51
|
Lanz MC, Dibitetto D, Smolka MB. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J 2019; 38:e101801. [PMID: 31393028 PMCID: PMC6745504 DOI: 10.15252/embj.2019101801] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/03/2019] [Accepted: 07/24/2019] [Indexed: 12/27/2022] Open
Abstract
From bacteria to mammalian cells, damaged DNA is sensed and targeted by DNA repair pathways. In eukaryotes, kinases play a central role in coordinating the DNA damage response. DNA damage signaling kinases were identified over two decades ago and linked to the cell cycle checkpoint concept proposed by Weinert and Hartwell in 1988. Connections between the DNA damage signaling kinases and DNA repair were scant at first, and the initial perception was that the importance of these kinases for genome integrity was largely an indirect effect of their roles in checkpoints, DNA replication, and transcription. As more substrates of DNA damage signaling kinases were identified, it became clear that they directly regulate a wide range of DNA repair factors. Here, we review our current understanding of DNA damage signaling kinases, delineating the key substrates in budding yeast and humans. We trace the progress of the field in the last 30 years and discuss our current understanding of the major substrate regulatory mechanisms involved in checkpoint responses and DNA repair.
Collapse
Affiliation(s)
- Michael Charles Lanz
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Diego Dibitetto
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| | - Marcus Bustamante Smolka
- Department of Molecular Biology and GeneticsWeill Institute for Cell and Molecular BiologyCornell UniversityIthacaNYUSA
| |
Collapse
|
52
|
Kang H, Zhang C, An Z, Shen WH, Zhu Y. AtINO80 and AtARP5 physically interact and play common as well as distinct roles in regulating plant growth and development. THE NEW PHYTOLOGIST 2019; 223:336-353. [PMID: 30843208 DOI: 10.1111/nph.15780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The proper modulation of chromatin structure is dependent on the activities of chromatin-remodeling factors and their interplays. Here, we show that the Arabidopsis chromatin-remodeler AtINO80 interacts with the actin-related protein AtARP5 and can form a larger protein complex. Genetic analysis demonstrated that AtARP5 acts in concert with AtINO80 during plant cellular proliferation and replication stress response. At the same time, AtARP5 is not required for AtINO80-mediated control of flowering time and related transcriptional regulation, and their chromatin distribution patterns on regions of flowering-repressor genes FLC/MAF4/MAF5 are also different. An in vitro DNase I digestion assay revealed that the AtINO80N-terminus can weakly bind DNA, an interaction that is significantly inhibited by H2A.Z/H2B addition. AtARP6, a specific subunit of SWR1-C that mediates the H2A.Z exchange, was found to have a previously unexpected inhibitory role in the local chromatin enrichment of AtINO80. Further genetic analyses revealed the functional interplay between AtINO80 and AtARP6 and their critical roles in embryogenesis and post-embryonic organ development, as well as the synergy of AtARP5 and AtARP6 in maintaining genomic stability. Our findings provide insights into the common and distinct roles of AtINO80 and AtARP5 in diverse aspects of plant development.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chi Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zengxuan An
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CNRS, IBMP UPR 2357, Université de Strasbourg, Strasbourg, F-67000, France
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
53
|
Bonath F, Domingo-Prim J, Tarbier M, Friedländer MR, Visa N. Next-generation sequencing reveals two populations of damage-induced small RNAs at endogenous DNA double-strand breaks. Nucleic Acids Res 2019; 46:11869-11882. [PMID: 30418607 PMCID: PMC6294500 DOI: 10.1093/nar/gky1107] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggest that transcription takes place at DNA double-strand breaks (DSBs), that transcripts at DSBs are processed by Drosha and Dicer into damage-induced small RNAs (diRNAs), and that diRNAs are required for DNA repair. However, diRNAs have been mostly detected in reporter constructs or repetitive sequences, and their existence at endogenous loci has been questioned by recent reports. Using the homing endonuclease I-PpoI, we have investigated diRNA production in genetically unperturbed human and mouse cells. I-PpoI is an ideal tool to clarify the requirements for diRNA production because it induces DSBs in different types of loci: the repetitive 28S locus, unique genes and intergenic loci. We show by extensive sequencing that the rDNA locus produces substantial levels of diRNAs, whereas unique genic and intergenic loci do not. Further characterization of diRNAs emerging from the 28S locus reveals the existence of two diRNA subtypes. Surprisingly, Drosha and its partner DGCR8 are dispensable for diRNA production and only one diRNAs subtype depends on Dicer processing. Furthermore, we provide evidence that diRNAs are incorporated into Argonaute. Our findings provide direct evidence for diRNA production at endogenous loci in mammalian cells and give insights into RNA processing at DSBs.
Collapse
Affiliation(s)
- Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Judit Domingo-Prim
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
54
|
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, Bonetti D, Longhese MP. Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context. Front Mol Biosci 2019; 6:43. [PMID: 31231660 PMCID: PMC6567933 DOI: 10.3389/fmolb.2019.00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM. Here, we review functions and regulation of the MRX/MRN complex in DSB processing in a chromatin context, as well as its interplay with Tel1/ATM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
55
|
Identification and Expression Analysis of Snf2 Family Proteins in Tomato ( Solanum lycopersicum). Int J Genomics 2019; 2019:5080935. [PMID: 31049349 PMCID: PMC6458923 DOI: 10.1155/2019/5080935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/18/2018] [Indexed: 02/03/2023] Open
Abstract
As part of chromatin-remodeling complexes (CRCs), sucrose nonfermenting 2 (Snf2) family proteins alter chromatin structure and nucleosome position by utilizing the energy of ATP, which allows other regulatory proteins to access DNA. Plant genomes encode a large number of Snf2 proteins, and some of them have been shown to be the key regulators at different developmental stages in Arabidopsis. Yet, little is known about the functions of Snf2 proteins in tomato (Solanum lycopersicum). In this study, 45 Snf2s were identified by the homologous search using representative sequences from yeast (S. cerevisiae), fruit fly (D. melanogaster), and Arabidopsis (A. thaliana) against the tomato genome annotation dataset. Tomato Snf2 proteins (also named SlCHRs) could be clustered into 6 groups and distributed on 11 chromosomes. All SlCHRs contained a helicase-C domain with about 80 amino acid residues and a SNF2-N domain with more variable amino acid residues. In addition, other conserved motifs were also identified in SlCHRs by using the MEME program. Expression profile analysis indicated that tomato Snf2 family genes displayed a wide range of expressions in different tissues and some of them were regulated by the environmental stimuli such as salicylic acid, abscisic acid, salt, and cold. Taken together, these results provide insights into the functions of SlCHRs in tomato.
Collapse
|
56
|
Bokor E, Ámon J, Keisham K, Karácsony Z, Vágvölgyi C, Hamari Z. HMGB proteins are required for sexual development in Aspergillus nidulans. PLoS One 2019; 14:e0216094. [PMID: 31022275 PMCID: PMC6483251 DOI: 10.1371/journal.pone.0216094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 11/18/2022] Open
Abstract
Aspergillus nidulans has three high mobility group box (HMGB) proteins, HmbA, HmbB and HmbC that are chromatin-associated architectural proteins involved in DNA-related functions. By creating and studying deletion strains in both veA+ and veA1 background, we have characterized the role of HmbA, HmbB and HmbC in sexual development. Expression of the mating-type MAT1-1 and MAT1-2 coding genes were found to be extremely down-regulated in all three mutants on day 4 of sexual development, which results in deficient ascospore production and/or ascospore viability in the mutants. In addition, we found that HmbA and HmbB play also a role in sensing of and response to environmental signals, while HmbC functionally interacts with VeA, a key regulator of the coordination of asexual and sexual development, as well as of secondary metabolism.
Collapse
Affiliation(s)
- Eszter Bokor
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Judit Ámon
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Kabichandra Keisham
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Zoltán Karácsony
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Csaba Vágvölgyi
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Zsuzsanna Hamari
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| |
Collapse
|
57
|
|
58
|
Hurst V, Shimada K, Gasser SM. Nuclear Actin and Actin-Binding Proteins in DNA Repair. Trends Cell Biol 2019; 29:462-476. [PMID: 30954333 DOI: 10.1016/j.tcb.2019.02.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022]
Abstract
Nuclear actin has been implicated in a variety of DNA-related processes including chromatin remodeling, transcription, replication, and DNA repair. However, the mechanistic understanding of actin in these processes has been limited, largely due to a lack of research tools that address the roles of nuclear actin specifically, that is, distinct from its cytoplasmic functions. Recent findings support a model for homology-directed DNA double-strand break (DSB) repair in which a complex of ARP2 and ARP3 (actin-binding proteins 2 and 3) binds at the break and works with actin to promote DSB clustering and homology-directed repair. Further, it has been reported that relocalization of heterochromatic DSBs to the nuclear periphery in Drosophila is ARP2/3 dependent and actin-myosin driven. Here we provide an overview of the role of nuclear actin and actin-binding proteins in DNA repair, critically evaluating the experimental tools used and potential indirect effects.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, CH-4056 Basel, Switzerland
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, CH-4056 Basel, Switzerland.
| |
Collapse
|
59
|
Ding N, Maiuri AR, O'Hagan HM. The emerging role of epigenetic modifiers in repair of DNA damage associated with chronic inflammatory diseases. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2019; 780:69-81. [PMID: 31395351 PMCID: PMC6690501 DOI: 10.1016/j.mrrev.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
At sites of chronic inflammation epithelial cells are exposed to high levels of reactive oxygen species (ROS), which can contribute to the initiation and development of many different human cancers. Aberrant epigenetic alterations that cause transcriptional silencing of tumor suppressor genes are also implicated in many diseases associated with inflammation, including cancer. However, it is not clear how altered epigenetic gene silencing is initiated during chronic inflammation. The high level of ROS at sites of inflammation is known to induce oxidative DNA damage in surrounding epithelial cells. Furthermore, DNA damage is known to trigger several responses, including recruitment of DNA repair proteins, transcriptional repression, chromatin modifications and other cell signaling events. Recruitment of epigenetic modifiers to chromatin in response to DNA damage results in transient covalent modifications to chromatin such as histone ubiquitination, acetylation and methylation and DNA methylation. DNA damage also alters non-coding RNA expression. All of these alterations have the potential to alter gene expression at sites of damage. Typically, these modifications and gene transcription are restored back to normal once the repair of the DNA damage is completed. However, chronic inflammation may induce sustained DNA damage and DNA damage responses that result in these transient covalent chromatin modifications becoming mitotically stable epigenetic alterations. Understanding how epigenetic alterations are initiated during chronic inflammation will allow us to develop pharmaceutical strategies to prevent or treat chronic inflammation-induced cancer. This review will focus on types of DNA damage and epigenetic alterations associated with chronic inflammatory diseases, the types of DNA damage and transient covalent chromatin modifications induced by inflammation and oxidative DNA damage and how these modifications may result in epigenetic alterations.
Collapse
Affiliation(s)
- Ning Ding
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Ashley R Maiuri
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA
| | - Heather M O'Hagan
- Medical Sciences Program, School of Medicine, Indiana University, Bloomington, IN 47405, USA; Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
60
|
Regulatory control of Sgs1 and Dna2 during eukaryotic DNA end resection. Proc Natl Acad Sci U S A 2019; 116:6091-6100. [PMID: 30850524 DOI: 10.1073/pnas.1819276116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the repair of DNA double-strand breaks by homologous recombination, the DNA break ends must first be processed into 3' single-strand DNA overhangs. In budding yeast, end processing requires the helicase Sgs1 (BLM in humans), the nuclease/helicase Dna2, Top3-Rmi1, and replication protein A (RPA). Here, we use single-molecule imaging to visualize Sgs1-dependent end processing in real-time. We show that Sgs1 is recruited to DNA ends through Top3-Rmi1-dependent or -independent means, and in both cases Sgs1 is maintained in an immoble state at the DNA ends. Importantly, the addition of Dna2 triggers processive Sgs1 translocation, but DNA resection only occurs when RPA is also present. We also demonstrate that the Sgs1-Dna2-Top3-Rmi1-RPA ensemble can efficiently disrupt nucleosomes, and that Sgs1 itself possesses nucleosome remodeling activity. Together, these results shed light on the regulatory interplay among conserved protein factors that mediate the nucleolytic processing of DNA ends in preparation for homologous recombination-mediated chromosome damage repair.
Collapse
|
61
|
Wang Z, Zuo W, Zeng Q, Qian Y, Li Y, Liu C, Wang J, Zhong S, Bu Y, Hu G. Loss of NFBD1/MDC1 disrupts homologous recombination repair and sensitizes nasopharyngeal carcinoma cells to PARP inhibitors. J Biomed Sci 2019; 26:14. [PMID: 30717758 PMCID: PMC6360700 DOI: 10.1186/s12929-019-0507-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC), a highly invasive tumor, exhibits a distinctive racial and geographic distribution. As options of agents for effective combination chemoradiotherapy for advanced NPC are limited, novel therapeutic approaches are desperately needed. Here the potential of silencing NFBD1 in combination with PARP inhibition as a novel therapeutic strategy for NPC was investigated. METHODS To investigate the function of NFBD1, we created NFBD1-depleted NPC cell lines via lentivirus mediated shRNA, and the colony formation, MTS assay, comet assay and apoptosis analysis were used to evaluate the sensitivity of NFBD1 knockdown on PARP inhibition. The signaling change was assessed by western blot, Immunofluorescence and flow cytometry. Furthermore, Xenografts model was used to evaluate the role of silencing NFBD1 in combination with PARP inhibition. RESULTS We find that silencing NFBD1 in combination with PARP inhibition significantly inhibits the cell proliferation and cell cycle checkpoint activity, and increases the apoptosis and DNA damage. Mechanistic studies reveal that NFBD1 loss blocks olaparib-induced homologous recombination repair by decreasing the formation of BRCA1, BRCA2 and RAD51 foci. Furthermore, the xenograft tumor model demonstrated significantly increases sensitivity towards PARP inhibition under NFBD1 deficiency. CONCLUSIONS We show that NFBD1 depletion may possess sensitizing effects of PARP inhibitor, and consequently offers novel therapeutic options for a significant subset of patients.
Collapse
Affiliation(s)
- Zhihai Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenqi Zuo
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Quan Zeng
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Qian
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jue Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shixun Zhong
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
62
|
Bártová E, Lochmanová G, Legartová S, Suchánková J, Fedr R, Krejčí J, Zdráhal Z. Irradiation by γ-rays reduces the level of H3S10 phosphorylation and weakens the G2 phase-dependent interaction between H3S10 phosphorylation and γH2AX. Biochimie 2018; 154:86-98. [DOI: 10.1016/j.biochi.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
63
|
Basnet S, Kamble ST. Silencing of Four Genes Involved in Chromatin Remodeling by RNA Interference Adversely Affects Fecundity of Bed Bugs (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1440-1445. [PMID: 30010946 DOI: 10.1093/jme/tjy112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 06/08/2023]
Abstract
DNA, the blue print of life, is densely wrapped around histone proteins to form chromatin. Chromatin remodeling ATPases unwind histone-DNA interactions to facilitate DNA transcription, modification, and repair. Four genes involved in chromatin remodeling, namely, imitation SWI (iswi), chromodomain-helicase-DNA-binding protein 1 (chd-1), DNA helicase INO80 (ino80) and mi-2 were silenced through the injection of dsRNA, and phenotypes were assessed in bed bugs. Bed bugs were injected with 0.2 µg dsRNA per insect between the last thoracic segment and first abdominal segment using a fine capillary tube fitted to a nanoinjector. We observed a significant reduction in reproductive potential with all the genes tested, suggesting the essential function of chromatin remodeling ATPases in many cellular processes including egg-laying and egg-hatching. Knockdown of mi-2 and iswi completely inhibited oviposition over time. Real-time quantitative polymerase chain reaction confirmed significant knockdown of targeted mRNAs for at least 30 d, which supports persistence of RNAi in bed bugs. In addition, we observed a significant depletion of targeted transcripts in eggs laid by bed bugs injected with dsRNAs specific to chromatin remodeling ATPases. This study demonstrates the importance of chromatin remodeling ATPase in bed bug reproduction.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
64
|
Chromatin Remodeling Factors Isw2 and Ino80 Regulate Chromatin, Replication, and Copy Number of the Saccharomyces cerevisiae Ribosomal DNA Locus. Genetics 2018; 210:1543-1556. [PMID: 30355728 DOI: 10.1534/genetics.118.301579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, ribosomal RNA genes are encoded in a highly repetitive tandem array referred to as the ribosomal DNA (rDNA) locus. The yeast rDNA is the site of a diverse set of DNA-dependent processes, including transcription of ribosomal RNAs by RNA polymerases I and III, transcription of noncoding RNAs by RNA polymerase II, DNA replication initiation, replication fork blocking, and recombination-mediated regulation of rDNA repeat copy number. All of this takes place in the context of chromatin, but little is known about the roles played by ATP-dependent chromatin remodeling factors at the yeast rDNA. In this work, we report that the Isw2 and Ino80 chromatin remodeling factors are targeted to this highly repetitive locus. We characterize for the first time their function in modifying local chromatin structure, finding that loss of these factors decreases the fraction of actively transcribed 35S ribosomal RNA genes and the positioning of nucleosomes flanking the ribosomal origin of replication. In addition, we report that Isw2 and Ino80 promote efficient firing of the ribosomal origin of replication and facilitate the regulated increase of rDNA repeat copy number. This work significantly expands our understanding of the importance of ATP-dependent chromatin remodeling for rDNA biology.
Collapse
|
65
|
Clouaire T, Rocher V, Lashgari A, Arnould C, Aguirrebengoa M, Biernacka A, Skrzypczak M, Aymard F, Fongang B, Dojer N, Iacovoni JS, Rowicka M, Ginalski K, Côté J, Legube G. Comprehensive Mapping of Histone Modifications at DNA Double-Strand Breaks Deciphers Repair Pathway Chromatin Signatures. Mol Cell 2018; 72:250-262.e6. [PMID: 30270107 PMCID: PMC6202423 DOI: 10.1016/j.molcel.2018.08.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Double-strand breaks (DSBs) are extremely detrimental DNA lesions that can lead to cancer-driving mutations and translocations. Non-homologous end joining (NHEJ) and homologous recombination (HR) represent the two main repair pathways operating in the context of chromatin to ensure genome stability. Despite extensive efforts, our knowledge of DSB-induced chromatin still remains fragmented. Here, we describe the distribution of 20 chromatin features at multiple DSBs spread throughout the human genome using ChIP-seq. We provide the most comprehensive picture of the chromatin landscape set up at DSBs and identify NHEJ- and HR-specific chromatin events. This study revealed the existence of a DSB-induced monoubiquitination-to-acetylation switch on histone H2B lysine 120, likely mediated by the SAGA complex, as well as higher-order signaling at HR-repaired DSBs whereby histone H1 is evicted while ubiquitin and 53BP1 accumulate over the entire γH2AX domains. DSB-chromatin landscape and HR/NHEJ chromatin signatures uncovered by ChIP-seq H2BK120 undergoes a switch from ubiquitination to acetylation at a local scale H1 is removed and ubiquitin accumulates on entire γH2AX domains, mainly at HR DSB 53BP1 spreads over megabase-sized domains, mostly in G1 at HR-prone DSBs
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France.
| | - Vincent Rocher
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Anahita Lashgari
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Coline Arnould
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Marion Aguirrebengoa
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Anna Biernacka
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury Warsaw 93, 02-089, Poland
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury Warsaw 93, 02-089, Poland
| | - François Aymard
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France
| | - Bernard Fongang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0615, USA
| | - Norbert Dojer
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0615, USA; Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Jason S Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, Toulouse 31062, France
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0615, USA
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury Warsaw 93, 02-089, Poland
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Axis-CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse 31062, France.
| |
Collapse
|
66
|
Klages-Mundt NL, Kumar A, Zhang Y, Kapoor P, Shen X. The Nature of Actin-Family Proteins in Chromatin-Modifying Complexes. Front Genet 2018; 9:398. [PMID: 30319687 PMCID: PMC6167448 DOI: 10.3389/fgene.2018.00398] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023] Open
Abstract
Actin is not only one of the most abundant proteins in eukaryotic cells, but also one of the most versatile. In addition to its familiar involvement in enabling contraction and establishing cellular motility and scaffolding in the cytosol, actin has well-documented roles in a variety of processes within the confines of the nucleus, such as transcriptional regulation and DNA repair. Interestingly, monomeric actin as well as actin-related proteins (Arps) are found as stoichiometric subunits of a variety of chromatin remodeling complexes and histone acetyltransferases, raising the question of precisely what roles they serve in these contexts. Actin and Arps are present in unique combinations in chromatin modifiers, helping to establish structural integrity of the complex and enabling a wide range of functions, such as recruiting the complex to nucleosomes to facilitate chromatin remodeling and promoting ATPase activity of the catalytic subunit. Actin and Arps are also thought to help modulate chromatin dynamics and maintain higher-order chromatin structure. Moreover, the presence of actin and Arps in several chromatin modifiers is necessary for promoting genomic integrity and an effective DNA damage response. In this review, we discuss the involvement of actin and Arps in these nuclear complexes that control chromatin remodeling and histone modifications, while also considering avenues for future study to further shed light on their functional importance.
Collapse
Affiliation(s)
- Naeh L Klages-Mundt
- Science Park Research Division, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Ashok Kumar
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Yuexuan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Prabodh Kapoor
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Xuetong Shen
- Science Park Research Division, Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
67
|
Brahma S, Ngubo M, Paul S, Udugama M, Bartholomew B. The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nat Commun 2018; 9:3309. [PMID: 30120252 PMCID: PMC6098158 DOI: 10.1038/s41467-018-05710-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear actin and actin-related proteins (Arps) are key components of chromatin remodeling and modifying complexes. Although Arps are essential for the functions of chromatin remodelers, their specific roles and mechanisms are unclear. Here we define the nucleosome binding interfaces and functions of the evolutionarily conserved Arps in the yeast INO80 chromatin remodeling complex. We show that the N-terminus of Arp8, C-terminus of Arp4 and the HSA domain of Ino80 bind extranucleosomal DNA 37-51 base pairs from the edge of nucleosomes and function as a DNA-length sensor that regulates nucleosome sliding by INO80. Disruption of Arp8 and Arp4 binding to DNA uncouples ATP hydrolysis from nucleosome mobilization by disengaging Arp5 from the acidic patch on histone H2A-H2B and the Ino80-ATPase domain from the Super-helical Location (SHL) -6 of nucleosomes. Our data suggest a functional interplay between INO80's Arp8-Arp4-actin and Arp5 modules in sensing the DNA length separating nucleosomes and regulating nucleosome positioning.
Collapse
Affiliation(s)
- Sandipan Brahma
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Mzwanele Ngubo
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Somnath Paul
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA.,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA
| | - Maheshi Udugama
- Department of Biochemistry and Molecular Biology, Southern Illinois University, 1245 Lincoln Drive, Carbondale, 62901, USA.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Vic, 3800, Australia
| | - Blaine Bartholomew
- Department of Epigenetics & Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX, 78957, USA. .,Center for Cancer Epigenetics, MD Anderson Cancer Center, Smithville, TX, 78957, USA.
| |
Collapse
|
68
|
Chen X, Wu L, Li D, Xu Y, Zhang L, Niu K, Kong R, Gu J, Xu Z, Chen Z, Sun J. Radiosensitizing effects of miR-18a-5p on lung cancer stem-like cells via downregulating both ATM and HIF-1α. Cancer Med 2018; 7:3834-3847. [PMID: 29860718 PMCID: PMC6089184 DOI: 10.1002/cam4.1527] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is one of the main causes of cancer mortality globally. Most patients received radiotherapy during the course of disease. However, radioresistance generally occurs in the majority of these patients, leading to poor curative effect, and the underlying mechanism remains unclear. In the present study, miR-18a-5p expression was downregulated in irradiated lung cancer cells. Overexpression of miR-18a-5p increased the radiosensitivity of lung cancer cells and inhibited the growth of A549 xenografts after radiation exposure. Dual luciferase report system and miR-18a-5p overexpression identified ataxia telangiectasia mutated (ATM) and hypoxia inducible factor 1 alpha (HIF-1α) as the targets of miR-18a-5p. The mRNA and protein expressions of ATM and HIF-1α were dramatically downregulated by miR-18a-5p in vitro and in vivo. Clinically, plasma miR-18a-5p expression was significantly higher in radiosensitive than in radioresistant group (P < .001). The cutoff value of miR-18a-5p >2.28 was obtained from receiver operating characteristic (ROC) curve. The objective response rate (ORR) was significantly higher in miR-18a-5p-high group than in miR-18a-5p-low group (P < .001). A tendency demonstrated that the median local progression-free survival (PFS) from radiotherapy was longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .082). The median overall survival (OS) from radiotherapy was numerically longer in miR-18a-5p-high than in miR-18a-5p-low group (P = .281). The sensitivity and specificity of plasma miR-18a-5p to predict radiosensitivity was 87% and 95%, respectively. Collectively, these results indicate that miR-18a-5p increases the radiosensitivity in lung cancer cells and CD133+ stem-like cells via downregulating ATM and HIF-1α expressions. Plasma miR-18a-5p would be an available indicator of radiosensitivity in lung cancer patients.
Collapse
Affiliation(s)
- Xu Chen
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Lei Wu
- Department of GerontologyChongqing General HospitalChongqingChina
| | - Dezhi Li
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Yanmei Xu
- Oncology DepartmentLeshan People’s HospitalSichuanChina
| | - Luping Zhang
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Kai Niu
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Rui Kong
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Jiaoyang Gu
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Zihan Xu
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Zhengtang Chen
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| | - Jianguo Sun
- Cancer Institute, Xinqiao HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
69
|
Sun J, Shi L, Kinomura A, Fukuto A, Horikoshi Y, Oma Y, Harata M, Ikura M, Ikura T, Kanaar R, Tashiro S. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations. eLife 2018; 7:e32222. [PMID: 29759113 PMCID: PMC5953535 DOI: 10.7554/elife.32222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities.
Collapse
Affiliation(s)
- Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Lin Shi
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Aiko Kinomura
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Roland Kanaar
- Department of Molecular GeneticsOncode InstituteRotterdamNetherlands
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| |
Collapse
|
70
|
Chakraborty S, Pandita RK, Hambarde S, Mattoo AR, Charaka V, Ahmed KM, Iyer SP, Hunt CR, Pandita TK. SMARCAD1 Phosphorylation and Ubiquitination Are Required for Resection during DNA Double-Strand Break Repair. iScience 2018; 2:123-135. [PMID: 29888761 PMCID: PMC5993204 DOI: 10.1016/j.isci.2018.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/16/2018] [Accepted: 02/28/2018] [Indexed: 02/08/2023] Open
Abstract
The chromatin remodeling factor SMARCAD1, an SWI/SNF ATPase family member, has a role in 5' end resection at DNA double-strand breaks (DSBs) to produce single-strand DNA (ssDNA), a critical step for subsequent checkpoint and repair factor loading to remove DNA damage. However, the mechanistic details of SMARCAD1 coupling to the DNA damage response and repair pathways remains unknown. Here we report that SMARCAD1 is recruited to DNA DSBs through an ATM-dependent process. Depletion of SMARCAD1 reduces ionizing radiation (IR)-induced repairosome foci formation and DSB repair by homologous recombination (HR). IR induces SMARCAD1 phosphorylation at a conserved T906 by ATM kinase, a modification essential for SMARCAD1 recruitment to DSBs. Interestingly, T906 phosphorylation is also important for SMARCAD1 ubiquitination by RING1 at K905. Both these post-translational modifications are critical for regulating the role of SMARCAD1 in DNA end resection, HR-mediated repair, and cell survival after DNA damage.
Collapse
Affiliation(s)
- Sharmistha Chakraborty
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.
| | - Raj K Pandita
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Shashank Hambarde
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Abid R Mattoo
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Vijaya Charaka
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Kazi M Ahmed
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Swaminathan P Iyer
- Department of Hematology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Cancer Center, The Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Poli J, Gasser SM, Papamichos-Chronakis M. The INO80 remodeller in transcription, replication and repair. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0290. [PMID: 28847827 DOI: 10.1098/rstb.2016.0290] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
The accessibility of eukaryotic genomes to the action of enzymes involved in transcription, replication and repair is maintained despite the organization of DNA into nucleosomes. This access is often regulated by the action of ATP-dependent nucleosome remodellers. The INO80 class of nucleosome remodellers has unique structural features and it is implicated in a diverse array of functions, including transcriptional regulation, DNA replication and DNA repair. Underlying these diverse functions is the catalytic activity of the main ATPase subunit, which in the context of a multisubunit complex can shift nucleosomes and carry out histone dimer exchange. In vitro studies showed that INO80 promotes replication fork progression on a chromatin template, while in vivo it was shown to facilitate replication fork restart after stalling and to help evict RNA polymerase II at transcribed genes following the collision of a replication fork with transcription. More recent work in yeast implicates INO80 in the general eviction and degradation of nucleosomes following high doses of oxidative DNA damage. Beyond these replication and repair functions, INO80 was shown to repress inappropriate transcription at promoters in the opposite direction to the coding sequence. Here we discuss the ways in which INO80's diverse functions help maintain genome integrity.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Jérôme Poli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.,University of Montpellier and Centre de Recherche en Biologie Cellulaire (CRBM), UMR5237, CNRS, Montpellier 34095, Cedex 5, France
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland .,Faculty of Natural Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Manolis Papamichos-Chronakis
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
72
|
Torrecilla I, Oehler J, Ramadan K. The role of ubiquitin-dependent segregase p97 (VCP or Cdc48) in chromatin dynamics after DNA double strand breaks. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0282. [PMID: 28847819 PMCID: PMC5577460 DOI: 10.1098/rstb.2016.0282] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/27/2022] Open
Abstract
DNA double strand breaks (DSBs) are the most cytotoxic DNA lesions and, if not repaired, lead to chromosomal rearrangement, genomic instability and cell death. Cells have evolved a complex network of DNA repair and signalling molecules which promptly detect and repair DSBs, commonly known as the DNA damage response (DDR). The DDR is orchestrated by various post-translational modifications such as phosphorylation, methylation, ubiquitination or SUMOylation. As DSBs are located in complex chromatin structures, the repair of DSBs is engineered at two levels: (i) at sites of broken DNA and (ii) at chromatin structures that surround DNA lesions. Thus, DNA repair and chromatin remodelling machineries must work together to efficiently repair DSBs. Here, we summarize the current knowledge of the ubiquitin-dependent molecular unfoldase/segregase p97 (VCP in vertebrates and Cdc48 in worms and lower eukaryotes) in DSB repair. We identify p97 as an essential factor that regulates DSB repair. p97-dependent extraction of ubiquitinated substrates mediates spatio-temporal protein turnover at and around the sites of DSBs, thus orchestrating chromatin remodelling and DSB repair. As p97 is a druggable target, p97 inhibition in the context of DDR has great potential for cancer therapy, as shown for other DDR components such as PARP, ATR and CHK1.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Judith Oehler
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
73
|
Morrison AJ. Genome maintenance functions of the INO80 chromatin remodeller. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0289. [PMID: 28847826 DOI: 10.1098/rstb.2016.0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin modification is conserved in all eukaryotes and is required to facilitate and regulate DNA-templated processes. For example, chromatin manipulation, such as histone post-translational modification and nucleosome positioning, play critical roles in genome stability pathways. The INO80 chromatin-remodelling complex, which regulates the abundance and positioning of nucleosomes, is particularly important for proper execution of inducible responses to DNA damage. This review discusses the participation and activity of the INO80 complex in DNA repair and cell cycle checkpoint pathways, with emphasis on the Saccharomyces cerevisiae model system. Furthermore, the role of ATM/ATR kinases, central regulators of DNA damage signalling, in the regulation of INO80 function will be reviewed. In addition, emerging themes of chromatin remodelling in mitotic stability pathways and chromosome segregation will be introduced. These studies are critical to understanding the dynamic chromatin landscape that is rapidly and reversibly modified to maintain the integrity of the genome.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
74
|
Beckwith SL, Schwartz EK, García-Nieto PE, King DA, Gowans GJ, Wong KM, Eckley TL, Paraschuk AP, Peltan EL, Lee LR, Yao W, Morrison AJ. The INO80 chromatin remodeler sustains metabolic stability by promoting TOR signaling and regulating histone acetylation. PLoS Genet 2018; 14:e1007216. [PMID: 29462149 PMCID: PMC5834206 DOI: 10.1371/journal.pgen.1007216] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/02/2018] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Chromatin remodeling complexes are essential for gene expression programs that coordinate cell function with metabolic status. However, how these remodelers are integrated in metabolic stability pathways is not well known. Here, we report an expansive genetic screen with chromatin remodelers and metabolic regulators in Saccharomyces cerevisiae. We found that, unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple distinct functional subunit modules. We identified a strikingly divergent genetic signature for the Ies6 subunit module that links the INO80 complex to metabolic homeostasis. In particular, mitochondrial maintenance is disrupted in ies6 mutants. INO80 is also needed to communicate TORC1-mediated signaling to chromatin, as ino80 mutants exhibit defective transcriptional profiles and altered histone acetylation of TORC1-responsive genes. Furthermore, comparative analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is a central component of metabolic homeostasis that influences histone acetylation and may contribute to disease when disrupted.
Collapse
Affiliation(s)
- Sean L. Beckwith
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Erin K. Schwartz
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | | | - Devin A. King
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Graeme J. Gowans
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Ka Man Wong
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Tessa L. Eckley
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | | | - Egan L. Peltan
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Laura R. Lee
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Wei Yao
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Ashby J. Morrison
- Department of Biology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
75
|
Schwarz M, Schall K, Kallis E, Eustermann S, Guariento M, Moldt M, Hopfner KP, Michaelis J. Single-molecule nucleosome remodeling by INO80 and effects of histone tails. FEBS Lett 2018; 592:318-331. [PMID: 29331030 DOI: 10.1002/1873-3468.12973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 01/30/2023]
Abstract
Genome maintenance and integrity requires continuous alterations of the compaction state of the chromatin structure. Chromatin remodelers, among others the INO80 complex, help organize chromatin by repositioning, reshaping, or evicting nucleosomes. We report on INO80 nucleosome remodeling, assayed by single-molecule Foerster resonance energy transfer on canonical nucleosomes as well as nucleosomes assembled from tailless histones. Nucleosome repositioning by INO80 is a processively catalyzed reaction. During the initiation of remodeling, probed by the INO80 bound state, the nucleosome reveals structurally heterogeneous states for tailless nucleosomes (in contrast to wild-type nucleosomes). We, therefore, propose an altered energy landscape for the INO80-mediated nucleosome sliding reaction in the absence of histone tails.
Collapse
Affiliation(s)
- Marianne Schwarz
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany.,Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kevin Schall
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eleni Kallis
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany
| | - Sebastian Eustermann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mara Guariento
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany
| | - Manuela Moldt
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Michaelis
- Faculty of Natural Sciences, Institute of Biophysics, Ulm University, Germany
| |
Collapse
|
76
|
Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat Commun 2018; 9:368. [PMID: 29371594 PMCID: PMC5785521 DOI: 10.1038/s41467-017-02796-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/28/2017] [Indexed: 12/18/2022] Open
Abstract
During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues—sinus venosus and endocardium—causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall. Heart development requires compaction of the ventricular wall into a dense myocardium at mid-gestation. Here, Rhee and colleagues show that the chromatin remodeller Ino80 is critical for the formation of the coronary vasculature, and show that coronary vessels are needed for successful cardiac compaction during embryonic development.
Collapse
|
77
|
Dissecting Nucleosome Function with a Comprehensive Histone H2A and H2B Mutant Library. G3-GENES GENOMES GENETICS 2017; 7:3857-3866. [PMID: 29038170 PMCID: PMC5714483 DOI: 10.1534/g3.117.300252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Using a comprehensive library of histone H2A and H2B mutants, we assessed the biological function of each amino acid residue involved in various stress conditions including exposure to different DNA damage-inducing reagents, different growth temperatures, and other chemicals. H2B N- and H2A C-termini were critical for maintaining nucleosome function and mutations in these regions led to pleiotropic phenotypes. Additionally, two screens were performed using this library, monitoring heterochromatin gene silencing and genome stability, to identify residues that could compromise normal function when mutated. Many distinctive regions within the nucleosome were revealed. Furthermore, we used the barcode sequencing (bar-seq) method to profile the mutant composition of many libraries in one high-throughput sequencing experiment, greatly reducing the labor and increasing the capacity. This study not only demonstrates the applications of the versatile histone library, but also reveals many previously unknown functions of histone H2A and H2B.
Collapse
|
78
|
Cryo-EM structures of the human INO80 chromatin-remodeling complex. Nat Struct Mol Biol 2017; 25:37-44. [PMID: 29323271 PMCID: PMC5777635 DOI: 10.1038/s41594-017-0003-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/01/2017] [Indexed: 11/08/2022]
Abstract
Access to chromatin for processes such as transcription and DNA repair requires the sliding of nucleosomes along DNA. This process is aided by chromatin-remodeling complexes, such as the multisubunit INO80 chromatin-remodeling complex. Here we present cryo-EM structures of the active core complex of human INO80 at 9.6 Å, with portions at 4.1-Å resolution, and reconstructions of combinations of subunits. Together, these structures reveal the architecture of the INO80 complex, including Ino80 and actin-related proteins, which is assembled around a single RUVBL1 (Tip49a) and RUVBL2 (Tip49b) AAA+ heterohexamer. An unusual spoked-wheel structural domain of the Ino80 subunit is engulfed by this heterohexamer; both, in combination, form the core of the complex. We also identify a cleft in RUVBL1 and RUVBL2, which forms a major interaction site for partner proteins and probably communicates these interactions to its nucleotide-binding sites.
Collapse
|
79
|
Jiang S, Liu Y, Wang A, Qin Y, Luo M, Wu Q, Boeke JD, Dai J. Construction of Comprehensive Dosage-Matching Core Histone Mutant Libraries for Saccharomyces cerevisiae. Genetics 2017; 207:1263-1273. [PMID: 29084817 PMCID: PMC5714446 DOI: 10.1534/genetics.117.300450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/20/2017] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae contains two genes for each core histone, which are presented as pairs under the control of a divergent promoter, i.e., HHT1-HHF1, HHT2-HHF2, HTA1-HTB1 and HTA2-HTB2HHT1-HHF1, and HHT2-HHF2 encode histone H3 and H4 with identical amino acid sequences but under the control of differently regulated promoters. Previous mutagenesis studies were carried out by deleting one pair and mutating the other one. Here, we present the design and construction of three additional libraries covering HTA1-HTB1, HTA2-HTB2, and HHT1-HHF1 respectively. Together with the previously described library of HHT2-HHF2 mutants, a systematic and complete collection of mutants for each of the eight core S. cerevisiae histone genes becomes available. Each designed mutant was incorporated into the genome, generating three more corresponding libraries of yeast strains. We demonstrated that, although, under normal growth conditions, strains with single-copy integrated histone genes lacked phenotypes, in some growth conditions, growth deficiencies were observed. Specifically, we showed that addition of a second copy of the mutant histone gene could rescue the lethality in some previously known mutants that cannot survive with a single copy. This resource enables systematic studies of function of each nucleosome residue in plasmid, single-copy, and double-copy integrated formats.
Collapse
Affiliation(s)
- Shuangying Jiang
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Liu
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Ann Wang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York 10011
| | - Yiran Qin
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Maoguo Luo
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Qingyu Wu
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, New York 10011
| | - Junbiao Dai
- MOE Key laboratory of Bioinformatics and Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
80
|
Gimenez E, Manzano-Agugliaro F. DNA Damage Repair System in Plants: A Worldwide Research Update. Genes (Basel) 2017; 8:genes8110299. [PMID: 29084140 PMCID: PMC5704212 DOI: 10.3390/genes8110299] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
Living organisms are usually exposed to various DNA damaging agents so the mechanisms to detect and repair diverse DNA lesions have developed in all organisms with the result of maintaining genome integrity. Defects in DNA repair machinery contribute to cancer, certain diseases, and aging. Therefore, conserving the genomic sequence in organisms is key for the perpetuation of life. The machinery of DNA damage repair (DDR) in prokaryotes and eukaryotes is similar. Plants also share mechanisms for DNA repair with animals, although they differ in other important details. Plants have, surprisingly, been less investigated than other living organisms in this context, despite the fact that numerous lethal mutations in animals are viable in plants. In this manuscript, a worldwide bibliometric analysis of DDR systems and DDR research in plants was made. A comparison between both subjects was accomplished. The bibliometric analyses prove that the first study about DDR systems in plants (1987) was published thirteen years later than that for other living organisms (1975). Despite the increase in the number of papers about DDR mechanisms in plants in recent decades, nowadays the number of articles published each year about DDR systems in plants only represents 10% of the total number of articles about DDR. The DDR research field was done by 74 countries while the number of countries involved in the DDR & Plant field is 44. This indicates the great influence that DDR research in the plant field currently has, worldwide. As expected, the percentage of studies published about DDR systems in plants has increased in the subject area of agricultural and biological sciences and has diminished in medicine with respect to DDR studies in other living organisms. In short, bibliometric results highlight the current interest in DDR research in plants among DDR studies and can open new perspectives in the research field of DNA damage repair.
Collapse
Affiliation(s)
- Estela Gimenez
- Central Research Services, University of Almería, C/ Sacramento s/n, Almería 04120, Spain.
| | - Francisco Manzano-Agugliaro
- Central Research Services, University of Almería, C/ Sacramento s/n, Almería 04120, Spain.
- Engineering Department, University of Almería, C/ Sacramento s/n., Almería 04120, Spain.
| |
Collapse
|
81
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
82
|
Li S, Breaker RR. Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics. BMC Genomics 2017; 18:785. [PMID: 29029611 PMCID: PMC5640933 DOI: 10.1186/s12864-017-4171-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND With the development of rapid and inexpensive DNA sequencing, the genome sequences of more than 100 fungal species have been made available. This dataset provides an excellent resource for comparative genomics analyses, which can be used to discover genetic elements, including noncoding RNAs (ncRNAs). Bioinformatics tools similar to those used to uncover novel ncRNAs in bacteria, likewise, should be useful for searching fungal genomic sequences, and the relative ease of genetic experiments with some model fungal species could facilitate experimental validation studies. RESULTS We have adapted a bioinformatics pipeline for discovering bacterial ncRNAs to systematically analyze many fungal genomes. This comparative genomics pipeline integrates information on conserved RNA sequence and structural features with alternative splicing information to reveal fungal RNA motifs that are candidate regulatory domains, or that might have other possible functions. A total of 15 prominent classes of structured ncRNA candidates were identified, including variant HDV self-cleaving ribozyme representatives, atypical snoRNA candidates, and possible structured antisense RNA motifs. Candidate regulatory motifs were also found associated with genes for ribosomal proteins, S-adenosylmethionine decarboxylase (SDC), amidase, and HexA protein involved in Woronin body formation. We experimentally confirm that the variant HDV ribozymes undergo rapid self-cleavage, and we demonstrate that the SDC RNA motif reduces the expression of SAM decarboxylase by translational repression. Furthermore, we provide evidence that several other motifs discovered in this study are likely to be functional ncRNA elements. CONCLUSIONS Systematic screening of fungal genomes using a computational discovery pipeline has revealed the existence of a variety of novel structured ncRNAs. Genome contexts and similarities to known ncRNA motifs provide strong evidence for the biological and biochemical functions of some newly found ncRNA motifs. Although initial examinations of several motifs provide evidence for their likely functions, other motifs will require more in-depth analysis to reveal their functions.
Collapse
Affiliation(s)
- Sanshu Li
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 China
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| |
Collapse
|
83
|
The INO80 Complex Removes H2A.Z to Promote Presynaptic Filament Formation during Homologous Recombination. Cell Rep 2017; 19:1294-1303. [DOI: 10.1016/j.celrep.2017.04.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/27/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023] Open
|
84
|
Qiu Z, Zhang Z, Roschke A, Varga T, Aplan PD. Generation of Gross Chromosomal Rearrangements by a Single Engineered DNA Double Strand Break. Sci Rep 2017; 7:43156. [PMID: 28225067 PMCID: PMC5320478 DOI: 10.1038/srep43156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocations, inversions amplifications, and deletions, can be causal events leading to malignant transformation. GCRs are thought to be triggered by DNA double strand breaks (DSBs), which in turn can be spontaneous or induced by external agents (eg. cytotoxic chemotherapy, ionizing radiation). It has been shown that induction of DNA DSBs at two defined loci can produce stable balanced chromosomal translocations, however, a single engineered DNA DSB could not. Herein, we report that although a single engineered DNA DSB in H2AX “knockdown” cells did not generate GCRs, repair of a single engineered DNA DSB in fibroblasts that had ablated H2ax did produce clonal, stable GCRs, including balanced translocations and megabase-pair inversions. Upon correction of the H2ax deficiency, cells no longer generated GCRs following a single engineered DNA DSB. These findings demonstrate that clonal, stable GCRs can be produced by a single engineered DNA DSB in H2ax knockout cells, and that the production of these GCRs is ameliorated by H2ax expression.
Collapse
Affiliation(s)
- Zhijun Qiu
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhenhua Zhang
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Roschke
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamas Varga
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Aplan
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
85
|
Zhang P, Torres K, Liu X, Liu CG, Pollock RE. An Overview of Chromatin-Regulating Proteins in Cells. Curr Protein Pept Sci 2017; 17:401-10. [PMID: 26796306 DOI: 10.2174/1389203717666160122120310] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, gene expressions on chromosome DNA are orchestrated by a dynamic chromosome structure state that is largely controlled by chromatin-regulating proteins, which regulate chromatin structures, release DNA from the nucleosome, and activate or suppress gene expression by modifying nucleosome histones or mobilizing DNA-histone structure. The two classes of chromatinregulating proteins are 1) enzymes that modify histones through methylation, acetylation, phosphorylation, adenosine diphosphate-ribosylation, glycosylation, sumoylation, or ubiquitylation and 2) enzymes that remodel DNA-histone structure with energy from ATP hydrolysis. Chromatin-regulating proteins, which modulate DNA-histone interaction, change chromatin conformation, and increase or decrease the binding of functional DNA-regulating protein complexes, have major functions in nuclear processes, including gene transcription and DNA replication, repair, and recombination. This review provides a general overview of chromatin-regulating proteins, including their classification, molecular functions, and interactions with the nucleosome in eukaryotic cells.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
86
|
Bantele SC, Ferreira P, Gritenaite D, Boos D, Pfander B. Targeting of the Fun30 nucleosome remodeller by the Dpb11 scaffold facilitates cell cycle-regulated DNA end resection. eLife 2017; 6. [PMID: 28063255 PMCID: PMC5300703 DOI: 10.7554/elife.21687] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/03/2017] [Indexed: 12/22/2022] Open
Abstract
DNA double strand breaks (DSBs) can be repaired by either recombination-based or direct ligation-based mechanisms. Pathway choice is made at the level of DNA end resection, a nucleolytic processing step, which primes DSBs for repair by recombination. Resection is thus under cell cycle control, but additionally regulated by chromatin and nucleosome remodellers. Here, we show that both layers of control converge in the regulation of resection by the evolutionarily conserved Fun30/SMARCAD1 remodeller. Budding yeast Fun30 and human SMARCAD1 are cell cycle-regulated by interaction with the DSB-localized scaffold protein Dpb11/TOPBP1, respectively. In yeast, this protein assembly additionally comprises the 9-1-1 damage sensor, is involved in localizing Fun30 to damaged chromatin, and thus is required for efficient long-range resection of DSBs. Notably, artificial targeting of Fun30 to DSBs is sufficient to bypass the cell cycle regulation of long-range resection, indicating that chromatin remodelling during resection is underlying DSB repair pathway choice.
Collapse
Affiliation(s)
- Susanne Cs Bantele
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pedro Ferreira
- Centre for Medical Biotechnology, Molecular Genetics II, University Duisburg-Essen, Essen, Germany
| | - Dalia Gritenaite
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Dominik Boos
- Centre for Medical Biotechnology, Molecular Genetics II, University Duisburg-Essen, Essen, Germany
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
87
|
Abstract
Eukaryotic genomes are packaged in chromatin. The higher-order organization of nucleosome core particles is controlled by the association of the intervening linker DNA with either the linker histone H1 or high mobility group box (HMGB) proteins. While H1 is thought to stabilize the nucleosome by preventing DNA unwrapping, the DNA bending imposed by HMGB may propagate to the nucleosome to destabilize chromatin. For metazoan H1, chromatin compaction requires its lysine-rich C-terminal domain, a domain that is buried between globular domains in the previously characterized yeast Saccharomyces cerevisiae linker histone Hho1p. Here, we discuss the functions of S. cerevisiae HMO1, an HMGB family protein unique in containing a terminal lysine-rich domain and in stabilizing genomic DNA. On ribosomal DNA (rDNA) and genes encoding ribosomal proteins, HMO1 appears to exert its role primarily by stabilizing nucleosome-free regions or "fragile" nucleosomes. During replication, HMO1 likewise appears to ensure low nucleosome density at DNA junctions associated with the DNA damage response or the need for topoisomerases to resolve catenanes. Notably, HMO1 shares with the mammalian linker histone H1 the ability to stabilize chromatin, as evidenced by the absence of HMO1 creating a more dynamic chromatin environment that is more sensitive to nuclease digestion and in which chromatin-remodeling events associated with DNA double-strand break repair occur faster; such chromatin stabilization requires the lysine-rich extension of HMO1. Thus, HMO1 appears to have evolved a unique linker histone-like function involving the ability to stabilize both conventional nucleosome arrays as well as DNA regions characterized by low nucleosome density or the presence of noncanonical nucleosomes.
Collapse
|
88
|
Identification of CHD1L as an Important Regulator for Spermatogonial Stem Cell Survival and Self-Renewal. Stem Cells Int 2016; 2016:4069543. [PMID: 28003832 PMCID: PMC5149700 DOI: 10.1155/2016/4069543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022] Open
Abstract
Chromodomain helicase/ATPase DNA binding protein 1-like gene (Chd1l) participates in chromatin-dependent processes, including transcriptional activation and DNA repair. In this study, we have found for the first time that Chd1l is mainly expressed in the testicular tissues of prepubertal and adult mice and colocalized with PLZF, OCT4, and GFRα1 in the neonatal mouse testis and THY1+ undifferentiated spermatogonia or spermatogonial stem cells (SSCs). Knockdown of endogenous Chd1l in cultured mouse undifferentiated SSCs inhibited the expression levels of Oct4, Plzf, Gfrα1, and Pcna genes, suppressed SSC colony formation, and reduced BrdU incorporation, while increasing SSC apoptosis. Moreover, the Chd1l gene expression is activated by GDNF in the cultured mouse SSCs, and the GDNF signaling pathway was modulated by endogenous levels of Chd1l; as demonstrated by the gene expression levels of GDNF, inducible transcripts Etv5, Bcl6b, Pou3f, and Lhx1, but not that of GDNF-independent gene, Taf4b, were significantly downregulated by Chd1l knockdown in mouse SSCs. Taken together, this study provides the first evidence to support the notion that Chd1l is an intrinsic and novel regulator for SSC survival and self-renewal, and it exerts such regulation at least partially through a GDNF signaling pathway.
Collapse
|
89
|
Zhou W, Gao J, Ma J, Cao L, Zhang C, Zhu Y, Dong A, Shen WH. Distinct roles of the histone chaperones NAP1 and NRP and the chromatin-remodeling factor INO80 in somatic homologous recombination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:397-410. [PMID: 27352805 DOI: 10.1111/tpj.13256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/24/2016] [Indexed: 05/10/2023]
Abstract
Homologous recombination (HR) of nuclear DNA occurs within the context of a highly complex chromatin structure. Despite extensive studies of HR in diverse organisms, mechanisms regulating HR within the chromatin context remain poorly elucidated. Here we investigate the role and interplay of the histone chaperones NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) and NAP1-RELATED PROTEIN (NRP) and the ATP-dependent chromatin-remodeling factor INOSITOL AUXOTROPHY80 (INO80) in regulating somatic HR in Arabidopsis thaliana. We show that simultaneous knockout of the four AtNAP1 genes and the two NRP genes in the sextuple mutant m123456-1 barely affects normal plant growth and development. Interestingly, compared with the respective AtNAP1 (m123-1 and m1234-1) or NRP (m56-1) loss-of-function mutants, the sextuple mutant m123456-1 displays an enhanced plant hypersensitivity to UV or bleomycin treatments. Using HR reporter constructs, we show that AtNAP1 and NRP act in parallel to synergistically promote somatic HR. Distinctively, the AtINO80 loss-of-function mutation (atino80-5) is epistatic to m56-1 in plant phenotype and telomere length but hypostatic to m56-1 in HR determinacy. Further analyses show that expression of HR machinery genes and phosphorylation of H2A.X (γ-H2A.X) are not impaired in the mutants. Collectively, our study indicates that NRP and AtNAP1 synergistically promote HR upstream of AtINO80-mediated chromatin remodeling after the formation of γ-H2A.X foci during DNA damage repair.
Collapse
Affiliation(s)
- Wangbin Zhou
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
| | - Juan Gao
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
- School of Life Sciences, Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, 200444, China
| | - Jing Ma
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
| | - Lin Cao
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
| | - Chi Zhang
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
| | - Yan Zhu
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
| | - Aiwu Dong
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
| | - Wen-Hui Shen
- Department of Biochemistry, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes (IBMP), UPR2357 CNRS, Université de Strasbourg, 12 rue du Général Zimmer, Strasbourg Cédex, 67084, France
| |
Collapse
|
90
|
Methods to Study the Atypical Roles of DNA Repair and SMC Proteins in Gene Silencing. Methods Mol Biol 2016. [PMID: 27797079 DOI: 10.1007/978-1-4939-6545-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Silenced heterochromatin influences all nuclear processes including chromosome structure, nuclear organization, transcription, replication, and repair. Proteins that mediate silencing affect all of these nuclear processes. Similarly proteins involved in replication, repair, and chromosome structure play a role in the formation and maintenance of silenced heterochromatin. In this chapter we describe a handful of simple tools and methods that can be used to study the atypical role of proteins in gene silencing.
Collapse
|
91
|
Abstract
Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition.
Collapse
Affiliation(s)
- Monica Tyagi
- a Kusuma School of Biological Sciences, Indian Institute of Technology Delhi Hauz Khas , New Delhi , India
| | | | | | | |
Collapse
|
92
|
Kulashreshtha M, Mehta IS, Kumar P, Rao BJ. Chromosome territory relocation during DNA repair requires nuclear myosin 1 recruitment to chromatin mediated by ϒ-H2AX signaling. Nucleic Acids Res 2016; 44:8272-91. [PMID: 27365048 PMCID: PMC5041470 DOI: 10.1093/nar/gkw573] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/03/2016] [Indexed: 11/22/2022] Open
Abstract
During DNA damage response (DDR), certain gene rich chromosome territories (CTs) relocate to newer positions within interphase nuclei and revert to their native locations following repair. Such dynamic relocation of CTs has been observed under various cellular conditions, however, the underlying mechanistic basis of the same has remained largely elusive. In this study, we aim to understand the temporal and molecular details of such crosstalk between DDR signaling and CT relocation dynamics. We demonstrate that signaling at DNA double strand breaks (DSBs) by the phosphorylated histone variant (ϒ-H2AX) is a pre-requisite for damage induced CT relocation, as cells deficient in ϒ-H2AX signaling fail to exhibit such a response. Inhibition of Rad51 or DNA Ligase IV mediated late steps of double strand break repair does not seem to abrogate CT relocation completely. Upon DNA damage, an increase in the levels of chromatin bound motor protein nuclear myosin 1 (NM1) ensues, which appears to be functionally linked to ϒ-H2AX signaling. Importantly, the motor function of NM1 is essential for its recruitment to chromatin and CT relocation following damage. Taking these observations together, we propose that early DDR sensing and signaling result in NM1 recruitment to chromosomes which in turn guides DNA damage induced CT relocation.
Collapse
Affiliation(s)
- Mugdha Kulashreshtha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Ishita S Mehta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Pradeep Kumar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India UM-DAE Centre for Excellence in Basic Sciences, Biological Sciences, Kalina Campus, Santacruz (E), Mumbai, Maharashtra 400098, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| |
Collapse
|
93
|
Liu T, Huang J. DNA End Resection: Facts and Mechanisms. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:126-130. [PMID: 27240470 PMCID: PMC4936662 DOI: 10.1016/j.gpb.2016.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 01/05/2023]
Abstract
DNA double-strand breaks (DSBs), which arise following exposure to a number of endogenous and exogenous agents, can be repaired by either the homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways in eukaryotic cells. A vital step in HR repair is DNA end resection, which generates a long 3′ single-stranded DNA (ssDNA) tail that can invade the homologous DNA strand. The generation of 3′ ssDNA is not only essential for HR repair, but also promotes activation of the ataxia telangiectasia and Rad3-related protein (ATR). Multiple factors, including the MRN/X complex, C-terminal-binding protein interacting protein (CtIP)/Sae2, exonuclease 1 (EXO1), Bloom syndrome protein (BLM)/Sgs1, DNA2 nuclease/helicase, and several chromatin remodelers, cooperate to complete the process of end resection. Here we review the basic machinery involved in DNA end resection in eukaryotic cells.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
94
|
Gursoy-Yuzugullu O, House N, Price BD. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. J Mol Biol 2016; 428:1846-60. [PMID: 26625977 PMCID: PMC4860187 DOI: 10.1016/j.jmb.2015.11.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 01/07/2023]
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Nealia House
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| |
Collapse
|
95
|
Altered primary chromatin structures and their implications in cancer development. Cell Oncol (Dordr) 2016; 39:195-210. [PMID: 27007278 DOI: 10.1007/s13402-016-0276-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate cellular growth. In addition, it has been found that changes in epigenetic factors, through mutation or altered gene expression, may contribute to cancer development. In the nucleus of eukaryotic cells DNA and histone proteins form a structure called chromatin which consists of nucleosomes that, like beads on a string, are aligned along the DNA strand. Modifications in chromatin structure are essential for cell type-specific activation or repression of gene transcription, as well as other processes such as DNA repair, DNA replication and chromosome segregation. Alterations in epigenetic factors involved in chromatin dynamics may accelerate cell cycle progression and, ultimately, result in malignant transformation. Abnormal expression of remodeler and modifier enzymes, as well as histone variants, may confer to cancer cells the ability to reprogram their genomes and to yield, maintain or exacerbate malignant hallmarks. At the end, genetic and epigenetic alterations that are encountered in cancer cells may culminate in chromatin changes that may, by altering the quantity and quality of gene expression, promote cancer development. METHODS During the last decade a vast number of studies has uncovered epigenetic abnormalities that are associated with the (anomalous) packaging and remodeling of chromatin in cancer genomes. In this review I will focus on recently published work dealing with alterations in the primary structure of chromatin resulting from imprecise arrangements of nucleosomes along DNA, and its functional implications for cancer development. CONCLUSIONS The primary chromatin structure is regulated by a variety of epigenetic mechanisms that may be deregulated through gene mutations and/or gene expression alterations. In recent years, it has become evident that changes in chromatin structure may coincide with the occurrence of cancer hallmarks. The functional interrelationships between such epigenetic alterations and cancer development are just becoming manifest and, therefore, the oncology community should continue to explore the molecular mechanisms governing the primary chromatin structure, both in normal and in cancer cells, in order to improve future approaches for cancer detection, prevention and therapy, as also for circumventing drug resistance.
Collapse
|
96
|
Leung AWY, Hung SS, Backstrom I, Ricaurte D, Kwok B, Poon S, McKinney S, Segovia R, Rawji J, Qadir MA, Aparicio S, Stirling PC, Steidl C, Bally MB. Combined Use of Gene Expression Modeling and siRNA Screening Identifies Genes and Pathways Which Enhance the Activity of Cisplatin When Added at No Effect Levels to Non-Small Cell Lung Cancer Cells In Vitro. PLoS One 2016; 11:e0150675. [PMID: 26938915 PMCID: PMC4777418 DOI: 10.1371/journal.pone.0150675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/16/2016] [Indexed: 01/22/2023] Open
Abstract
Platinum-based combination chemotherapy is the standard treatment for advanced non-small cell lung cancer (NSCLC). While cisplatin is effective, its use is not curative and resistance often emerges. As a consequence of microenvironmental heterogeneity, many tumour cells are exposed to sub-lethal doses of cisplatin. Further, genomic heterogeneity and unique tumor cell sub-populations with reduced sensitivities to cisplatin play a role in its effectiveness within a site of tumor growth. Being exposed to sub-lethal doses will induce changes in gene expression that contribute to the tumour cell’s ability to survive and eventually contribute to the selective pressures leading to cisplatin resistance. Such changes in gene expression, therefore, may contribute to cytoprotective mechanisms. Here, we report on studies designed to uncover how tumour cells respond to sub-lethal doses of cisplatin. A microarray study revealed changes in gene expressions that occurred when A549 cells were exposed to a no-observed-effect level (NOEL) of cisplatin (e.g. the IC10). These data were integrated with results from a genome-wide siRNA screen looking for novel therapeutic targets that when inhibited transformed a NOEL of cisplatin into one that induced significant increases in lethality. Pathway analyses were performed to identify pathways that could be targeted to enhance cisplatin activity. We found that over 100 genes were differentially expressed when A549 cells were exposed to a NOEL of cisplatin. Pathways associated with apoptosis and DNA repair were activated. The siRNA screen revealed the importance of the hedgehog, cell cycle regulation, and insulin action pathways in A549 cell survival and response to cisplatin treatment. Results from both datasets suggest that RRM2B, CABYR, ALDH3A1, and FHL2 could be further explored as cisplatin-enhancing gene targets. Finally, pathways involved in repairing double-strand DNA breaks and INO80 chromatin remodeling were enriched in both datasets, warranting further research into combinations of cisplatin and therapeutics targeting these pathways.
Collapse
Affiliation(s)
- Ada W. Y. Leung
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | - Stacy S. Hung
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Ian Backstrom
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Ricaurte
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Brian Kwok
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven Poon
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Steven McKinney
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Jenna Rawji
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Mohammed A. Qadir
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | | | - Christian Steidl
- Centre for Lymphoid Cancers, BC Cancer Agency, Vancouver, BC, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, BC Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Centre for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
97
|
Histone modifications in DNA damage response. SCIENCE CHINA-LIFE SCIENCES 2016; 59:257-70. [PMID: 26825946 DOI: 10.1007/s11427-016-5011-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
DNA damage is a relatively common event in eukaryotic cell and may lead to genetic mutation and even cancer. DNA damage induces cellular responses that enable the cell either to repair the damaged DNA or cope with the damage in an appropriate way. Histone proteins are also the fundamental building blocks of eukaryotic chromatin besides DNA, and many types of post-translational modifications often occur on tails of histones. Although the function of these modifications has remained elusive, there is ever-growing studies suggest that histone modifications play vital roles in several chromatin-based processes, such as DNA damage response. In this review, we will discuss the main histone modifications, and their functions in DNA damage response.
Collapse
|
98
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
99
|
The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation. Mol Cell Biol 2016; 36:979-91. [PMID: 26755556 DOI: 10.1128/mcb.00801-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability.
Collapse
|
100
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|