcinoembryonic antigen (CEA) level (HR = 1.008, 95%CI: 1.001-1.016, P = 0.027) and serum total cholesterol level (HR = 1.538, 95%CI: 1.026-2.305, P = 0.037) were independent risk factors for OS. The cutoff value of serum CEA level for predicting OS was 2.74 ng/mL. Although the OS of CRC patients with serum CEA higher than the cutoff value was worse than those with lower CEA level, the difference between the two groups was not statistically significant (P = 0.075). CONCLUSION For patients with T2N0M0 or T3N0M0 CRC, preoperative platelet count was a protective factor for DFS, while serum CEA level was an independent risk factor for OS. Given that these measures are easier to detect and more acceptable to patients, they may have broader applications.
Collapse
Affiliation(s)
- Peng-Fei Jing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - En-Da Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
74
|
Jing PF, Chen J, Yu ED, Miao CY. Predictive value of preoperative routine examination for the prognosis of patients with pT2N0M0 or pT3N0M0 colorectal cancer. World J Gastrointest Oncol 2024; 16:2417-2426. [DOI: 10.4251/wjgo.v16.i6.2417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND In recent years, the incidence of colorectal cancer (CRC) has been increasing. With the popularization of endoscopic technology, a number of early CRC has been diagnosed. However, despite current treatment methods, some patients with early CRC still experience postoperative recurrence and metastasis.
AIM To search for indicators associated with early CRC recurrence and metastasis to identify high-risk populations.
METHODS A total of 513 patients with pT2N0M0 or pT3N0M0 CRC were retrospectively enrolled in this study. Results of blood routine test, liver and kidney function tests and tumor markers were collected before surgery. Patients were followed up through disease-specific database and telephone interviews. Tumor recurrence, metastasis or death were used as the end point of study to find the risk factors and predictive value related to early CRC recurrence and metastasis.
RESULTS We comprehensively compared the predictive value of preoperative blood routine, blood biochemistry and tumor markers for disease-free survival (DFS) and overall survival (OS) of CRC. Cox multivariate analysis demonstrated that low platelet count was significantly associated with poor DFS [hazard ratio (HR) = 0.995, 95% confidence interval (CI): 0.991-0.999, P = 0.015], while serum carcinoembryonic antigen (CEA) level (HR = 1.008, 95%CI: 1.001-1.016, P = 0.027) and serum total cholesterol level (HR = 1.538, 95%CI: 1.026-2.305, P = 0.037) were independent risk factors for OS. The cutoff value of serum CEA level for predicting OS was 2.74 ng/mL. Although the OS of CRC patients with serum CEA higher than the cutoff value was worse than those with lower CEA level, the difference between the two groups was not statistically significant (P = 0.075).
CONCLUSION For patients with T2N0M0 or T3N0M0 CRC, preoperative platelet count was a protective factor for DFS, while serum CEA level was an independent risk factor for OS. Given that these measures are easier to detect and more acceptable to patients, they may have broader applications.
Collapse
Affiliation(s)
- Peng-Fei Jing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - En-Da Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
75
|
Zhang S, Xu H, Li W, Cui J, Zhao Q, Guo Z, Chen J, Yao Q, Li S, He Y, Qiao Q, Feng Y, Shi H, Song C. Development and validation of an inflammatory biomarkers model to predict gastric cancer prognosis: a multi-center cohort study in China. BMC Cancer 2024; 24:711. [PMID: 38858653 PMCID: PMC11163779 DOI: 10.1186/s12885-024-12483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Inflammatory factors have increasingly become a more cost-effective prognostic indicator for gastric cancer (GC). The goal of this study was to develop a prognostic score system for gastric cancer patients based on inflammatory indicators. METHODS Patients' baseline characteristics and anthropometric measures were used as predictors, and independently screened by multiple machine learning(ML) algorithms. We constructed risk scores to predict overall survival in the training cohort and tested risk scores in the validation. The predictors selected by the model were used in multivariate Cox regression analysis and developed a nomogram to predict the individual survival of GC patients. RESULTS A 13-variable adaptive boost machine (ADA) model mainly comprising tumor stage and inflammation indices was selected in a wide variety of machine learning models. The ADA model performed well in predicting survival in the validation set (AUC = 0.751; 95% CI: 0.698, 0.803). Patients in the study were split into two sets - "high-risk" and "low-risk" based on 0.42, the cut-off value of the risk score. We plotted the survival curves using Kaplan-Meier analysis. CONCLUSION The proposed model performed well in predicting the prognosis of GC patients and could help clinicians apply management strategies for better prognostic outcomes for patients.
Collapse
Affiliation(s)
- Shaobo Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hongxia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Wei Li
- Cancer Center of the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jiuwei Cui
- Cancer Center of the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Qingchuan Zhao
- Department of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, 710032, China
| | - Zengqing Guo
- Department of Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, 350014, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Cancer Hospital and Key Laboratory of Traditional Chinese Medicine Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Suyi Li
- Department of Nutrition and Metabolism of Oncology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, 230031, China
| | - Ying He
- Department of Clinical Nutrition, Chongqing General Hospital, Chongqing, 400014, China
| | - Qiuge Qiao
- Department of General Surgery, Second Hospital (East Hospital), Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yongdong Feng
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanping Shi
- Department of Gastrointestinal Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100054, China.
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100054, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100054, China.
| | - Chunhua Song
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
76
|
Wang Y, Chen Y, Zhao M. N6-methyladenosine modification and post-translational modification of epithelial-mesenchymal transition in colorectal cancer. Discov Oncol 2024; 15:209. [PMID: 38834851 DOI: 10.1007/s12672-024-01048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Colorectal cancer is a leading cause of cancer-related mortality worldwide. Traditionally, colorectal cancer has been recognized as a disease caused by genetic mutations. However, recent studies have revealed the significant role of epigenetic alterations in the progression of colorectal cancer. Epithelial-mesenchymal transition, a critical step in cancer cell metastasis, has been found to be closely associated with the tumor microenvironment and immune factors, thereby playing a crucial role in many kinds of biological behaviors of cancers. In this review, we explored the impact of N6-methyladenosine and post-translational modifications (like methylation, acetylation, ubiquitination, SUMOylation, glycosylation, etc.) on the process of epithelial-mesenchymal transition in colorectal cancer and the epigenetic regulation for the transcription factors and pathways correlated to epithelial-mesenchymal transition. Furthermore, we emphasized that the complex regulation of epithelial-mesenchymal transition by epigenetics can provide new strategies for overcoming drug resistance and improving treatment outcomes. This review aims to provide important scientific evidence for the prevention and treatment of colorectal cancer based on epigenetic modifications.
Collapse
Affiliation(s)
- Yingnan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yufan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Miaomiao Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
77
|
Mack A, Vanden Hoek T, Du X. Thromboinflammation and the Role of Platelets. Arterioscler Thromb Vasc Biol 2024; 44:1175-1180. [PMID: 38776384 PMCID: PMC11649024 DOI: 10.1161/atvbaha.124.320149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
- Andrew Mack
- Department of Pharmacology and Regenerative Medicine
| | | | - Xiaoping Du
- Department of Pharmacology and Regenerative Medicine
| |
Collapse
|
78
|
Sun L, Yang L, Du X, Liu L, Ran Q, Yang Q, Chen Y, Zhu X, Li Q. Ethyl-acetate extract of Spatholobi Caulis blocked the pro-metastatic support from the hemato-microenvironment of colon cancer by specific disruption of tumor-platelet adhesion. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155420. [PMID: 38547619 DOI: 10.1016/j.phymed.2024.155420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Within the pro-metastatic hemato-microenvironment, interaction between platelets and tumor cells provides essential support for tumor cells by inducing Epithelial-Mesenchymal Transition (EMT), which greatly increases the stemness of colon cancer cells. Pharmacologically, although platelet deactivation has proved to be benefit against metastasis, its wide application is severely restricted due to the bleeding risk. Spatholobi Caulis, a traditional Chinese herb with circulatory promotion and blood stasis removal activity, has been proved to be clinically effective in malignant medication, leaving its mechanistic relevance to tumor-platelet interaction largely unknown. METHODS Firstly, MC38-Luc cells were injected into tail-vein in C57BL/6 mice to establish hematogenous metastasis model and the anti-metastasis effects of SEA were evaluated by using a small-animal imaging system. Then, we evaluated the anti-tumor-platelet interaction efficacy of SEA using a tumor-specific induced platelet aggregation model. Platelet aggregation was specifically induced by tumor cells in vitro. Furthermore, to clarify the anti-metastatic effects of SEA is mainly attributed to its blockage on tumor-platelet interaction, after co-culture with tumor cells and platelets (with or without SEA), MC38-Luc cells were injected into the tail-vein and finally count the total of photons quantitatively. Besides, to clarify the blocking pattern of SEA within the tumor-platelet complex, the dependence of SEA on different fractions from activated platelets was tested. Lastly, molecular docking screening were performed to screen potential effective compounds and we used β-catenin blockers to verify the pathways involved in SEA blocking tumor-platelet interaction. RESULTS Our study showed that SEA was effective in blocking tumor-platelet specific interaction: (1) Through CCK-8 and LDH assays, SEA showed no cytotoxic effects on tumor cells and platelets. On this basis, by the tail vein injection model, the photon counts in the SEA group was significantly lower than model group, indicating that SEA effectively reduced metastasis. (2) In the "tumor-platelet" co-culture model, SEA effectively inhibited the progression of EMT and cancer stemness signatures of MC38 cells in the model group. (3) In mechanism study, by using the specific inhibitors for galectin-3 (GB1107) andWNT (IWR) respectively, we proved that SEA inhibits the activation of the galectin-3-mediated β-catenin activation. CONCLUSION By highlighting the pro-metastatic effects of galectin-3-mediated tumor-platelet adhesion, our study provided indicative evidence for Spatholobi Caulis as the representative candidate for anti-metastatic therapy.
Collapse
Affiliation(s)
- Lidong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China
| | - Lina Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China
| | - Xinke Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China
| | - QingSen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China
| | - XiaoXin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China.
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, State key laboratory for quality ensurance and sustainable use of Dao-di herbs, Beijing 100700, China.
| |
Collapse
|
79
|
Garcia-Leon MJ, Liboni C, Mittelheisser V, Bochler L, Follain G, Mouriaux C, Busnelli I, Larnicol A, Colin F, Peralta M, Osmani N, Gensbittel V, Bourdon C, Samaniego R, Pichot A, Paul N, Molitor A, Carapito R, Jandrot-Perrus M, Lefebvre O, Mangin PH, Goetz JG. Platelets favor the outgrowth of established metastases. Nat Commun 2024; 15:3297. [PMID: 38740748 DOI: 10.1038/s41467-024-47516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Despite abundant evidence demonstrating that platelets foster metastasis, anti-platelet agents have low therapeutic potential due to the risk of hemorrhages. In addition, whether platelets can regulate metastasis at the late stages of the disease remains unknown. In this study, we subject syngeneic models of metastasis to various thrombocytopenic regimes to show that platelets provide a biphasic contribution to metastasis. While potent intravascular binding of platelets to tumor cells efficiently promotes metastasis, platelets further support the outgrowth of established metastases via immune suppression. Genetic depletion and pharmacological targeting of the glycoprotein VI (GPVI) platelet-specific receptor in humanized mouse models efficiently reduce the growth of established metastases, independently of active platelet binding to tumor cells in the bloodstream. Our study demonstrates therapeutic efficacy when targeting animals bearing growing metastases. It further identifies GPVI as a molecular target whose inhibition can impair metastasis without inducing collateral hemostatic perturbations.
Collapse
Affiliation(s)
- Maria J Garcia-Leon
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
- Domain therapeutics, Parc d'Innovation - 220 Boulevard Gonthier D'Andernach, 67400, Strasbourg - Illkirch, France.
| | - Cristina Liboni
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Louis Bochler
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Gautier Follain
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Clarisse Mouriaux
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Ignacio Busnelli
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Annabel Larnicol
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florent Colin
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marina Peralta
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Naël Osmani
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Catherine Bourdon
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France
| | - Rafael Samaniego
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Unidad de Microscopía Confocal, Madrid, Spain
| | - Angélique Pichot
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Nicodème Paul
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Anne Molitor
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
| | - Raphaël Carapito
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg Transplantex NG, Faculté de Médecine, France
- Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, 1 Place de l'Hôpital, 67091, Strasbourg, France
| | | | - Olivier Lefebvre
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Pierre H Mangin
- UMR_S 1255, INSERM, Etablissement Français du Sang-Alsace, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
80
|
Magnusson C, Augustsson P, Undvall Anand E, Lenshof A, Josefsson A, Welén K, Bjartell A, Ceder Y, Lilja H, Laurell T. Acoustic Enrichment of Heterogeneous Circulating Tumor Cells and Clusters from Metastatic Prostate Cancer Patients. Anal Chem 2024; 96:6914-6921. [PMID: 38655666 PMCID: PMC11079855 DOI: 10.1021/acs.analchem.3c05371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on the microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality. METHODS Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility), resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry. RESULTS Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM+, Cytokeratin+, DAPI+, CD45-/CD66b-) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogeneous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding a higher number of CTCs using acoustophoresis. CONCLUSION Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables the sensitive label-free enrichment of cells with epithelial phenotypes in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.
Collapse
Affiliation(s)
- Cecilia Magnusson
- Department of Translational Medicine, Lund University, Lund SE-22100, Sweden
| | - Per Augustsson
- Department of Biomedical Engineering, Lund University, Lund SE-22100, Sweden
| | - Eva Undvall Anand
- Department of Biomedical Engineering, Lund University, Lund SE-22100, Sweden
| | - Andreas Lenshof
- Department of Biomedical Engineering, Lund University, Lund SE-22100, Sweden
| | - Andreas Josefsson
- Institute of Clinical Sciences, Department of Urology, Gothenburg University, Gothenburg SE-41345, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, Umeå SE-90187, Sweden
- Department of Urology and Andrology, Institute of Surgery and Perioperative Sciences, Umeå University, Umeå SE-90185, Sweden
| | - Karin Welén
- Institute of Clinical Sciences, Department of Urology, Gothenburg University, Gothenburg SE-41345, Sweden
| | - Anders Bjartell
- Department of Translational Cancer Research, Lund University, Lund SE-22100, Sweden
| | - Yvonne Ceder
- Department of Laboratory Medicine, Lund University, Lund SE-22100, Sweden
| | - Hans Lilja
- Department of Translational Medicine, Lund University, Lund SE-22100, Sweden
- Department of Pathology and Laboratory Medicine, Surgery (Urology), and Medicine (GU Oncology), Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Lund SE-22100, Sweden
| |
Collapse
|
81
|
Ning Z, Liu K, Zhang H, Dong G, Wang X, Xiong H. Platelets induce CD39 expression in tumor cells to facilitate tumor metastasis. Br J Cancer 2024; 130:1542-1551. [PMID: 38461171 PMCID: PMC11058827 DOI: 10.1038/s41416-024-02640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Tumor cells continue to evolve the metastatic potential in response to signals provided by the external microenvironment during metastasis. Platelets closely interact with tumor cells during hematogenous metastasis and facilitate tumor development. However, the molecular mechanisms underlying this process are not fully understood. METHODS RNA-sequencing was performed to screen differentially expressed genes mediated by platelets. The effects of platelet and CD39 on tumor metastasis were determined by experimental metastasis models with WT, NCG and CD39-/- mice. RESULTS RNA-sequencing results showed that platelets significantly up-regulated CD39 expression in tumor cells. CD39 is a novel immune checkpoint molecule and a key driver of immunosuppression. Our data provided evidence that the expression of CD39 was enhanced by platelets in a platelet-tumor cell contact dependent manner. Although the role of CD39 expressed by immune cells is well established, the effect of CD39 expressed by tumor cells on tumor cell behavior, anti-tumor immunity and tumor metastasis is unclear. We found that CD39 promoted tumor cell invasion, but had no effect on proliferation and migration. Notably, we showed that the ability of platelets to prime tumor cells for metastasis depends on CD39 in the experimental tumor metastasis model. CD39 silencing resulted in fewer experimental metastasis formation, and this anti-metastasis effect was significantly reduced in platelet-depleted mice. Furthermore, overexpression of CD39 in tumor cells promoted metastasis. In order to eliminate the effect of CD39 expressed in cells other than tumor cells, we detected tumor metastasis in CD39-/- mice and obtained similar results. Moreover, overexpression of CD39 in tumor cells inhibited antitumor immunity. Finally, the data from human samples also supported our findings. CONCLUSIONS Our study shows that direct contact with platelets induces CD39 expression in tumor cells, leading to immune suppression and promotion of metastasis.
Collapse
Affiliation(s)
- Zhaochen Ning
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, 272067, China
| | - Hui Zhang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Guanjun Dong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Xiaotong Wang
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China
| | - Huabao Xiong
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
82
|
Xue J, Deng J, Qin H, Yan S, Zhao Z, Qin L, Liu J, Wang H. The interaction of platelet-related factors with tumor cells promotes tumor metastasis. J Transl Med 2024; 22:371. [PMID: 38637802 PMCID: PMC11025228 DOI: 10.1186/s12967-024-05126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
Platelets not only participate in thrombosis and hemostasis but also interact with tumor cells and protect them from mechanical damage caused by hemodynamic shear stress and natural killer cell lysis, thereby promoting their colonization and metastasis to distant organs. Platelets can affect the tumor microenvironment via interactions between platelet-related factors and tumor cells. Metastasis is a key event in cancer-related death and is associated with platelet-related factors in lung, breast, and colorectal cancers. Although the factors that promote platelet expression vary slightly in terms of their type and mode of action, they all contribute to the overall process. Recognizing the correlation and mechanisms between these factors is crucial for studying the colonization of distant target organs and developing targeted therapies for these three types of tumors. This paper reviews studies on major platelet-related factors closely associated with metastasis in lung, breast, and colorectal cancers.
Collapse
Affiliation(s)
- Jie Xue
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Jianzhao Deng
- Clinical Laboratory, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Hongwei Qin
- Department of Blood Transfusion, The Central Hospital of Qingdao Jiaozhou, 99 Yunxi River South Road, Qingdao, 266300, Shandong, China
| | - Songxia Yan
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Zhen Zhao
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Lifeng Qin
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Jiao Liu
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, Shandong, China.
| |
Collapse
|
83
|
Ren J, Yao X, Yang M, Cheng S, Wu D, Xu K, Li R, Zhang H, Zhang D. Kinesin Family Member-18A (KIF18A) Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma. Dig Dis Sci 2024; 69:1274-1286. [PMID: 38446308 PMCID: PMC11026273 DOI: 10.1007/s10620-024-08321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND & AIMS Kinesin family member 18A (KIF18A) is notable for its aberrant expression across various cancer types and its pivotal role is driving cancer progression. In this study, we aim to investigate the intricate molecular mechanisms underlying the impact of KIF18A on the progression of HCC. METHODS Western blotting assays, a quantitative real-time PCR and immunohistochemical analyses were performed to quantitatively assess KIF18A expression in HCC tissues. We then performed genetic manipulations within HCC cells by silencing endogenous KIF18A using short hairpin RNA (shRNA) and introducing exogenous plasmids to overexpress KIF18A. We monitored cell progression, analyzed cell cycle and cell apoptosis and assessed cell migration and invasion both in vitro and in vivo. Moreover, we conducted RNA-sequencing to explore KIF18A-related signaling pathways utilizing Reactome and KEGG enrichment methods and validated these critical mediators in these pathways. RESULTS Analysis of the TCGA-LIHC database revealed pronounced overexpression of KIF18A in HCC tissues, the finding was subsequently confirmed through the analysis of clinical samples obtained from HCC patients. Notably, silencing KIF18A in cells led to an obvious inhibition of cell proliferation, migration and invasion in vitro. Furthermore, in subcutaneous and orthotopic xenograft models, suppression of KIF18A sgnificantly redudce tumor weight and the number of lung metastatic nodules. Mechanistically, KIF18A appears to facilitate cell proliferation by upregulating MAD2 and CDK1/CyclinB1 expression levels, with the activation of SMAD2/3 signaling contributing to KIF18A-driven metastasis. CONCLUSION Our study elucidates the molecular mechanism by which KIF18A mediates proliferation and metastasis in HCC cells, offering new insights into potential therapeutic targets.
Collapse
Affiliation(s)
- Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyan Yao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Minli Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Daiqing Wu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Kexin Xu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ranran Li
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Han Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Dapeng Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- , Room 706, Chongyi Building, 1 Yixue Yuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
84
|
Roweth HG. Platelet Contributions to the (Pre)metastatic Tumor Microenvironment. Semin Thromb Hemost 2024; 50:455-461. [PMID: 37832586 PMCID: PMC11177183 DOI: 10.1055/s-0043-1776005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
85
|
Aleksandrowicz K, Hempel D, Polityńska B, Wojtukiewicz AM, Honn KV, Tang DG, Wojtukiewicz MZ. The Complex Role of Thrombin in Cancer and Metastasis: Focus on Interactions with the Immune System. Semin Thromb Hemost 2024; 50:462-473. [PMID: 37984359 DOI: 10.1055/s-0043-1776875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Thrombin, a pleiotropic enzyme involved in coagulation, plays a crucial role in both procoagulant and anticoagulant pathways. Thrombin converts fibrinogen into fibrin, initiates platelet activation, and promotes clot formation. Thrombin also activates anticoagulant pathways, indirectly inhibiting factors involved in coagulation. Tissue factor triggers thrombin generation, and the overexpression of thrombin in various cancers suggests that it is involved in tumor growth, angiogenesis, and metastasis. Increased thrombin generation has been observed in cancer patients, especially those with metastases. Thrombin exerts its effects through protease-activated receptors (PARs), particularly PAR-1 and PAR-2, which are involved in cancer progression, angiogenesis, and immunological responses. Thrombin-mediated signaling promotes angiogenesis by activating endothelial cells and platelets, thereby releasing proangiogenic factors. These functions of thrombin are well recognized and have been widely described. However, in recent years, intriguing new findings concerning the association between thrombin activity and cancer development have come to light, which justifies a review of this research. In particular, there is evidence that thrombin-mediated events interact with the immune system, and may regulate its response to tumor growth. It is also worth reevaluating the impact of thrombin on thrombocytes in conjunction with its multifaceted influence on tumor progression. Understanding the role of thrombin/PAR-mediated signaling in cancer and immunological responses is crucial, particularly in the context of developing immunotherapies. In this systematic review, we focus on the impact of the thrombin-related immune system response on cancer progression.
Collapse
Affiliation(s)
- Karolina Aleksandrowicz
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| | - Dominika Hempel
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
| | - Anna M Wojtukiewicz
- Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, Michigan
- Department of Chemistry, Wayne State University, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Marek Z Wojtukiewicz
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| |
Collapse
|
86
|
Gao JH, He AD, Liu LM, Zhou YJ, Guo YW, Lu M, Zeng XB, Gong X, Lu YJ, Liang HF, Zhang BX, Ma R, Zhang RY, Ming ZY. Direct interaction of platelet with tumor cell aggravates hepatocellular carcinoma metastasis by activating TLR4/ADAM10/CX3CL1 axis. Cancer Lett 2024; 585:216674. [PMID: 38280480 DOI: 10.1016/j.canlet.2024.216674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Metastasis is the main culprit of cancer-related death and account for the poor prognosis of hepatocellular carcinoma. Although platelets have been shown to accelerate tumor cell metastasis, the exact mechanism remained to be fully understood. Here, we found that high blood platelet counts and increased tumor tissue ADAM10 expression indicated the poor prognosis of HCC patients. Meanwhile, blood platelet count has positive correlation with tumor tissue ADAM10 expression. In vitro, we revealed that platelet increased ADAM10 expression in tumor cell through TLR4/NF-κB signaling pathway. ADAM10 catalyzed the shedding of CX3CL1 which bound to CX3CR1 receptor, followed by inducing epithelial to mesenchymal transition and activating RhoA signaling in cancer cells. Moreover, knockdown HCC cell TLR4 (Tlr4) or inhibition of ADAM10 prevented platelet-increased tumor cell migration, invasion and endothelial permeability. In vivo, we further verified in mice lung metastatic model that platelet accelerated tumor metastasis via cancer cell TLR4/ADAM10/CX3CL1 axis. Overall, our study provides new insights into the underlying mechanism of platelet-induced HCC metastasis. Therefore, targeting the TLR4/ADAM10/CX3CL1 axis in cancer cells hold promise for the inhibition of platelet-promoted lung metastasis of HCC.
Collapse
Affiliation(s)
- Jia-Hui Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ao-Di He
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, China
| | - Lu-Man Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ya-Jun Zhou
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Ya-Wei Guo
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Meng Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiang-Bin Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xue Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yong-Jie Lu
- Centre for Biomarkers and Therapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ru-Yi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
| | - Zhang-Yin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China; Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
87
|
Chen X, Zhang Y, Liu Z, Song J, Li J. The inflammation score predicts the prognosis of gastric cancer patients undergoing Da Vinci robot surgery. J Robot Surg 2024; 18:131. [PMID: 38498240 DOI: 10.1007/s11701-024-01840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/21/2024] [Indexed: 03/20/2024]
Abstract
Neutrophil-to-lymphocyte ratio (NLR), calculated from peripheral blood immune-inflammatory cell counts, is considered a predictor of survival in various cancers. Nevertheless, there is a lack of research into the predictive value of NLR specifically in gastric cancer patients following surgery using the Da Vinci robot. Investigate the objectives of this research, confirm the positive predictive value of NLR in the prognosis of gastric cancer patients undergoing Da Vinci robotic-assisted surgery by comparing its prognostic ability with other inflammation markers and tumor biomarkers. In this retrospective analysis, information from 128 individuals diagnosed with gastric cancer and treated with da Vinci robot-assisted surgery was examined. The study examined various markers in the peripheral blood, including neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), lymphocyte/monocyte ratio (LMR), systemic immune-inflammatory index (SII) prognostic nutrition index (PNI), cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 72-4 (CA72-4), carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP).To ascertain the prognostic ability and optimal cutoff values of each parameter, operating characteristic curves and the area under the curve were utilized in the analysis. For evaluation of independent prognostic factors, we utilized Kaplan-Meier curves and multifactorial Cox analysis. The variables from the multifactorial Cox analysis were used to construct a nomogram. NLR, LMR, CEA, AFP, primary location, largest tumor size and TNM stage were all found to be significant predictive elements for overall survival (OS). Multivariate Cox identified NLR (P = 0.005), LMR (P = 0.03) and AFP (P = 0.007) as the only separate predictive variables among hematological indicators. The nomogram built using NLR demonstrates excellent predictive performance at 1 year (AUC = 0.778), 3 years (AUC = 0.773), and 5 years (AUC = 0.781). Cross-validation demonstrates that this model has favorable predictive performance and discriminative ability. NLR is an uncomplicated yet potent marker for forecasting the survival result of individuals with gastric cancer following da Vinci robotic surgery, and it possesses considerable predictive significance. The nomogram based on NLR provides patients with a visual and accurate prognosis prediction.
Collapse
Affiliation(s)
- Xihao Chen
- Xijing Hospital, Fourth Military Medical University, Department of Gastrointestinal Surgery, Xi'an, 710032, China
- Xi'an Medical University, Xi'an, 710068, China
| | - Yichao Zhang
- Xijing Hospital, Fourth Military Medical University, Department of Gastrointestinal Surgery, Xi'an, 710032, China
| | - Zhiyu Liu
- Xijing Hospital, Fourth Military Medical University, Department of Gastrointestinal Surgery, Xi'an, 710032, China
- Xi'an Medical University, Xi'an, 710068, China
| | - Jiawei Song
- Xijing Hospital, Fourth Military Medical University, Department of Gastrointestinal Surgery, Xi'an, 710032, China
- Xi'an Medical University, Xi'an, 710068, China
| | - Jipeng Li
- Xi'an Medical University, Xi'an, 710068, China.
| |
Collapse
|
88
|
Le Chapelain O, Jadoui S, Gros A, Barbaria S, Benmeziane K, Ollivier V, Dupont S, Solo Nomenjanahary M, Mavouna S, Rogozarski J, Mawhin MA, Caligiuri G, Delbosc S, Porteu F, Nieswandt B, Mangin PH, Boulaftali Y, Ho-Tin-Noé B. The localization, origin, and impact of platelets in the tumor microenvironment are tumor type-dependent. J Exp Clin Cancer Res 2024; 43:84. [PMID: 38493157 PMCID: PMC10944607 DOI: 10.1186/s13046-024-03001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized. METHODS We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma. RESULTS We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors. CONCLUSIONS These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
Collapse
Affiliation(s)
- Ophélie Le Chapelain
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Soumaya Jadoui
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Angèle Gros
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Samir Barbaria
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Véronique Ollivier
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Sébastien Dupont
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Mialitiana Solo Nomenjanahary
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Sabrina Mavouna
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Jasmina Rogozarski
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France
| | - Marie-Anne Mawhin
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Sandrine Delbosc
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | | | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Pierre H Mangin
- Université de Strasbourg, Institut National de la Santé et de la Recherche Médicale, Etablissement Français du Sang Grand-Est, Unité Mixte de Recherche-S1255, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, F-67065, France
| | - Yacine Boulaftali
- Université Paris Cité, INSERM UMR 1148, LVTS, Paris, F-75018, France
| | - Benoit Ho-Tin-Noé
- Faculté de Pharmacie de Paris, Université Paris Cité, Inserm UMR-S 1144 -Optimisation Thérapeutique en Neuropsychopharmacologie, 4 avenue de l'Observatoire, Paris, 75006, France.
| |
Collapse
|
89
|
Zhu L, Liu S, Wang D, Yu M, Cai H. Relationship Between Coagulation and Prognosis of Gastric Cancer: A Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2024; 101:100741. [PMID: 39628767 PMCID: PMC11612816 DOI: 10.1016/j.curtheres.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/21/2024] [Indexed: 12/06/2024]
Abstract
Background The hypercoagulable state of cancer patients is associated with their high mortality rate. Coagulation indicators may have an important role in the prognosis of gastric cancer patients and deserve to be explored in various aspects. Objective We conducted a meta-analysis to explore the correlation between coagulation and prognosis of gastric cancer. Methods A comprehensive systematic search was conducted in PubMed, Embase, Web of Science databases, and the Cochrane Library up to February 16, 2024. Literature screening and data extraction were performed by two independent reviewers. The processed data we pooled using either a random-effects model or a fixed-effects model and finally described overall survival with a risk ratio (hazard ratio [HR]) and predicted the likelihood of different clinicopathological events with a dominance ratio (OR). Results A total of 64 studies were screened for inclusion in the data analysis. Performing a meta-analysis of three indicators we derived that the risk of d-dimer (D-D), fibrinogen (FIB), and platelets (PLTs) were: HR = 1.85 (95% confidence interval [CI]: 1.59-2.15, N = 15), HR = 1.77 (95% CI: 1.57-1.99, N = 28), HR = 1.16 (95% CI: 1.12-1.21, N = 29). In addition to this, all three were associated with advanced clinicopathological stage (D-D: OR = 2.25, FIB: OR = 2.07, PLT: OR = 1.84), T stage (D-D: OR = 2.30, FIB: OR = 2.38, PLT: OR = 2.22) and lymph node metastasis (D-D: OR = 1.79, FIB: OR = 1.70, PLT: OR = 1.51). Conclusion Overall, the findings suggest that the three indicators, D-D, FIB, and PLT count, have significant predictive value for the prognosis of gastric cancer. They were associated with an advanced clinicopathological stage and a high risk of lymph node metastasis.
Collapse
Affiliation(s)
- Lihui Zhu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Shuo Liu
- First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Da Wang
- Medical College of Jiangsu University, Zhenjiang, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Miao Yu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hui Cai
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, China
- First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
- Medical College of Jiangsu University, Zhenjiang, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor Gansu Provincial Hospital, Lanzhou, Gansu, China
- Gansu key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
90
|
Kumar A, Lunawat AK, Kumar A, Sharma T, Islam MM, Kahlon MS, Mukherjee D, Narang RK, Raikwar S. Recent Trends in Nanocarrier-Based Drug Delivery System for Prostate Cancer. AAPS PharmSciTech 2024; 25:55. [PMID: 38448649 DOI: 10.1208/s12249-024-02765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024] Open
Abstract
Prostate cancer remains a significant global health concern, requiring innovative approaches for improved therapeutic outcomes. In recent years, nanoparticle-based drug delivery systems have emerged as promising strategies to address the limitations of conventional cancer chemotherapy. The key trends include utilizing nanoparticles for enhancing drug delivery to prostate cancer cells. Nanoparticles have some advantages such as improved drug solubility, prolonged circulation time, and targeted delivery of drugs. Encapsulation of chemotherapeutic agents within nanoparticles allows for controlled release kinetics, reducing systemic toxicity while maintaining therapeutic efficacy. Additionally, site-specific accumulation within the prostate tumor microenvironment is made possible by the functionalization of nanocarrier with targeted ligands, improving therapeutic effectiveness. This article highlights the basics of prostate cancer, statistics of prostate cancer, mechanism of multidrug resistance, targeting approach, and different types of nanocarrier used for the treatment of prostate cancer. It also includes the applications of nanocarriers for the treatment of prostate cancer and clinical trial studies to validate the safety and efficacy of the innovative drug delivery systems. The article focused on developing nanocarrier-based drug delivery systems, with the goal of translating these advancements into clinical applications in the future.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Akshay Kumar Lunawat
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Tarun Sharma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Md Moidul Islam
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Milan Singh Kahlon
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Debanjan Mukherjee
- Department of Quality Assurance, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sarjana Raikwar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
91
|
Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T, Zhang J. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther 2024; 9:53. [PMID: 38433280 PMCID: PMC10910037 DOI: 10.1038/s41392-024-01757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-β, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.
Collapse
Affiliation(s)
- Qing Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Jin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyu Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Xiaomin Ye
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xin Shen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingxi Lin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Zeng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, No. 270, Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
92
|
Xie Q, Liu S, Zhang S, Liao L, Xiao Z, Wang S, Zhang P. Research progress on the multi-omics and survival status of circulating tumor cells. Clin Exp Med 2024; 24:49. [PMID: 38427120 PMCID: PMC10907490 DOI: 10.1007/s10238-024-01309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
In the dynamic process of metastasis, circulating tumor cells (CTCs) emanate from the primary solid tumor and subsequently acquire the capacity to disengage from the basement membrane, facilitating their infiltration into the vascular system via the interstitial tissue. Given the pivotal role of CTCs in the intricate hematogenous metastasis, they have emerged as an essential resource for a deeper comprehension of cancer metastasis while also serving as a cornerstone for the development of new indicators for early cancer screening and new therapeutic targets. In the epoch of precision medicine, as CTC enrichment and separation technologies continually advance and reach full fruition, the domain of CTC research has transcended the mere straightforward detection and quantification. The rapid advancement of CTC analysis platforms has presented a compelling opportunity for in-depth exploration of CTCs within the bloodstream. Here, we provide an overview of the current status and research significance of multi-omics studies on CTCs, including genomics, transcriptomics, proteomics, and metabolomics. These studies have contributed to uncovering the unique heterogeneity of CTCs and identifying potential metastatic targets as well as specific recognition sites. We also review the impact of various states of CTCs in the bloodstream on their metastatic potential, such as clustered CTCs, interactions with other blood components, and the phenotypic states of CTCs after undergoing epithelial-mesenchymal transition (EMT). Within this context, we also discuss the therapeutic implications and potential of CTCs.
Collapse
Affiliation(s)
- Qingming Xie
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shilei Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Liqiu Liao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Xiao
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shouman Wang
- Department of Breast Surgery, Hunan Clinical Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
93
|
Grasset EM, Barillé-Nion S, Juin PP. Stress in the metastatic journey - the role of cell communication and clustering in breast cancer progression and treatment resistance. Dis Model Mech 2024; 17:dmm050542. [PMID: 38506114 PMCID: PMC10979546 DOI: 10.1242/dmm.050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Breast cancer stands as the most prevalent malignancy afflicting women. Despite significant advancements in its diagnosis and treatment, breast cancer metastasis continues to be a leading cause of mortality among women. To metastasize, cancer cells face numerous challenges: breaking away from the primary tumor, surviving in the circulation, establishing in a distant location, evading immune detection and, finally, thriving to initiate a new tumor. Each of these sequential steps requires cancer cells to adapt to a myriad of stressors and develop survival mechanisms. In addition, most patients with breast cancer undergo surgical removal of their primary tumor and have various therapeutic interventions designed to eradicate cancer cells. Despite this plethora of attacks and stresses, certain cancer cells not only manage to persist but also proliferate robustly, giving rise to substantial tumors that frequently culminate in the patient's demise. To enhance patient outcomes, there is an imperative need for a deeper understanding of the molecular and cellular mechanisms that empower cancer cells to not only survive but also expand. Herein, we delve into the intrinsic stresses that cancer cells encounter throughout the metastatic journey and the additional stresses induced by therapeutic interventions. We focus on elucidating the remarkable strategies adopted by cancer cells, such as cell-cell clustering and intricate cell-cell communication mechanisms, to ensure their survival.
Collapse
Affiliation(s)
- Eloïse M. Grasset
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
| | - Sophie Barillé-Nion
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
| | - Philippe P. Juin
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint Herblain, France
| |
Collapse
|
94
|
Wang Y, Dong A, Jin M, Li S, Duan Y. TEP RNA: a new frontier for early diagnosis of NSCLC. J Cancer Res Clin Oncol 2024; 150:97. [PMID: 38372784 PMCID: PMC10876732 DOI: 10.1007/s00432-024-05620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer (LC), which is the leading cause of tumor mortality. In recent years, compared with tissue biopsy, which is the diagnostic gold standard for tumor diagnosis, Liquid biopsy (LB) is considered to be a more minimally invasive, sensitive, and safer alternative or auxiliary diagnostic method. However, the current value of LB in early diagnosis of LC is not ideal, so it is particularly important to study the changes in blood composition during the process of tumorigenesis and find more sensitive biomarkers. PURPOSE Platelets are a type of abundant blood cells that carry a large amount of RNA. In the LC regulatory network, activated platelets play an important role in the process of tumorigenesis, development, and metastasis. In order to identify predictive liquid biopsy biomarkers for the diagnosis of NSCLC, we summarized the development and function of platelets, the interaction between platelets and tumors, the value of TEP RNA in diagnosis, prognosis, and treatment of NSCLC, and the method for detecting TEP RNA of NSCLC in this article. CONCLUSION The application of platelets in the diagnosis and treatment of NSCLC remains at a nascent stage. In addition to the drawbacks of low platelet count and complex experimental processes, the diagnostic accuracy of TEP RNA-seq for cancer in different populations still needs to be improved and validated. At present, a large number of studies have confirmed significant differences in the expression of TEP RNA in platelets between NSCLC patients and healthy individuals. Continuous exploration of the diagnostic value of TEP RNA in NSCLC is of utmost importance. The integration of NSCLC platelet-related markers with other NSCLC markers can improve current tumor diagnosis and prognostic evaluation systems, providing broad prospects in tumor screening, disease monitoring, and prognosis assessment.
Collapse
Affiliation(s)
- Yuan Wang
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
- Department of Clinical Laboratory Science, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Aiping Dong
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
| | - Minhan Jin
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China
- Department of Clinical Laboratory Science, Weifang Medical University, Weifang, 261000, Shandong, China
| | - Shirong Li
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China.
| | - Yang Duan
- Clinical Laboratory, The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261000, Shandong, China.
| |
Collapse
|
95
|
Ozcan L, Polat EC, Baran C, Boylu A, Erkoc M, Otunctemur A. Systemic Inflammatory Index: A Promising Non-Invasive Marker for the Prediction of Response to Neoadjuvant Chemotherapy prior to Cystectomy. Urol Int 2024; 108:226-233. [PMID: 38368856 DOI: 10.1159/000537894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The main challenge to the optimal use of neoadjuvant chemotherapy (NAC) is the difficulty in selecting patients who may or may not benefit from NAC. Our aim in this study was to investigate whether the Systemic Inflammatory Index (SII) predicts response to chemotherapy in patients who receive NAC prior to cystectomy. METHODS We retrospectively analysed the data of patients who underwent NAC followed by cystectomy at our institution between January 2010 and September 2015 and whose 5-year follow-up was completed. All patients who underwent diagnostic biopsy with complete transurethral resection of bladder tumour at our hospital and whose pathology result was muscle-invasive transitional cell carcinoma were included in the study. At least 3 courses of gemcitabine/cisplatin NAC were given to all patients. A pathological response was defined as a reduction in cystectomy to a lower pathological stage after NAC. RESULTS The SII was 320.8 ± 51 in the responders and 388.28 ± 50 in the non-responders. SII optimal cut-off of 350 was determined. The sensitivity and specificity of SII in predicting response were found to be 80% and 83%, respectively. Low SII (<350) was found to be a significant predictor of response compared with the other factors on multivariate analysis. The mean overall survival time was 55.4 months in patients with a low SII value and 40.3 months in the high SII group. CONCLUSION SII, together with known clinicopathological factors and newer genetic and molecular markers, can be used to select patients for NAC.
Collapse
Affiliation(s)
- Levent Ozcan
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Emre Can Polat
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Caner Baran
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Ahmet Boylu
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Mustafa Erkoc
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| | - Alper Otunctemur
- University of Health Sciences, Prof. Dr. Cemil Tascioglu City Hospital, Department of Urology, Istanbul, Turkey
| |
Collapse
|
96
|
Bandini S, Ulivi P, Rossi T. Extracellular Vesicles, Circulating Tumor Cells, and Immune Checkpoint Inhibitors: Hints and Promises. Cells 2024; 13:337. [PMID: 38391950 PMCID: PMC10887032 DOI: 10.3390/cells13040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of cancer, in particular lung cancer, while the introduction of predictive biomarkers from liquid biopsies has emerged as a promising tool to achieve an effective and personalized therapy response. Important progress has also been made in the molecular characterization of extracellular vesicles (EVs) and circulating tumor cells (CTCs), highlighting their tremendous potential in modulating the tumor microenvironment, acting on immunomodulatory pathways, and setting up the pre-metastatic niche. Surface antigens on EVs and CTCs have proved to be particularly useful in the case of the characterization of potential immune escape mechanisms through the expression of immunosuppressive ligands or the transport of cargos that may mitigate the antitumor immune function. On the other hand, novel approaches, to increase the expression of immunostimulatory molecules or cargo contents that can enhance the immune response, offer premium options in combinatorial clinical strategies for precision immunotherapy. In this review, we discuss recent advances in the identification of immune checkpoints using EVs and CTCs, their potential applications as predictive biomarkers for ICI therapy, and their prospective use as innovative clinical tools, considering that CTCs have already been approved by the Food and Drug Administration (FDA) for clinical use, but providing good reasons to intensify the research on both.
Collapse
Affiliation(s)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (T.R.)
| | | |
Collapse
|
97
|
Nachmany I, Gudmundsdottir H, Meiri H, Eidelman P, Ziv O, Bear L, Nevo N, Jacoby H, Eshkenazy R, Pery R, Pencovich N. Perioperative Platelet Count Ratio Predicts Long-Term Survival after Left Pancreatectomy and Splenectomy for Pancreatic Adenocarcinoma. J Clin Med 2024; 13:1050. [PMID: 38398363 PMCID: PMC10888544 DOI: 10.3390/jcm13041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The value of platelet characteristics as a prognostic factor in patients with pancreatic adenocarcinoma (PDAC) remains unclear. METHODS We assessed the prognostic ability of post-splenectomy thrombocytosis in patients who underwent left pancreatectomy for PDAC. Perioperative platelet count ratio (PPR), defined as the ratio between the maximum platelet count during the first five days following surgery and the preoperative level, was assessed in relation to long-term outcomes in patients who underwent left pancreatectomy for PDAC between November 2008 and October 2022. RESULTS A comparative cohort of 245 patients who underwent pancreaticoduodenectomy for PDAC was also evaluated. The median PPR among 106 patients who underwent left pancreatectomy was 1.4 (IQR1.1, 1.8). Forty-six had a PPR ≥ 1.5 (median 1.9, IQR1.7, 2.4) and 60 had a PPR < 1.5 (median 1.2, IQR1.0, 1.3). Patients with a PPR ≥ 1.5 had increased median overall survival (OS) compared to patients with a PPR < 1.5 (40 months vs. 20 months, p < 0.001). In multivariate analysis, PPR < 1.5 remained a strong predictor of worse OS (HR 2.24, p = 0.008). Among patients who underwent pancreaticoduodenectomy, the median PPR was 1.1 (IQR1.0, 1.3), which was significantly lower compared to patients who underwent left pancreatectomy (p > 0.001) and did not predict OS. CONCLUSION PPR is a biomarker for OS after left pancreatectomy for PDAC. Further studies are warranted to consolidate these findings.
Collapse
Affiliation(s)
- Ido Nachmany
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | | | - Hila Meiri
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Pavel Eidelman
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Ofir Ziv
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Lior Bear
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Nadav Nevo
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Harel Jacoby
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Rony Eshkenazy
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Ron Pery
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
| | - Niv Pencovich
- Department of General Surgery and Transplantation, Sheba Medical Center, Tel Hashomer, Tel-Aviv University, Tel-Aviv 52621, Israel; (I.N.); (H.M.); (P.E.); (O.Z.); (L.B.); (N.N.); (H.J.); (R.E.); (R.P.)
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
98
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
99
|
Trivanović D, Mojsilović S, Bogosavljević N, Jurišić V, Jauković A. Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development. Transl Oncol 2024; 40:101871. [PMID: 38134841 PMCID: PMC10776659 DOI: 10.1016/j.tranon.2023.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia.
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| | | | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| |
Collapse
|
100
|
Abstract
Epithelial-to-mesenchymal transition (EMT), a biological phenomenon of cellular plasticity initially reported in embryonic development, has been increasingly recognized for its importance in cancer progression and metastasis. Despite tremendous progress being made in the past 2 decades in our understanding of the molecular mechanism and functional importance of EMT in cancer, there are several mysteries around EMT that remain unresolved. In this Unsolved Mystery, we focus on the variety of EMT types in metastasis, cooperative and collective EMT behaviors, spatiotemporal characterization of EMT, and strategies of therapeutically targeting EMT. We also highlight new technical advances that will facilitate the efforts to elucidate the unsolved mysteries of EMT in metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey, United States of America
| |
Collapse
|