51
|
Hung WS, Huang CL, Fan JT, Huang DY, Yeh CF, Cheng JC, Tseng CP. The endocytic adaptor protein Disabled-2 is required for cellular uptake of fibrinogen. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1778-88. [PMID: 22705885 DOI: 10.1016/j.bbamcr.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 05/22/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Endocytosis is pivotal for uptake of fibrinogen from plasma into megakaryocytes and platelet α-granules. Due to the complex adaptor and cargo contents in endocytic vehicles, the underlying mechanism of fibrinogen uptake is not yet completely elucidated. In this study, we investigated whether the endocytic adaptor protein Disabled-2 (DAB2) mediates fibrinogen uptake in an adaptor-specific manner. By employing primary megakaryocytes and megakaryocytic differentiating human leukemic K562 cells as the study models, we found that fibrinogen uptake is associated with the expression of integrin αIIbβ3 and DAB2 and is mediated through clathrin-dependent manner. Accordingly, constitutive and inducible knockdown of DAB2 by small interfering RNA reduced fibrinogen uptake for 53.2 ± 9.8% and 59.0 ± 10.7%, respectively. Culturing the cells in hypertonic solution or in the presence of clathrin inhibitor chlorpromazine abrogated clathrin-dependent endocytosis and diminished the uptake of fibrinogen. Consistent with these findings, 72.2 ± 0.2% of cellular DAB2 was colocalized with clathrin, whereas 56.4±4.1% and 54.6 ± 2.0% of the internalized fibrinogen were colocalized with clathrin and DAB2, respectively. To delineate whether DAB2 mediates fibrinogen uptake in an adaptor-specific manner, K562 stable cell lines with knockdown of the adaptor protein-2 (AP-2) or double knockdown of AP-2/DAB2 were established. The AP-2 knockdown cells elicited normal fibrinogen uptake activity but the uptake of collagen was diminished. In addition, collagen uptake was further reduced in DAB2/AP-2 knockdown cells. These findings thereby define an adaptor-specific mechanism in the control of fibrinogen uptake and implicate that DAB2 is the key adaptor in the clathrin-associated endocytic complexes to mediate fibrinogen internalization.
Collapse
Affiliation(s)
- Wei-Shan Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
52
|
Vázquez-Calvo A, Saiz JC, McCullough KC, Sobrino F, Martín-Acebes MA. Acid-dependent viral entry. Virus Res 2012; 167:125-37. [PMID: 22683298 DOI: 10.1016/j.virusres.2012.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/28/2012] [Accepted: 05/29/2012] [Indexed: 12/21/2022]
Abstract
Virus infection of host cells requires that entry into the cell results in efficient genome release leading to translation and replication. These initial steps revolving around the entry and genomic release processes are crucial for viral progeny generation. Despite the variety of receptors used by viruses to initiate entry, evidence from both enveloped and non-enveloped viral infections is highlighting the important role played by intracellular acidic compartments in the entry of many viruses. These compartments provide connecting nodes within the endocytic network, presenting multiple viral internalization pathways. Endosomal compartments employing an internal acidic pH can trigger molecular mechanisms leading to disassembly of viral particles, thus providing appropriate genome delivery. Accordingly, viruses have evolved to select optimal intracellular conditions for promoting efficient genome release, leading to propagation of the infectious agent. This review will address the implications of cellular compartment involvement in virus infectious processes, and the roles played by the viruses' own machinery, including pH sensing mechanisms and the methodologies applied for studying acid-dependent viral entry into host cells.
Collapse
Affiliation(s)
- Angela Vázquez-Calvo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | |
Collapse
|
53
|
Multiparametric image analysis reveals role of Caveolin1 in endosomal progression rather than internalization of EGFR. FEBS Lett 2012; 586:1179-89. [DOI: 10.1016/j.febslet.2012.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/11/2022]
|
54
|
Abstract
Endocytic trafficking is a highly organized process regulated by a network of proteins, including the Rab family of small GTP-binding proteins and the C-terminal EHDs (Eps15 homology-domain-containing proteins). Central roles for Rab proteins have been described in vesicle budding, delivery, tethering and fusion, whereas little is known about the functions of EHDs in membrane transport. Common effectors for these two protein families have been identified, and they facilitate regulation of sequential steps in transport. By comparing and contrasting key aspects in their modes of function, we shall promote a better understanding of how Rab proteins and EHDs regulate endocytic trafficking.
Collapse
|
55
|
Abstract
The Gram-positive bacterial pathogen Listeria monocytogenes has become one of the best studied models in infection biology. This review will update our knowledge of Listeria virulence factors and highlight their role during the Listeria infection process.
Collapse
|
56
|
Suzuki R, Toshima JY, Toshima J. Regulation of clathrin coat assembly by Eps15 homology domain-mediated interactions during endocytosis. Mol Biol Cell 2011; 23:687-700. [PMID: 22190739 PMCID: PMC3279396 DOI: 10.1091/mbc.e11-04-0380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ETOC: The EH domain is a highly conserved protein–protein interaction domain involved in endocytosis. The EH domains of yeast endocytic proteins, Pan1p, End3p, and Ede1p, have a redundant function and are required for efficient recruitment of several endocytic proteins to sites of endocytosis in order to facilitate clathrin coat assembly. Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.
Collapse
Affiliation(s)
- Ryohei Suzuki
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | |
Collapse
|
57
|
Cell surface ceramide controls translocation of transferrin receptor to clathrin-coated pits. Cell Signal 2011; 24:677-84. [PMID: 22101012 DOI: 10.1016/j.cellsig.2011.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/22/2022]
Abstract
Transferrin receptor mediates internalization of transferrin with bound ferric ions through the clathrin-dependent pathway. We found that binding of transferrin to the receptor induced rapid generation of cell surface ceramide which correlated with activation of acid, but not neutral, sphingomyelinase. At the onset of transferrin internalization both ceramide level and acid sphingomyelinase activity returned to their basic levels. Down-regulation of acid sphingomyelinase in cells with imipramine or silencing of the enzyme expression with siRNA stimulated transferrin internalization and inhibited its recycling. In these conditions colocalization of transferrin with clathrin was markedly reduced. Simultaneously, K(+) depletion of cells which interfered with the assembly of clathrin-coated pits inhibited the uptake of transferrin much less efficiently than it did in control conditions. The down-regulation of acid sphingomyelinase activity led to the translocation of transferrin receptor to the raft fraction of the plasma membrane upon transferrin binding. The data suggest that lack of cell surface ceramide, generated in physiological conditions by acid sphingomyelinase during transferrin binding, enables internalization of transferrin/transferrin receptor complex by clathrin-independent pathway.
Collapse
|
58
|
de Juan-Sanz J, Zafra F, López-Corcuera B, Aragón C. Endocytosis of the neuronal glycine transporter GLYT2: role of membrane rafts and protein kinase C-dependent ubiquitination. Traffic 2011; 12:1850-67. [PMID: 21910806 DOI: 10.1111/j.1600-0854.2011.01278.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycinergic neurotransmission is terminated by sodium- and chloride-dependent plasma membrane transporters. The neuronal glycine transporter 2 (GLYT2) supplies the terminal with substrate to refill synaptic vesicles containing glycine. This crucial process is defective in human hyperekplexia, a condition that can be caused by mutations in GLYT2. Inhibitory glycinergic neurotransmission is modulated by the GLYT2 exocytosis/endocytosis equilibrium, although the mechanisms underlying the turnover of this transporter remain elusive. We studied GLYT2 internalization pathways and the role of ubiquitination and membrane raft association of the transporter in its endocytosis. Using pharmacological tools, dominant-negative mutants and small-interfering RNAs, we show that the clathrin-mediated pathway is the primary mechanism for constitutive and regulated GLYT2 endocytosis in heterologous cells and neurons. We show that GLYT2 is constitutively internalized from cell surface lipid rafts, remaining associated with rafts in subcellular recycling structures. Protein kinase C (PKC) negatively modulates GLYT2 via rapid and dynamic redistribution of GLYT2 from raft to non-raft membrane subdomains and increasing ubiquitinated GLYT2 endocytosis. This biphasic mechanism is a versatile means to modulate GLYT2 behavior and hence, inhibitory glycinergic neurotransmission. These findings may reveal new therapeutic targets to address glycinergic pathologies associated with alterations in GLYT2 trafficking.
Collapse
Affiliation(s)
- Jaime de Juan-Sanz
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
59
|
Sato K, Watanabe T, Wang S, Kakeno M, Matsuzawa K, Matsui T, Yokoi K, Murase K, Sugiyama I, Ozawa M, Kaibuchi K. Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Mol Biol Cell 2011; 22:3103-19. [PMID: 21775625 PMCID: PMC3164458 DOI: 10.1091/mbc.e11-03-0274] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/31/2011] [Accepted: 06/25/2011] [Indexed: 11/11/2022] Open
Abstract
Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity.
Collapse
Affiliation(s)
- Kazuhide Sato
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Takashi Watanabe
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
- Institute for Advanced Research, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Shujie Wang
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
- Department of Anatomy, School of Medicine, Mie University, Tsu, Mie 514-8507, Japan
| | - Mai Kakeno
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Kenji Matsuzawa
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Toshinori Matsui
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Keiko Yokoi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Kiyoko Murase
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Ikuko Sugiyama
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
| | - Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Aichi 466-8550, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
60
|
Layton AT, Savage NS, Howell AS, Carroll SY, Drubin DG, Lew DJ. Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr Biol 2011; 21:184-94. [PMID: 21277209 DOI: 10.1016/j.cub.2011.01.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/30/2010] [Accepted: 01/05/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND Polarization in yeast has been proposed to involve a positive feedback loop whereby the polarity regulator Cdc42p orients actin cables, which deliver vesicles carrying Cdc42p to the polarization site. Previous mathematical models treating Cdc42p traffic as a membrane-free flux suggested that directed traffic would polarize Cdc42p, but it remained unclear whether Cdc42p would become polarized without the membrane-free simplifying assumption. RESULTS We present mathematical models that explicitly consider stochastic vesicle traffic via exocytosis and endocytosis, providing several new insights. Our findings suggest that endocytic cargo influences the timing of vesicle internalization in yeast. Moreover, our models provide quantitative support for the view that integral membrane cargo proteins would become polarized by directed vesicle traffic given the experimentally determined rates of vesicle traffic and diffusion. However, such traffic cannot effectively polarize the more rapidly diffusing Cdc42p in the model without making additional assumptions that seem implausible and lack experimental support. CONCLUSIONS Our findings suggest that actin-directed vesicle traffic would perturb, rather than reinforce, polarization in yeast.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Mathematics, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
61
|
Li HD, Liu WX, Michalak M. Enhanced clathrin-dependent endocytosis in the absence of calnexin. PLoS One 2011; 6:e21678. [PMID: 21747946 PMCID: PMC3128601 DOI: 10.1371/journal.pone.0021678] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 06/08/2011] [Indexed: 12/24/2022] Open
Abstract
Background Calnexin, together with calreticulin, constitute the calnexin/calreticulin cycle. Calnexin is a type I endoplasmic reticulum integral membrane protein and molecular chaperone responsible for the folding and quality control of newly-synthesized (glyco)proteins. The endoplasmic reticulum luminal domain of calnexin is responsible for lectin-like activity and interaction with nascent polypeptide chains. The role of the C-terminal, cytoplasmic portion of calnexin is not clear. Methodology/Principal Findings Using yeast two hybrid screen and immunoprecipitation techniques, we showed that the Src homology 3-domain growth factor receptor-bound 2-like (Endophilin) interacting protein 1 (SGIP1), a neuronal specific regulator of endocytosis, forms complexes with the C-terminal cytoplasmic domain of calnexin. The calnexin cytoplasmic C-tail interacts with SGIP1 C-terminal domains containing the adaptor complexes medium subunit (Adap-Comp-Sub) region. Calnexin-deficient cells have enhanced clathrin-dependent endocytosis in neuronal cells and mouse neuronal system. This is reversed by expression of full length calnexin or calnexin C-tail. Conclusions/Significance We show that the effects of SGIP1 and calnexin C-tail on clathrin-dependent endocytosis are due to modulation of the internalization of the receptor-ligand complexes. Enhanced clathrin-dependent endocytosis in the absence of calnexin may contribute to the neurological phenotype of calnexin-deficient mice.
Collapse
Affiliation(s)
- Hao-Dong Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen-Xin Liu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
62
|
Levayer R, Pelissier-Monier A, Lecuit T. Spatial regulation of Dia and Myosin-II by RhoGEF2 controls initiation of E-cadherin endocytosis during epithelial morphogenesis. Nat Cell Biol 2011; 13:529-40. [PMID: 21516109 DOI: 10.1038/ncb2224] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/14/2011] [Indexed: 11/09/2022]
Abstract
E-cadherin plays a pivotal role in epithelial morphogenesis. It controls the intercellular adhesion required for tissue cohesion and anchors the actomyosin-driven tension needed to change cell shape. In the early Drosophila embryo, Myosin-II (Myo-II) controls the planar polarized remodelling of cell junctions and tissue extension. The E-cadherin distribution is also planar polarized and complementary to the Myosin-II distribution. Here we show that E-cadherin polarity is controlled by the polarized regulation of clathrin- and dynamin-mediated endocytosis. Blocking E-cadherin endocytosis resulted in cell intercalation defects. We delineate a pathway that controls the initiation of E-cadherin endocytosis through the regulation of AP2 and clathrin coat recruitment by E-cadherin. This requires the concerted action of the formin Diaphanous (Dia) and Myosin-II. Their activity is controlled by the guanine exchange factor RhoGEF2, which is planar polarized and absent in non-intercalating regions. Finally, we provide evidence that Dia and Myo-II control the initiation of E-cadherin endocytosis by regulating the lateral clustering of E-cadherin.
Collapse
Affiliation(s)
- Romain Levayer
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy, case 907. 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
63
|
Abstract
Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.
Collapse
Affiliation(s)
- Alex H Hutagalung
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
64
|
Habtemichael EN, Brewer PD, Romenskaia I, Mastick CC. Kinetic evidence that Glut4 follows different endocytic pathways than the receptors for transferrin and alpha2-macroglobulin. J Biol Chem 2011; 286:10115-25. [PMID: 21252237 DOI: 10.1074/jbc.m111.217935] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin regulates glucose uptake through effects on the trafficking of the glucose transporter Glut4. To investigate the degree of overlap between Glut4 and the general endocytic pathways, the kinetics of trafficking of Glut4 and the receptors for transferrin (Tf) and α(2)-macroglobulin (α-2-M; LRP-1) were compared using quantitative flow cytometric assays. Insulin increased the exocytic rate constant (k(ex)) for both Glut4 and Tf. However, the k(ex) of Glut4 was 5-15 times slower than Tf in both basal and insulin-stimulated cells. The endocytic rate constant (k(en)) of Glut4 was also five times slower than Tf. Insulin did not affect the k(en) of either protein. In basal cells, the k(en) for α-2-M/LRP-1 was similar to Glut4 but 5-fold slower than Tf. Insulin increased k(en) for α-2-M/LRP-1 by 30%. In contrast, the k(ex) for LRP-1 was five times faster than Glut4 in basal cells, and insulin did not increase this rate constant. Thus, although there is overlap in the protein machineries/compartments utilized, the differences in trafficking kinetics indicate that Glut4, the Tf receptor, and LRP-1 are differentially processed both within the cell and at the plasma membrane. It has been reported that insulin decreases the k(en) of Glut4 in adipocytes. However, the effect of exocytosis on the "internalization" assays was not considered. Because it is counterintuitive, the effect of exocytosis on these assays is often overlooked in endocytosis studies. Using mathematical modeling and simulation, we show that the reported decrease in Glut4 k(en) can be entirely accounted for by the well established increase in Glut4 k(ex).
Collapse
Affiliation(s)
- Estifanos N Habtemichael
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
65
|
Zhang YW, Thompson R, Zhang H, Xu H. APP processing in Alzheimer's disease. Mol Brain 2011; 4:3. [PMID: 21214928 PMCID: PMC3022812 DOI: 10.1186/1756-6606-4-3] [Citation(s) in RCA: 572] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/07/2011] [Indexed: 12/12/2022] Open
Abstract
An important pathological feature of Alzheimer's disease (AD) is the presence of extracellular senile plaques in the brain. Senile plaques are composed of aggregations of small peptides called β-amyloid (Aβ). Multiple lines of evidence demonstrate that overproduction/aggregation of Aβ in the brain is a primary cause of AD and inhibition of Aβ generation has become a hot topic in AD research. Aβ is generated from β-amyloid precursor protein (APP) through sequential cleavages first by β-secretase and then by γ-secretase complex. Alternatively, APP can be cleaved by α-secretase within the Aβ domain to release soluble APPα and preclude Aβ generation. Cleavage of APP by caspases may also contribute to AD pathologies. Therefore, understanding the metabolism/processing of APP is crucial for AD therapeutics. Here we review current knowledge of APP processing regulation as well as the patho/physiological functions of APP and its metabolites.
Collapse
Affiliation(s)
- Yun-wu Zhang
- Institute for Biomedical Research, Xiamen University, 422 SiMingNanLu, Xiamen 361005, Fujian, PR China
| | | | | | | |
Collapse
|
66
|
Schollenberger L, Gronemeyer T, Huber CM, Lay D, Wiese S, Meyer HE, Warscheid B, Saffrich R, Peränen J, Gorgas K, Just WW. RhoA regulates peroxisome association to microtubules and the actin cytoskeleton. PLoS One 2010; 5:e13886. [PMID: 21079737 PMCID: PMC2975642 DOI: 10.1371/journal.pone.0013886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/18/2010] [Indexed: 11/24/2022] Open
Abstract
The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.
Collapse
Affiliation(s)
- Lukas Schollenberger
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | - Thomas Gronemeyer
- Medical Proteom-Center, University of Bochum, Bochum, Germany
- Department for Molecular Genetics and Cell Biology, University of Ulm, Ulm, Germany
| | - Christoph M. Huber
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | - Dorothee Lay
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Wiese
- Medical Proteom-Center, University of Bochum, Bochum, Germany
| | - Helmut E. Meyer
- Medical Proteom-Center, University of Bochum, Bochum, Germany
| | | | - Rainer Saffrich
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Johan Peränen
- Institute of Biotechnology, University of Helsinki, Finland
| | - Karin Gorgas
- Department of Anatomy and Medical Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Wilhelm W. Just
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
67
|
Mercanti V, Marchetti A, Lelong E, Perez F, Orci L, Cosson P. Transmembrane domains control exclusion of membrane proteins from clathrin-coated pits. J Cell Sci 2010; 123:3329-35. [DOI: 10.1242/jcs.073031] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient sorting of proteins is essential to allow transport between intracellular compartments while maintaining their specific composition. During endocytosis, membrane proteins can be concentrated in endocytic vesicles by specific interactions between their cytoplasmic domains and cytosolic coat proteins. It is, however, unclear whether they can be excluded from transport vesicles and what the determinants for this sorting could be. Here, we show that in the absence of cytosolic sorting signals, transmembrane domains control the access of surface proteins to endosomal compartments. They act in particular by determining the degree of exclusion of membrane proteins from endocytic clathrin-coated vesicles. When cytosolic endocytosis signals are present, it is the combination of cytosolic and transmembrane determinants that ultimately controls the efficiency with which a given transmembrane protein is endocytosed.
Collapse
Affiliation(s)
- Valentina Mercanti
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
- UMR 144 CNRS, Institut Curie, 12 rue Lhomond, 75005 Paris, France
| | - Anna Marchetti
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| | - Emmanuelle Lelong
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| | - Franck Perez
- UMR 144 CNRS, Institut Curie, 12 rue Lhomond, 75005 Paris, France
| | - Lelio Orci
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| | - Pierre Cosson
- Centre Médical Universitaire, Département de Physiologie Cellulaire et Métabolisme, 1, rue Michel Servet, CH1211 Geneva 4, Switzerland
| |
Collapse
|
68
|
Arumugam S, Chwastek G, Schwille P. Protein-membrane interactions: the virtue of minimal systems in systems biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:269-80. [PMID: 20865776 DOI: 10.1002/wsbm.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The plasma membrane of cells can be viewed as a highly dynamic, regulated, heterogeneous environment with multiple functions. It constitutes the boundary of the cell, encapsulating all its components. Proteins interact with the membrane in many ways to accommodate essential processes, such as membrane trafficking, membrane protrusions, cytokinesis, signaling, and cell-cell communication. A vast amount of literature has already fostered our current understanding of membrane-protein interactions. However, many phenomena still remain to be understood, e.g., the exact mechanisms of how certain proteins cause or assist membrane transformations. Systems biology aims to predict biological processes on the basis of the set of molecules involved. Many key processes arise from interactions with the lipid membrane. Protein interactome maps do not consider such specific interactions, and thus cannot predict precise outcomes of the interactions of the involved proteins. These can only be inferred from experimental approaches. We describe examples of how an emergent behavior of protein-membrane interactions has been demonstrated by the use of minimal systems. These studies contribute to a deeper understanding of protein interactomes involving membranes and complement other approaches of systems biology.
Collapse
|
69
|
Ubiquitination and endocytosis of the high affinity receptor for IgE. Mol Immunol 2010; 47:2427-34. [PMID: 20638130 DOI: 10.1016/j.molimm.2010.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 05/31/2010] [Accepted: 06/09/2010] [Indexed: 01/17/2023]
Abstract
The high affinity receptor for IgE (FcvarepsilonRI) is constitutivelly expressed on the surface of mast cells and basophils as a multimeric complex. Upon antigen ligation to FcvarepsilonRI-bound IgE molecules, the receptor complex transduces intracellular signals leading to the release of preformed and newly synthesised pro-inflammatory mediators. FcvarepsilonRI engagement also generates negative intracellular signals involving the coordinated action of adapters, phosphatases and ubiquitin ligases that limits the intensity and duration of positive signals. Relevant to this, antigen-induced FcvarepsilonRI ubiquitination has become recognized as an important signal for the internalization and delivery of engaged receptor complexes to lysosomes for degradation. In this article, we review recent advances in our understanding of molecular mechanisms that guarantee the clearance of antigen-stimulated FcvarepsilonRI complexes from the cell surface. A particular emphasis will be given on how lipid rafts and the ubiquitin pathway cooperate to ensure receptor internalization and sorting along the endocytic compartments. A brief discussion regarding how ubiquitination regulates the endocytosis of Fc receptors other than FcvarepsilonRI will be included.
Collapse
|
70
|
de Groot T, Verkaart S, Xi Q, Bindels RJM, Hoenderop JGJ. The identification of Histidine 712 as a critical residue for constitutive TRPV5 internalization. J Biol Chem 2010; 285:28481-7. [PMID: 20628046 DOI: 10.1074/jbc.m110.117143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The epithelial Ca(2+) channel TRPV5 constitutes the apical entry gate for Ca(2+) transport in renal epithelial cells. Ablation of the trpv5 gene in mice leads to a reduced Ca(2+) reabsorption. TRPV5 is tightly regulated by various calciotropic hormones, associated proteins, and other factors, which mainly affect channel activity via the C terminus. To further identify the role of the C terminus in TRPV5 regulation, we expressed channels harboring C-terminal deletions and studied channel activity by measuring intracellular Ca(2+) concentration ([Ca(2+)](i)) using fura-2 analysis. Removal of amino acid His(712) elevated the [Ca(2+)](i), indicating enlarged TRPV5 activity. In addition, substitution of the positively charged His(712) for a negative (H712D) or neutral (H712N) amino acid also stimulated TRPV5 activity. This critical role of His(712) was confirmed by patch clamp analysis, which demonstrates increased Na(+) and Ca(2+) currents for TRPV5-H712D. Cell surface biotinylation studies revealed enhanced plasma membrane expression of TRPV5-H712D as compared with wild-type (WT) TRPV5. This elevated plasma membrane presence also was observed with the Ca(2+)-impermeable TRPV5-H712D and TRPV5-WT pore mutants, demonstrating that the elevation is not due to the increased [Ca(2+)](i). Finally, using an internalization assay, we demonstrated a delayed cell surface retrieval for TRPV5-H712D, likely causing the increase in plasma membrane expression. Together, these results demonstrate that His(712) plays an essential role in plasma membrane regulation of TRPV5 via a constitutive endocytotic mechanism.
Collapse
Affiliation(s)
- Theun de Groot
- Department of Physiology, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
71
|
Matozaki T, Murata Y, Mori M, Kotani T, Okazawa H, Ohnishi H. Expression, localization, and biological function of the R3 subtype of receptor-type protein tyrosine phosphatases in mammals. Cell Signal 2010; 22:1811-7. [PMID: 20633639 DOI: 10.1016/j.cellsig.2010.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 07/06/2010] [Indexed: 11/26/2022]
Abstract
The R3 subtype of receptor-type protein tyrosine phosphatases (RPTPs) includes VE-PTP, DEP-1, PTPRO, and SAP-1. All of these enzymes share a similar structure, with a single catalytic domain and putative tyrosine phosphorylation sites in the cytoplasmic region and fibronectin type III-like domains in the extracellular region. The expression of each R3 RPTP is largely restricted to a single or limited number of cell types, with VE-PTP and DEP-1 being expressed in endothelial or hematopoietic cells, PTPRO in neurons and in podocytes of the renal glomerulus, and SAP-1 in gastrointestinal epithelial cells. In addition, these RPTPs are localized specifically at the apical surface of polarized cells. The structure, expression, and localization of the R3 RPTPs suggest that they perform tissue-specific functions and that they might act through a common mechanism that includes activation of Src family kinases. In this review, we describe recent insights into R3-subtype RPTPs, particularly those of mammals.
Collapse
Affiliation(s)
- Takashi Matozaki
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan.
| | | | | | | | | | | |
Collapse
|
72
|
Wang YN, Yamaguchi H, Hsu JM, Hung MC. Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene 2010; 29:3997-4006. [PMID: 20473332 DOI: 10.1038/onc.2010.157] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple membrane-bound receptor tyrosine kinases (RTKs), such as the epidermal growth factor receptor (EGFR) and ErbB-2, have been reported to be localized in the nucleus, where emerging evidence suggests that they are involved in transcriptional regulation, cell proliferation, DNA repair and chemo- and radio-resistance. Recent studies have shown that endocytosis and endosomal sorting are involved in the nuclear transport of cell surface RTKs. However, the detailed mechanism by which the full-length receptors embedded in the endosomal membrane travel all the way from the cell surface to the early endosomes and pass through the nuclear pore complexes is unknown. This important area has been overlooked for decades, which has hindered progress in our understanding of nuclear RTKs' functions. Here, we discuss the putative mechanisms by which EGFR family RTKs are shuttled into the nucleus. Understanding the trafficking mechanisms as to how RTKs are transported from the cell surface to the nucleus will significantly contribute to understanding the functions of the nuclear RTKs.
Collapse
Affiliation(s)
- Y-N Wang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
73
|
Dores MR, Schnell JD, Maldonado-Baez L, Wendland B, Hicke L. The function of yeast epsin and Ede1 ubiquitin-binding domains during receptor internalization. Traffic 2010; 11:151-60. [PMID: 19903324 DOI: 10.1111/j.1600-0854.2009.01003.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of a primary endocytic vesicle is a dynamic process involving the transient organization of adaptor and scaffold proteins at the plasma membrane. Epsins and Eps15-like proteins are ubiquitin-binding proteins that act early in this process. The yeast epsins, Ent1 and Ent2, carry functional ubiquitin-interacting motifs (UIMs), whereas the yeast Eps15-like protein, Ede1, has a C-terminal ubiquitin-associated (UBA) domain. Analysis of mutants lacking early endocytic adaptors reveals that the ubiquitin-binding domains (UBDs) of Ent2 and Ede1 are likely to function primarily to mediate protein-protein interactions between components of the early endocytic machinery. Cells that lack epsin and Ede1 UBDs are able to internalize activated, ubiquitinated receptors. Furthermore, under conditions in which epsin UIMs are important for receptor internalization, receptors internalized via both ubiquitin-dependent and ubiquitin-independent signals require the UIMs, indicating that UIM function is not restricted to ubiquitinated receptors. Epsin UIMs share function with non-UBD protein-protein interaction motifs in Ent2 and Ede1, and the Ede1 UBA domain appears to negatively regulate interactions between endocytic proteins. Together, our results suggest that the ubiquitin-binding domains within the yeast epsin Ent2 and Ede1 are involved in the formation and regulation of the endocytic network.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Campus Drive, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
74
|
Murata Y, Mori M, Kotani T, Supriatna Y, Okazawa H, Kusakari S, Saito Y, Ohnishi H, Matozaki T. Tyrosine phosphorylation of R3 subtype receptor-type protein tyrosine phosphatases and their complex formations with Grb2 or Fyn. Genes Cells 2010; 15:513-24. [PMID: 20398064 DOI: 10.1111/j.1365-2443.2010.01398.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational modification of protein tyrosine phosphatases (PTPs) is implicated in functional modulation of these enzymes. Stomach cancer-associated protein tyrosine phosphatase-1 (SAP-1), as well as protein tyrosine phosphatase receptor type O (PTPRO) and vascular endothelial-protein tyrosine phosphatase (VE-PTP) are receptor-type PTPs (RPTPs), which belong to the R3 subtype RPTP family. Here, we have shown that the carboxyl (COOH)-terminal region of SAP-1 undergoes tyrosine phosphorylation by the treatment with a PTP inhibitor. Src family kinases are important for the tyrosine phosphorylation of SAP-1. Either Grb2 or Fyn, through their Src homology-2 domains, bound to the tyrosine-phosphorylated SAP-1. Moreover, both PTPRO and VE-PTP underwent tyrosine phosphorylation in their COOH-terminal regions. Tyrosine phosphorylation of VE-PTP or PTPRO also promoted their complex formations with Grb2 or Fyn. Forced expression of SAP-1, PTPRO or VE-PTP promoted cell spreading and lamellipodium formation of fibroblasts that expressed an activated form of Ras. In contrast, such effects of non-tyrosine-phosphorylated forms of these RPTPs were markedly smaller than those of wild-type RPTPs. Our results thus suggest that tyrosine phosphorylation of R3 subtype RPTPs promotes their complex formations with Grb2 or Fyn and thus participates in the regulation of cell morphology.
Collapse
Affiliation(s)
- Yoji Murata
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Kurisu J, Fukuda T, Yokoyama S, Hirano T, Kengaku M. Polarized targeting of DNER into dendritic plasma membrane in hippocampal neurons depends on endocytosis. J Neurochem 2010; 113:1598-610. [PMID: 20367751 DOI: 10.1111/j.1471-4159.2010.06714.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The targeting of membrane proteins into axons and dendrites is of critical importance for directional signal transmission within specific neural circuits. Many dendritic proteins have been shown to reach the somatodendritic membrane based on selective sorting and transport of carrier vesicles. Using rat hippocampal neurons in culture, we investigated the trafficking pathways of Delta/Notch-like EGF-related receptor (DNER), a transmembrane Notch ligand which is specifically expressed in CNS dendrites. Mutations in the cytoplasmic domain of DNER that abolished somatodendritic localization also increased its surface expression. Furthermore, inhibition of endocytosis resulted in disruption of the somatodendritic localization of DNER, indicating that the somatodendritic targeting of DNER is dependent on endocytosis. The DNER cytoplasmic domain binds to a clathrin adaptor protein complex-2 via a proximal tyrosine motif and a 40 amino acid stretch in the mid-domain, but not by the C-terminal tail. Molecular and pharmacological inhibition revealed that the surface expression of DNER is regulated by clathrin-dependent and -independent endocytosis. In contrast, the somatodendritic targeting of DNER is predominantly regulated by clathrin- and adaptor protein complex-2-independent endocytosis via the C-terminal tail of DNER. Our data suggest that clathrin-independent endocytosis is critical for the polarized targeting of somatodendritic proteins.
Collapse
Affiliation(s)
- Junko Kurisu
- Laboratory for Neural Cell Polarity, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | | | | | | | | |
Collapse
|
76
|
Stewart M, Popov V, Medvedev N, Gabbott P, Corbett N, Kraev I, Davies H. Dendritic spine and synapse morphological alterations induced by a neural cell adhesion molecule mimetic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:373-83. [PMID: 20017034 DOI: 10.1007/978-1-4419-1170-4_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Michael Stewart
- Department of Life Sciences, Faculty of Sciences, The Open University, Walton Hall, Milton Keynes, MK76AA, UK.
| | | | | | | | | | | | | |
Collapse
|
77
|
Mead CLR, Kuzyk MA, Moradian A, Wilson GM, Holt RA, Morin GB. Cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin. J Neurochem 2010; 113:1491-503. [PMID: 20236384 DOI: 10.1111/j.1471-4159.2010.06690.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Using immunoprecipitation, mass spectrometry, and western blot analysis we investigated cytosolic protein interactions of the schizophrenia susceptibility gene dysbindin in mammalian cells. We identified novel interactions with members of the exocyst, dynactin and chaperonin containing T-complex protein complexes, and we confirmed interactions reported previously with all members of the biogenesis of lysosome-related organelles complex-1 and the adaptor-related protein complex 3. We report interactions between dysbindin and the exocyst and dynactin complex that confirm a link between two important schizophrenia susceptibility genes: dysbindin and disrupted-in-schizophrenia-1. To expand upon this network of interacting proteins we also investigated protein interactions for members of the exocyst and dynactin complexes in mammalian cells. Our results are consistent with the notion that impairment of aspects of the synaptic vesicle life cycle may be a pathogenic mechanism in schizophrenia.
Collapse
Affiliation(s)
- Carri-Lyn R Mead
- Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
78
|
Awwad HO, Millman EE, Alpizar-Foster E, Moore RH, Knoll BJ. Mutating the dileucine motif of the human beta(2)-adrenoceptor reduces the high initial rate of receptor phosphorylation by GRK without affecting postendocytic sorting. Eur J Pharmacol 2010; 635:9-15. [PMID: 20193676 DOI: 10.1016/j.ejphar.2010.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 01/27/2010] [Accepted: 02/13/2010] [Indexed: 10/19/2022]
Abstract
The internalization of beta(2)-adrenoceptors after agonist activation results in a desensitized and phosphorylated receptor that either resensitizes by recycling to the cell surface or becomes degraded by postendocytic sorting to lysosomes. The duration and physiological effects of agonists therefore depend on beta(2)-adrenoceptor sorting, highlighting the importance of sorting signals. Dileucine motifs within other membrane proteins act as signals for endocytosis and/or postendocytic sorting, and the beta(2)-adrenoceptor has a dileucine motif within helix 8 that might play a role in efficient receptor recycling and/or downregulation. beta(2)-adrenoceptor internalization and sorting were studied in HEK293 cells stably expressing wild type or mutant dialanine L339A,L340A beta(2)-adrenoceptors. The mutant beta(2)-adrenoceptors showed a significantly lower initial rate of phosphorylation at the prominent G-protein coupled receptor kinase (GRK) sites Ser355 and 356 compared to wild type beta(2)-adrenoceptors. Furthermore, the agonist-induced endocytic rate constant for L339A,L340A beta(2)-adrenoceptors was reduced to approximately 25% that of wild type beta(2)-adrenoceptors, which resulted in a similar reduction in agonist-induced downregulation. Internalized L339A,L340A beta(2)-adrenoceptors recycled to the surface with a rate and extent similar to that of wild type beta(2)-adrenoceptors. Therefore, although the role of L339,L340 in beta(2)-adrenoceptor recycling or postendocytic sorting seems minimal, we conclude that L339,L340 is required for the initial high rate of phosphorylation by G-protein coupled receptor kinases at Ser355,356, which in turn is required for efficient beta(2)-adrenoceptors endocytosis.
Collapse
Affiliation(s)
- Hibah O Awwad
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | | | | | | | | |
Collapse
|
79
|
|
80
|
Madshus IH, Stang E. Internalization and intracellular sorting of the EGF receptor: a model for understanding the mechanisms of receptor trafficking. J Cell Sci 2009; 122:3433-9. [PMID: 19759283 DOI: 10.1242/jcs.050260] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The epidermal growth factor receptor (EGFR; also known as ErbB1) is one of four related receptor tyrosine kinases. These receptors (EGFR, ErbB2, ErbB3 and ErbB4) are frequently overexpressed in cancer and such overexpression is associated with poor clinical outcome. Understanding the mechanisms involved in growth-factor-receptor downregulation is medically important, as several drugs that interfere with the function and trafficking of ErbB proteins are currently being developed or are already in clinical trials. EGFR has become a model protein for understanding the biology and endocytosis of related growth-factor receptors, and the mechanisms involved in its endocytosis and degradation have been scrutinized for several decades. Nevertheless, the details and principles of these processes are still poorly understood and often controversial. In particular, the literature describing how the ubiquitylation and recruitment of EGFR to clathrin-coated pits are connected is inconsistent and confusing. In this Opinion article, we discuss the impact of signaling motifs, kinase activity and ubiquitylation on clathrin-dependent endocytosis and lysosomal sorting of EGFR. In addition, we discuss potential explanations for contradicting reports, and propose models for the recruitment of ligand-activated EGFR to clathrin-coated pits as well as for lysosomal sorting of ligand-activated EGFR.
Collapse
Affiliation(s)
- Inger Helene Madshus
- University of Oslo, Institute of Pathology, Rikshospitalet, N-0027 Oslo, Norway.
| | | |
Collapse
|
81
|
Mostowy S, Cossart P. Cytoskeleton rearrangements during Listeria infection: clathrin and septins as new players in the game. ACTA ACUST UNITED AC 2009; 66:816-23. [PMID: 19296488 DOI: 10.1002/cm.20353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The study of an infection process can reveal how microbes exploit the host, and can illuminate unknown host cellular functions. Invasive pathogens have evolved efficient strategies to promote their internalization within normally non-phagocytic host cells. The so-called "zippering" bacteria present to host cell receptors molecules that mimic endogenous ligands, thereby inducing specific intracellular signaling cascades ultimately resulting in actin polymerization and uptake. Here we review how the bacterial pathogen Listeria monocytogenes enters into cells, and present a series of studies revealing that in addition to actin rearrangements this bacterium exploits the clathrin-mediated endocytosis machinery together with septins, a novel cytoskeleton element. The challenge is now to decipher how all of these components orchestrate themselves to permit entry into normally non-phagocytic cells.
Collapse
Affiliation(s)
- Serge Mostowy
- Institut Pasteur, Département de Biologie Cellulaire et Infection, Unité des Interactions Bactéries-Cellules, Paris, F-75015 France
| | | |
Collapse
|
82
|
Carroll SY, Stirling PC, Stimpson HEM, Giesselmann E, Schmitt MJ, Drubin DG. A yeast killer toxin screen provides insights into a/b toxin entry, trafficking, and killing mechanisms. Dev Cell 2009; 17:552-60. [PMID: 19853568 DOI: 10.1016/j.devcel.2009.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/04/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
Like Ricin, Shiga, and Cholera toxins, yeast K28 is an A/B toxin that depends on endocytosis and retrograde trafficking for toxicity. Knowledge of the specific proteins, lipids, and mechanisms required for trafficking and killing by these toxins remains incomplete. Since K28 is a model for clinically relevant toxins, we screened over 5000 yeast mutants, identifying 365 that affect K28 sensitivity. Hypersensitive mutants revealed cytoprotective pathways, including stress-activated signaling and protein degradation. Resistant mutants clustered to endocytic, lipid organization, and cell wall biogenesis pathways. Furthermore, GPI anchors and transcriptional regulation are important for K28-cell binding. Strikingly, the AP2 complex, which in metazoans links endocytic cargo to the clathrin coat, but had no assigned function in yeast, was critical for K28 toxicity. Yeast AP2 localizes to endocytic sites and has a cargo-specific function in K28 uptake. This comprehensive genetic analysis identified conserved processes important for A/B toxin trafficking and killing.
Collapse
Affiliation(s)
- Susheela Y Carroll
- Department of Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
83
|
Abstract
Viruses, despite being relatively simple in structure and composition, have evolved to exploit complex cellular processes for their replication in the host cell. After binding to their specific receptor on the cell surface, viruses (or viral genomes) have to enter cells to initiate a productive infection. Though the entry processes of many enveloped viruses is well understood, that of most non-enveloped viruses still remains unresolved. Recent studies have shown that compared to direct fusion at the plasma membrane, endocytosis is more often the preferred means of entry into the target cell. Receptor-mediated endocytic pathways such as the dynamin-dependent clathrin and caveolar pathways are well characterized as viral entry portals. However, many viruses are able to utilize multiple uptake pathways. Fluid phase uptake, though relatively non-specific in terms of its cargo, potentially aids viral infection by its ability to intersect with the endocytic pathway. In fact, many viruses despite using specialized pathways for entry are still able to generate productive infection via fluid phase uptake. Macropinocytosis, a major fluid uptake pathway found in epithelial cells and fibroblasts, is stimulated by growth factor receptors. Many viruses can induce these signaling cascades in cells leading to macropinocytosis. Though endocytic trafficking is utilized by both enveloped and non-enveloped viruses, key differences lie in the way membranes are traversed to deposit the viral genome at its site of replication. This review will discuss recent developments in the rapidly evolving field of viral entry.
Collapse
Affiliation(s)
- Manjula Kalia
- Virology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
84
|
Requirements for F-BAR proteins TOCA-1 and TOCA-2 in actin dynamics and membrane trafficking during Caenorhabditis elegans oocyte growth and embryonic epidermal morphogenesis. PLoS Genet 2009; 5:e1000675. [PMID: 19798448 PMCID: PMC2744924 DOI: 10.1371/journal.pgen.1000675] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 09/02/2009] [Indexed: 01/03/2023] Open
Abstract
The TOCA family of F-BAR–containing proteins bind to and remodel lipid bilayers via their conserved F-BAR domains, and regulate actin dynamics via their N-Wasp binding SH3 domains. Thus, these proteins are predicted to play a pivotal role in coordinating membrane traffic with actin dynamics during cell migration and tissue morphogenesis. By combining genetic analysis in Caenorhabditis elegans with cellular biochemical experiments in mammalian cells, we showed that: i) loss of CeTOCA proteins reduced the efficiency of Clathrin-mediated endocytosis (CME) in oocytes. Genetic interference with CeTOCAs interacting proteins WSP-1 and WVE-1, and other components of the WVE-1 complex, produced a similar effect. Oocyte endocytosis defects correlated well with reduced egg production in these mutants. ii) CeTOCA proteins localize to cell–cell junctions and are required for proper embryonic morphogenesis, to position hypodermal cells and to organize junctional actin and the junction-associated protein AJM-1. iii) Double mutant analysis indicated that the toca genes act in the same pathway as the nematode homologue of N-WASP/WASP, wsp-1. Furthermore, mammalian TOCA-1 and C. elegans CeTOCAs physically associated with N-WASP and WSP-1 directly, or WAVE2 indirectly via ABI-1. Thus, we propose that TOCA proteins control tissues morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP–dependent actin-dynamics. Cells continuously remodel their shape especially during cell migration, differentiation, and tissues morphogenesis. This occurs through the dynamic reorganization of their plasma membrane and actin cytoskeleton: two processes that must therefore be intimately linked and coordinated. Molecules that sit at the crossroads of membrane remodeling and actin dynamics are predicted to play a pivotal role in coordinating these processes. The TOCA family of proteins represents a case in point. These proteins bind to and deform membranes during processes such as membrane trafficking. They also control actin dynamics through their interactions with actin remodeling factors, such as WASP and WAVEs. Here, we characterize the functional role of TOCA proteins in a model organism, the nematode Caenorhabditis elegans. We established that toca genes regulate Clathrin-mediated membrane trafficking during oocyte growth. We further discovered that these proteins play an important role in epithelial morphogenesis in developing embryos, and in egg production in adult nematodes. Moreover, the TOCA interacting proteins WASP/WSP-1 and WAVE/WVE-1, as well as other components of the WVE-1 complex, appear to be involved in TOCA-dependent processes. Thus, we propose that TOCA proteins control tissue morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP–dependent actin-dynamics.
Collapse
|
85
|
Abstract
Cell motility is important for many physiological and pathological processes including organ development, wound healing, cancer metastasis and correct immune responses. In particular, epithelial wound healing is both a medically relevant topic and a common experimental model. Mechanisms underlying generation of a polarized cell and maintenance of a motile phenotype during steady-state migration are not well understood. Polarized trafficking of bulk membrane and cell adhesion molecules has been implicated in regulation of cell motility. The present review focuses on the role of different trafficking pathways in epithelial cell migration, including clathrin-mediated endocytosis, caveolar endocytosis, exocytosis of biosynthetic cargo, ‘short-loop’ and ‘long-loop’ endosomal recycling.
Collapse
|
86
|
Lee JS, Kim IS, Kim JH, Cho W, Suh PG, Ryu SH. Determination of EGFR endocytosis kinetic by auto-regulatory association of PLD1 with mu2. PLoS One 2009; 4:e7090. [PMID: 19763255 PMCID: PMC2739277 DOI: 10.1371/journal.pone.0007090] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 08/18/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Upon ligand binding, cell surface signaling receptors are internalized through a process tightly regulated by endocytic proteins and adaptor protein 2 (AP2) to orchestrate them. Although the molecular identities and roles of endocytic proteins are becoming clearer, it is still unclear what determines the receptor endocytosis kinetics which is mainly regulated by the accumulation of endocytic apparatus to the activated receptors. METHODOLOGY/PRINCIPAL FINDINGS Here we employed the kinetic analysis of endocytosis and adaptor recruitment to show that mu2, a subunit of AP2 interacts directly with phospholipase D (PLD)1, a receptor-associated signaling protein and this facilitates the membrane recruitment of AP2 and the endocytosis of epidermal growth factor receptor (EGFR). We also demonstrate that the PLD1-mu2 interaction requires the binding of PLD1 with phosphatidic acid, its own product. CONCLUSIONS/SIGNIFICANCE These results suggest that the temporal regulation of EGFR endocytosis is achieved by auto-regulatory PLD1 which senses the receptor activation and triggers the translocation of AP2 near to the activated receptor.
Collapse
Affiliation(s)
- Jun Sung Lee
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Il Shin Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Jung Hwan Kim
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Pann-Ghill Suh
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | - Sung Ho Ryu
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
- * E-mail:
| |
Collapse
|
87
|
Abstract
Cell signalling and endocytic membrane trafficking have traditionally been viewed as distinct processes. Although our present understanding is incomplete and there are still great controversies, it is now recognized that these processes are intimately and bidirectionally linked in animal cells. Indeed, many recent examples illustrate how endocytosis regulates receptor signalling (including signalling from receptor tyrosine kinases and G protein-coupled receptors) and, conversely, how signalling regulates the endocytic pathway. The mechanistic and functional principles that underlie the relationship between signalling and endocytosis in cell biology are becoming increasingly evident across many systems.
Collapse
|
88
|
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379:146-57. [DOI: 10.1016/j.ijpharm.2009.06.019] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 12/19/2022]
|
89
|
Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human natural killer cell receptors. Traffic 2009; 10:1735-44. [PMID: 19719476 DOI: 10.1111/j.1600-0854.2009.00973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.
Collapse
Affiliation(s)
- Madhan Masilamani
- The Jaffe Food Allergy Institute, Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
90
|
Selak S, Paternain AV, Aller IM, Picó E, Rivera R, Lerma J. A Role for SNAP25 in Internalization of Kainate Receptors and Synaptic Plasticity. Neuron 2009; 63:357-71. [DOI: 10.1016/j.neuron.2009.07.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 01/22/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
91
|
Teckchandani A, Toida N, Goodchild J, Henderson C, Watts J, Wollscheid B, Cooper JA. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration. J Cell Biol 2009; 186:99-111. [PMID: 19581412 PMCID: PMC2712992 DOI: 10.1083/jcb.200812160] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 06/12/2009] [Indexed: 01/04/2023] Open
Abstract
Clathrin-associated endocytic adapters recruit cargoes to coated pits as a first step in endocytosis. We developed an unbiased quantitative proteomics approach to identify and quantify glycoprotein cargoes for an endocytic adapter, Dab2. Surface levels of integrins beta1, alpha1, alpha2, and alpha3 but not alpha5 or alphav chains were specifically increased on Dab2-deficient HeLa cells. Dab2 colocalizes with integrin beta1 in coated pits that are dispersed over the cell surface, suggesting that it regulates bulk endocytosis of inactive integrins. Depletion of Dab2 inhibits cell migration and polarized movement of integrin beta1 and vinculin to the leading edge. By manipulating intracellular and surface integrin beta1 levels, we show that migration speed correlates with the intracellular integrin pool but not the surface level. Together, these results suggest that Dab2 internalizes integrins freely diffusing on the cell surface and that Dab2 regulates migration, perhaps by maintaining an internal pool of integrins that can be recycled to create new adhesions at the leading edge.
Collapse
Affiliation(s)
| | - Natalie Toida
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Jake Goodchild
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - Julian Watts
- Institute for Systems Biology, Seattle, WA 98103
| | | | | |
Collapse
|
92
|
Disanza A, Frittoli E, Palamidessi A, Scita G. Endocytosis and spatial restriction of cell signaling. Mol Oncol 2009; 3:280-96. [PMID: 19570732 DOI: 10.1016/j.molonc.2009.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/28/2009] [Accepted: 05/28/2009] [Indexed: 02/06/2023] Open
Abstract
Endocytosis and recycling are essential components of the wiring enabling cells to perceive extracellular signals and transduce them in a temporally and spatially controlled fashion, directly influencing not only the duration and intensity of the signaling output, but also their correct location. Here, we will discuss key experimental evidence that support how different internalization routes, the generation of diverse endomembrane platforms, and cycles of internalization and recycling ensure polarized compartmentalization of signals, regulating a number of physiological and pathologically-relevant processes in which the resolution of spatial information is vital for their execution.
Collapse
Affiliation(s)
- Andrea Disanza
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy
| | | | | | | |
Collapse
|
93
|
Chan CM, Tsoi H, Chan WM, Zhai S, Wong CO, Yao X, Chan WY, Tsui SKW, Chan HYE. The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function. Int J Biochem Cell Biol 2009; 41:2232-9. [PMID: 19398035 PMCID: PMC7108357 DOI: 10.1016/j.biocel.2009.04.019] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/12/2009] [Accepted: 04/20/2009] [Indexed: 01/15/2023]
Abstract
The severe acute respiratory syndrome-coronavirus (SARS-CoV) caused an outbreak of atypical pneumonia in 2003. The SARS-CoV viral genome encodes several proteins which have no homology to proteins in any other coronaviruses, and a number of these proteins have been implicated in viral cytopathies. One such protein is 3a, which is also known as X1, ORF3 and U274. 3a expression is detected in both SARS-CoV infected cultured cells and patients. Among the different functions identified, 3a is a capable of inducing apoptosis. We previously showed that caspase pathways are involved in 3a-induced apoptosis. In this study, we attempted to find out protein domains on 3a that are essential for its pro-apoptotic function. Protein sequence analysis reveals that 3a possesses three major protein signatures, the cysteine-rich, Yxx phi and diacidic domains. We showed that 3a proteins carrying respective mutations in these protein domains exhibit reduced pro-apoptotic activities, indicating the importance of these domains on 3a's pro-apoptotic function. It was previously reported that 3a possesses potassium ion channel activity. We further demonstrated that the blockade of 3a's potassium channel activity abolished caspase-dependent apoptosis. This report provides the first evidence that ion channel activity of 3a is required for its pro-apoptotic function. As ion channel activity has been reported to regulate apoptosis in different pathologic conditions, finding ways to modulate the ion channel activity may offer a new direction toward the inhibition of apoptosis triggered by SARS-CoV.
Collapse
Affiliation(s)
- Chak-Ming Chan
- Laboratory of Drosophila Research, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Acconcia F, Sigismund S, Polo S. Ubiquitin in trafficking: The network at work. Exp Cell Res 2009; 315:1610-8. [DOI: 10.1016/j.yexcr.2008.10.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
|
95
|
Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway. Cell Res 2009; 19:317-27. [PMID: 18982021 DOI: 10.1038/cr.2008.299] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic cells, receptor endocytosis is a key event regulating signaling transduction. Adiponectin receptors belong to a new receptor family that is distinct from G-protein-coupled receptors and has critical roles in the pathogenesis of diabetes and metabolic syndrome. Here, we analyzed the endocytosis of adiponectin and adiponectin receptor 1 (AdipoR1) and found that they are both internalized into transferrin-positive compartments that follow similar traffic routes. Blocking clathrin-mediated endocytosis by expressing Eps15 mutants or depleting K(+) trapped AdipoR1 at the plasma membrane, and K(+) depletion abolished adiponectin internalization, indicating that the endocytosis of AdipoR1 and adiponectin is clathrin-dependent. Depletion of K(+) and overexpression of Eps15 mutants enhance adiponectin-stimulated AMP-activated protein kinase phosphorylation, suggesting that the endocytosis of AdipoR1 might downregulate adiponectin signaling. In addition, AdipoR1 colocalizes with the small GTPase Rab5, and a dominant negative Rab5 abrogates AdipoR1 endocytosis. These data indicate that AdipoR1 is internalized through a clathrin- and Rab5-dependent pathway and that endocytosis may play a role in the regulation of adiponectin signaling.
Collapse
|
96
|
Abstract
Endocytic mechanisms control the lipid and protein composition of the plasma membrane, thereby regulating how cells interact with their environments. Here, we review what is known about mammalian endocytic mechanisms, with focus on the cellular proteins that control these events. We discuss the well-studied clathrin-mediated endocytic mechanisms and dissect endocytic pathways that proceed independently of clathrin. These clathrin-independent pathways include the CLIC/GEEC endocytic pathway, arf6-dependent endocytosis, flotillin-dependent endocytosis, macropinocytosis, circular doral ruffles, phagocytosis, and trans-endocytosis. We also critically review the role of caveolae and caveolin1 in endocytosis. We highlight the roles of lipids, membrane curvature-modulating proteins, small G proteins, actin, and dynamin in endocytic pathways. We discuss the functional relevance of distinct endocytic pathways and emphasize the importance of studying these pathways to understand human disease processes.
Collapse
Affiliation(s)
- Gary J Doherty
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.
| | | |
Collapse
|
97
|
Chiasson CM, Wittich KB, Vincent PA, Faundez V, Kowalczyk AP. p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol Biol Cell 2009; 20:1970-80. [PMID: 19211843 DOI: 10.1091/mbc.e08-07-0735] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
p120-catenin is a cytoplasmic binding partner of cadherins and functions as a set point for cadherin expression by preventing cadherin endocytosis, and degradation. p120 is known to regulate cell motility and invasiveness by inhibiting RhoA activity. However, the relationship between these functions of p120 is not understood. Here, we provide evidence that p120 functions as part of a plasma membrane retention mechanism for VE-cadherin by preventing the recruitment of VE-cadherin into membrane domains enriched in components of the endocytic machinery, including clathrin and the adaptor complex AP-2. The mechanism by which p120 regulates VE-cadherin entry into endocytic compartments is dependent on p120's interaction with the cadherin juxtamembrane domain, but occurs independently of p120's prevention of Rho GTPase activity. These findings clarify the mechanism for p120's function in stabilizing VE-cadherin at the plasma membrane and demonstrate a novel role for p120 in modulating the availability of cadherins for entry into a clathrin-dependent endocytic pathway.
Collapse
Affiliation(s)
- Christine M Chiasson
- Graduate Program in Biochemistry, Cell, and Developmental Biology, and Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
98
|
AgtA, the dicarboxylic amino acid transporter of Aspergillus nidulans, is concertedly down-regulated by exquisite sensitivity to nitrogen metabolite repression and ammonium-elicited endocytosis. EUKARYOTIC CELL 2009; 8:339-52. [PMID: 19168757 DOI: 10.1128/ec.00270-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We identified agtA, a gene that encodes the specific dicarboxylic amino acid transporter of Aspergillus nidulans. The deletion of the gene resulted in loss of utilization of aspartate as a nitrogen source and of aspartate uptake, while not completely abolishing glutamate utilization. Kinetic constants showed that AgtA is a high-affinity dicarboxylic amino acid transporter and are in agreement with those determined for a cognate transporter activity identified previously. The gene is extremely sensitive to nitrogen metabolite repression, depends on AreA for its expression, and is seemingly independent from specific induction. We showed that the localization of AgtA in the plasma membrane necessitates the ShrA protein and that an active process elicited by ammonium results in internalization and targeting of AgtA to the vacuole, followed by degradation. Thus, nitrogen metabolite repression and ammonium-promoted vacuolar degradation act in concert to downregulate dicarboxylic amino acid transport activity.
Collapse
|
99
|
Peruzzi G, Masilamani M, Borrego F, Coligan JE. Endocytosis as a mechanism of regulating natural killer cell function: unique endocytic and trafficking pathway for CD94/NKG2A. Immunol Res 2009; 43:210-22. [PMID: 18979076 PMCID: PMC2752144 DOI: 10.1007/s12026-008-8072-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells are lymphocytes generally recognized as sentinels of the innate immune system due to their inherent capacity to deal with diseased (stressed) cells, including malignant and infected. This ability to recognize many potentially pathogenic situations is due to the expression of a diverse panel of activation receptors. Because NK cell activation triggers an aggressive inflammatory response, it is important to have a means of throttling this response. Hence, NK cells also express a panel of inhibitory receptors that recognize ligands expressed by "normal" cells. Little or nothing is known about the endocytosis and trafficking of NK cell receptors, which are of great relevance to understanding how NK cells maintain the appropriate balance of activating and inhibitory receptors on their cell surface. In this review, we focus on the ITIM-containing inhibitory receptor CD94/NKG2A showing that it is endocytosed by a previously undescribed macropinocytic-like process that may be related to the maintenance of its surface expression.
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Twinbrook II, Room 205, MS 8180 12441 Parklawn Drive, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
100
|
Endolysosomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1791:524-39. [PMID: 19146988 DOI: 10.1016/j.bbalip.2008.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 12/08/2008] [Accepted: 12/11/2008] [Indexed: 12/12/2022]
Abstract
This review summarizes the current knowledge of endolysosomal and cytoplasmic lipid storage in macrophages induced by oxidized LDL (Ox-LDL), enzymatically degraded LDL (E-LDL) and other atherogenic lipoprotein modifications, and their relation to the adapter protein 3 (AP-3) dependent ABCA1 and ABCG1 cellular lipid efflux pathways. We compare endolysosomal lipid storage caused either through drug induced phospholipidosis, inheritable endolysosomal and cytosolic lipid storage disorders and Ox-LDL or E-LDL induced phagosomal uptake and cytosolic lipid droplet storage in macrophages. Ox-LDL is resistant to rapid endolysosomal hydrolysis and is trapped within the endolysosomal compartment generating lamellar bodies which resemble the characteristics of phospholipidosis. Various inherited lysosomal storage diseases including sphingolipidosis, glycosphingolipidosis and cholesterylester storage diseases also present a phospholipidosis phenotype. In contrast E-LDL resembling coreless unesterified cholesterol enriched LDL-particles, with a multilamellar, liposome-like structure, lead to rapid phagosomal degradation and cytosolic lipid droplet accumulation. As a consequence the uptake of E-LDL through type I and type II phagocytosis leads to increased lipid droplet formation and moderate upregulation of ABCA1 and ABCG1 while uptake of Ox-LDL leads to a rapid expansion of the lysosomal compartment and a pronounced upregulation of the ABCA1/ABCG1/AP-3 lipid efflux pathway.
Collapse
|