51
|
Yang P, Wang Y. Super-2D metal organic frameworks with vertical layer skeletons and good adsorption performances. NEW J CHEM 2022. [DOI: 10.1039/d2nj01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Super-2D MOFs with vertical layered skeletons promoted the accessibility to external guests and exhibited good adsorption performances for various adsorbates.
Collapse
Affiliation(s)
- Pan Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
52
|
Alexandrov EV, Shevchenko AP, Nekrasova NA, Blatov VA. Topological methods for analysis and design of coordination polymers. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
53
|
Gupta M, Zhu Z, Kottilil D, Rath BB, Tian W, Tan ZK, Liu X, Xu QH, Ji W, Vittal JJ. Impact of the Structural Modification of Diamondoid Cd(II) MOFs on the Nonlinear Optical Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60163-60172. [PMID: 34874696 DOI: 10.1021/acsami.1c17327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A change in the degree of interpenetration (DOI) in metal-organic frameworks (MOFs) prompted by heat, pressure, or exchange of solvents is a fascinating phenomenon that can potentially impact the functional properties of MOFs. Structural transformation involving two noncentrosymmetric MOFs with different DOIs provides a rare opportunity to manipulate their optical properties. Herein, we report an unusual single-crystal-to-single-crystal (SCSC) transformation of a noncentrosymmetric 7-fold interpenetrated diamondoid (dia) Cd(II) MOF into another noncentrosymmetric but 8-fold interpenetrated dia MOF upon the removal of guest solvents. A hydrogen-bond network formed between the lattice solvents and linker trans-2-(4-pyridyl)-4-vinylbenzoate (pvb) in a 7-fold interpenetrated noncentrosymmetric MOF results in a significant increase in the two-photon absorption cross-section (11 times) as compared to that in the desolvated 8-fold interpenetrated MOF. Also, an increase in the DOI in the noncentrosymmetric crystals strengthened the π···π interaction between the individual diamondoid networks and enhanced the second-order nonlinear optical (NLO) coefficient (deff) by 4.5 times. These results provide a way to manipulate the optical properties of MOFs using a combined strategy of the formation of hydrogen bonds and interpenetration for access to tunable single-crystal NLO devices in an SCSC manner. By changing the experimental conditions, another dia Cd(II) MOF with 4-fold interpenetration can be isolated. In this centrosymmetric MOF, the olefin groups in the backbone of the ligand (pvb) undergo a [2 + 2] cycloaddition reaction quantitatively under UV light but in a non-SCSC fashion.
Collapse
Affiliation(s)
- Mayank Gupta
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Ziyu Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Dileep Kottilil
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Bibhuti Bhusan Rath
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wang Tian
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhi-Kuang Tan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wei Ji
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jagadese J Vittal
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
54
|
Nicholas T, Alexandrov EV, Blatov VA, Shevchenko AP, Proserpio DM, Goodwin AL, Deringer VL. Visualization and Quantification of Geometric Diversity in Metal-Organic Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2021; 33:8289-8300. [PMID: 35966284 PMCID: PMC9367000 DOI: 10.1021/acs.chemmater.1c02439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With ever-growing numbers of metal-organic framework (MOF) materials being reported, new computational approaches are required for a quantitative understanding of structure-property correlations in MOFs. Here, we show how structural coarse-graining and embedding ("unsupervised learning") schemes can together give new insights into the geometric diversity of MOF structures. Based on a curated data set of 1262 reported experimental structures, we automatically generate coarse-grained and rescaled representations which we couple to a kernel-based similarity metric and to widely used embedding schemes. This approach allows us to visualize the breadth of geometric diversity within individual topologies and to quantify the distributions of local and global similarities across the structural space of MOFs. The methodology is implemented in an openly available Python package and is expected to be useful in future high-throughput studies.
Collapse
Affiliation(s)
- Thomas
C. Nicholas
- Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Eugeny V. Alexandrov
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Samara
University, Ac. Pavlov Street 1, Samara 443011, Russian Federation
- Samara
Branch of P.N. Lebedev Physical Institute of the Russian Academy of
Science, Novo-Sadovaya
Street 221, Samara 443011, Russian Federation
| | - Vladislav A. Blatov
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Samara
University, Ac. Pavlov Street 1, Samara 443011, Russian Federation
| | - Alexander P. Shevchenko
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Samara
Branch of P.N. Lebedev Physical Institute of the Russian Academy of
Science, Novo-Sadovaya
Street 221, Samara 443011, Russian Federation
| | - Davide M. Proserpio
- Samara
Center for Theoretical Material Science (SCTMS) Samara State Technical
University, Molodogvardeyskaya Street 244, Samara 443100, Russian Federation
- Dipartimento
di Chimica, Università Degli Studi
di Milano, Milano 20133, Italy
| | - Andrew L. Goodwin
- Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Volker L. Deringer
- Department
of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| |
Collapse
|
55
|
Wu LN, Zhu L, Wang ZX. Fabrication of two 3D magnetic coordination polymers empolying 4,4′-Phosphinico-dibenzoate as ligand. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
Bruno R, Mastropietro TF, De Munno G, Armentano D. A Nanoporous Supramolecular Metal-Organic Framework Based on a Nucleotide: Interplay of the π···π Interactions Directing Assembly and Geometric Matching of Aromatic Tails. Molecules 2021; 26:molecules26154594. [PMID: 34361760 PMCID: PMC8347718 DOI: 10.3390/molecules26154594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/18/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Self-assembly is the most powerful force for creating ordered supramolecular architectures from simple components under mild conditions. π···π stacking interactions have been widely explored in modern supramolecular chemistry as an attractive reversible noncovalent tool for the nondestructive fabrication of materials for different applications. Here, we report on the self-assembly of cytidine 5’-monophosphate (CMP) nucleotide and copper metal ions for the preparation of a rare nanoporous supramolecular metal-organic framework in water. π···π stacking interactions involving the aromatic groups of the ancillary 2,2’-bipyridine (bipy) ligands drive the self-assemblies of hexameric pseudo-amphiphilic [Cu6(bipy)6(CMP)2(µ-O)Br4]2+ units. Owing to the supramolecular geometric matching between the aromatic tails, a nanoporous crystalline phase with hydrophobic and hydrophilic chiral pores of 1.2 and 0.8 nanometers, respectively, was successfully synthesized. The encoded chiral information, contained on the enantiopure building blocks, is transferred to the final supramolecular structure, assembled in the very unusual topology 8T6. These kinds of materials, owing to chiral channels with chiral active sites from ribose moieties, where the enantioselective recognition can occur, are, in principle, good candidates to carry out efficient separation of enantiomers, better than traditional inorganic and organic porous materials.
Collapse
|
57
|
Ma LN, Zhang B, Wang ZH, Hou L, Zhu Z, Wang YY. Efficient Gas and VOC Separation and Pesticide Detection in a Highly Stable Interpenetrated Indium-Organic Framework. Inorg Chem 2021; 60:10698-10706. [PMID: 34232028 DOI: 10.1021/acs.inorgchem.1c01402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The new indium-based organic framework {(Me2NH2)[In(BDPO)]·DMF·2H2O}n (1) was successfully constructed by using the oxalamide group modified ligand N,N'-bis(isophthalic acid)oxalamide (H4BDPO). This framework presents a 2-fold interpenetrating structural characteristic, and the unique polar pore environment leads to a high capture ability for CO2, C2Hn and CH3OH and good separation ability for CO2 and C2Hn over CH4 as well as for CH3OH over C2H5OH, which was further verified by an ideal adsorbed solution theory (IAST) calculation. Theoretical simulations pointed out the possible adsorption sites of different adsorbed gases in 1. In addition, the excellent chemical stability and strong luminescence of 1 give it an effective selective detection ability for 2,6-dichloro-4-nitroaniline (DCN) in water with a low detection limit of 3.85 ppm, and the detection mechanism is discussed in detail.
Collapse
Affiliation(s)
- Li-Na Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University. Xi'an, 710069, People's Republic of China
| | - Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University. Xi'an, 710069, People's Republic of China
| | - Zi-Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University. Xi'an, 710069, People's Republic of China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University. Xi'an, 710069, People's Republic of China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane 4072, Australia
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University. Xi'an, 710069, People's Republic of China
| |
Collapse
|
58
|
Yang LY, Cao JH, Cai BR, Liang T, Wu DY. Electrospun MOF/PAN composite separator with superior electrochemical performances for high energy density lithium batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
59
|
Hu JH, Liu YC, Chen JD. Cobalt( ii) coordination polymers constructed from bis( N-pyrid-3-ylmethyl)adipoamide and polycarboxylic acids: reversible structural transformation upon proton delivery and removal. CrystEngComm 2021. [DOI: 10.1039/d1ce01216a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The reversible structural transformation upon proton delivery and removal in Co(ii) coordination polymers can be ascribed to the various bonding modes and the flexibility of the spacer ligands.
Collapse
Affiliation(s)
- Ji-Hong Hu
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
| | - Yuan-Chin Liu
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
| | - Jhy-Der Chen
- Department of Chemistry, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C
| |
Collapse
|