51
|
Duffield KR, Hampton KJ, Houslay TM, Rapkin J, Hunt J, Sadd BM, Sakaluk SK. Macronutrient intake and simulated infection threat independently affect life history traits of male decorated crickets. Ecol Evol 2020; 10:11766-11778. [PMID: 33144999 PMCID: PMC7593159 DOI: 10.1002/ece3.6813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/11/2023] Open
Abstract
Nutritional geometry has advanced our understanding of how macronutrients (e.g., proteins and carbohydrates) influence the expression of life history traits and their corresponding trade-offs. For example, recent work has revealed that reproduction and immune function in male decorated crickets are optimized at very different protein:carbohydrate (P:C) dietary ratios. However, it is unclear how an individual's macronutrient intake interacts with its perceived infection status to determine investment in reproduction or other key life history traits. Here, we employed a fully factorial design in which calling effort and immune function were quantified for male crickets fed either diets previously demonstrated to maximize calling effort (P:C = 1:8) or immune function (P:C = 5:1), and then administered a treatment from a spectrum of increasing infection cue intensity using heat-killed bacteria. Both diet and a simulated infection threat independently influenced the survival, immunity, and reproductive effort of males. If they called, males increased calling effort at the low infection cue dose, consistent with the terminal investment hypothesis, but interpretation of responses at the higher threat levels was hampered by the differential mortality of males across infection cue and diet treatments. A high protein, low carbohydrate diet severely reduced the health, survival, and overall fitness of male crickets. There was, however, no evidence of an interaction between diet and infection cue dose on calling effort, suggesting that the threshold for terminal investment was not contingent on diet as investigated here.
Collapse
Affiliation(s)
- Kristin R. Duffield
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
- Present address:
Crop Bioprotection Research UnitUnited States Department of AgricultureNational Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaILUSA
| | - Kylie J. Hampton
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
- Present address:
Crop Bioprotection Research UnitUnited States Department of AgricultureNational Center for Agricultural Utilization Research, Agricultural Research ServicePeoriaILUSA
| | | | - James Rapkin
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | - John Hunt
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- School of Science and Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
| | - Ben M. Sadd
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
| | - Scott K. Sakaluk
- Behavior, Ecology, Evolution and Systematics SectionSchool of Biological SciencesIllinois State UniversityNormalILUSA
| |
Collapse
|
52
|
Woodling NS, Rajasingam A, Minkley LJ, Rizzo A, Partridge L. Independent glial subtypes delay development and extend healthy lifespan upon reduced insulin-PI3K signalling. BMC Biol 2020; 18:124. [PMID: 32928209 PMCID: PMC7490873 DOI: 10.1186/s12915-020-00854-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The increasing age of global populations highlights the urgent need to understand the biological underpinnings of ageing. To this end, inhibition of the insulin/insulin-like signalling (IIS) pathway can extend healthy lifespan in diverse animal species, but with trade-offs including delayed development. It is possible that distinct cell types underlie effects on development and ageing; cell-type-specific strategies could therefore potentially avoid negative trade-offs when targeting diseases of ageing, including prevalent neurodegenerative diseases. The highly conserved diversity of neuronal and non-neuronal (glial) cell types in the Drosophila nervous system makes it an attractive system to address this possibility. We have thus investigated whether IIS in distinct glial cell populations differentially modulates development and lifespan in Drosophila. RESULTS We report here that glia-specific IIS inhibition, using several genetic means, delays development while extending healthy lifespan. The effects on lifespan can be recapitulated by adult-onset IIS inhibition, whereas developmental IIS inhibition is dispensable for modulation of lifespan. Notably, the effects we observe on both lifespan and development act through the PI3K branch of the IIS pathway and are dependent on the transcription factor FOXO. Finally, IIS inhibition in several glial subtypes can delay development without extending lifespan, whereas the same manipulations in astrocyte-like glia alone are sufficient to extend lifespan without altering developmental timing. CONCLUSIONS These findings reveal a role for distinct glial subpopulations in the organism-wide modulation of development and lifespan, with IIS in astrocyte-like glia contributing to lifespan modulation but not to developmental timing. Our results enable a more complete picture of the cell-type-specific effects of the IIS network, a pathway whose evolutionary conservation in humans make it tractable for therapeutic interventions. Our findings therefore underscore the necessity for cell-type-specific strategies to optimise interventions for the diseases of ageing.
Collapse
Affiliation(s)
- Nathaniel S Woodling
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Arjunan Rajasingam
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Lucy J Minkley
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Alberto Rizzo
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931, Cologne, Germany.
| |
Collapse
|
53
|
Lien W, Chen Y, Li Y, Wu J, Huang K, Lin J, Lin S, Hou C, Wang H, Wu C, Huang S, Chan C. Lifespan regulation in α/β posterior neurons of the fly mushroom bodies by Rab27. Aging Cell 2020; 19:e13179. [PMID: 32627932 PMCID: PMC7431830 DOI: 10.1111/acel.13179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Brain function has been implicated to control the aging process and modulate lifespan. However, continuous efforts remain for the identification of the minimal sufficient brain region and the underlying mechanism for neuronal regulation of longevity. Here, we show that the Drosophila lifespan is modulated by rab27 functioning in a small subset of neurons of the mushroom bodies (MB), a brain structure that shares analogous functions with mammalian hippocampus and hypothalamus. Depleting rab27 in the α/βp neurons of the MB is sufficient to extend lifespan, enhance systemic stress responses, and alter energy homeostasis, all without trade‐offs in major life functions. Within the α/βp neurons, rab27KO causes the mislocalization of phosphorylated S6K thus attenuates TOR signaling, resulting in decreased protein synthesis and reduced neuronal activity. Consistently, expression of dominant‐negative S6K in the α/βp neurons increases lifespan. Furthermore, the expression of phospho‐mimetic S6 in α/βp neurons of rab27KO rescued local protein synthesis and reversed lifespan extension. These findings demonstrate that inhibiting TOR‐mediated protein synthesis in α/βp neurons is sufficient to promote longevity.
Collapse
Affiliation(s)
- Wen‐Yu Lien
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Yu‐Ting Chen
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Yi‐Jhan Li
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Jie‐Kai Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
| | - Kuan‐Lin Huang
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Jian‐Rong Lin
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Shih‐Ching Lin
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Chia‐Chun Hou
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| | - Horng‐Dar Wang
- Institute of Biotechnology National Tsing Hua University Hsinchu Taiwan
| | - Chia‐Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences College of Medicine Chang Gung University Taoyuan Taiwan
- Department of Neurology Linkou Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Shu‐Yi Huang
- Department of Medical Research National Taiwan University Hospital Taipei Taiwan
| | - Chih‐Chiang Chan
- Graduate Institute of Physiology College of Medicine National Taiwan University Taipei Taiwan
| |
Collapse
|
54
|
Kim B, Lee J, Kim Y, Lee SJV. Regulatory systems that mediate the effects of temperature on the lifespan of Caenorhabditis elegans. J Neurogenet 2020; 34:518-526. [PMID: 32633588 DOI: 10.1080/01677063.2020.1781849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Temperature affects animal physiology, including aging and lifespan. How temperature and biological systems interact to influence aging and lifespan has been investigated using model organisms, including the nematode Caenorhabditis elegans. In this review, we discuss mechanisms by which diverse cellular factors modulate the effects of ambient temperatures on aging and lifespan in C. elegans. C. elegans thermosensory neurons alleviate lifespan-shortening effects of high temperatures via sterol endocrine signaling and probably through systemic regulation of cytosolic proteostasis. At low temperatures, C. elegans displays a long lifespan by upregulating the cold-sensing TRPA channel, lipid homeostasis, germline-mediated prostaglandin signaling, and autophagy. In addition, co-chaperone p23 amplifies lifespan changes affected by high and low temperatures. Our review summarizes how external temperatures modulate C. elegans lifespan and provides information regarding responses of biological processes to temperature changes, which may affect health and aging at an organism level.
Collapse
Affiliation(s)
- Byounghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jongsun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Younghun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seung-Jae V Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
55
|
Majrashi M, Fujihashi A, Almaghrabi M, Fadan M, Fahoury E, Ramesh S, Govindarajulu M, Beamon H, Bradford CN, Bolden-Tiller O, Dhanasekaran M. Augmented oxidative stress and reduced mitochondrial function in ageing goat testis. Vet Med Sci 2020; 6:766-774. [PMID: 32628344 PMCID: PMC7738717 DOI: 10.1002/vms3.296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/05/2023] Open
Abstract
Recently, there is a significant increase in the commercial use of goat products. Nevertheless, there are very few reports on the characterization of redox biomarkers and mitochondrial function in the goat testis. Therefore, in this study we studied the markers of oxidative stress and mitochondrial functions in the goat testis during the process of ageing. Alterations in the markers of oxidative stress/redox biomarkers (contents of reactive oxygen species, nitrite, lipid peroxide, protein carbonyl, glutathione and activities of glutathione peroxidase, monoamine oxidase) and mitochondrial function (Complex‐I and Complex‐IV activities) were elucidated during the process of ageing. Augmented oxidative stress and decreased mitochondrial function were prominent during ageing in the goat testis. Ageing can lead to induction of oxidative stress and decreased production of ATP; however, the prooxidants generated must be effectively removed from the body by the innate antioxidant defence system to minimize the damage to the host tissue. Conversely, the antioxidants cannot completely scavenge the excessive amount of reactive oxygen species produced during ageing or pathological conditions leading to significant cell death and tissue damage. Thus, the use of effective and potent antioxidants in the feed could significantly reduce oxidative stress and improve mitochondrial function, resulting in enriched goat health.
Collapse
Affiliation(s)
- Mohammed Majrashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA.,Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah, KSA
| | - Ayaka Fujihashi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Mohammed Almaghrabi
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Maali Fadan
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Eddie Fahoury
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Sindhu Ramesh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Haley Beamon
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, USA
| | | | - Olga Bolden-Tiller
- Department of Agricultural and Environmental Sciences, Tuskegee University, Tuskegee, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| |
Collapse
|
56
|
Zajitschek F, Georgolopoulos G, Vourlou A, Ericsson M, Zajitschek SRK, Friberg U, Maklakov AA. Evolution Under Dietary Restriction Decouples Survival From Fecundity in Drosophila melanogaster Females. J Gerontol A Biol Sci Med Sci 2020; 74:1542-1548. [PMID: 29718269 DOI: 10.1093/gerona/gly070] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/10/2018] [Indexed: 01/17/2023] Open
Abstract
One of the key tenets of life-history theory is that reproduction and survival are linked and that they trade-off with each other. When dietary resources are limited, reduced reproduction with a concomitant increase in survival is commonly observed. It is often hypothesized that this dietary restriction effect results from strategically reduced investment in reproduction in favor of somatic maintenance to survive starvation periods until resources become plentiful again. We used experimental evolution to test this "waiting-for-the-good-times" hypothesis, which predicts that selection under sustained dietary restriction will favor increased investment in reproduction at the cost of survival because "good-times" never come. We assayed fecundity and survival of female Drosophila melanogaster fruit flies that had evolved for 50 generations on three different diets varying in protein content-low (classic dietary restriction diet), standard, and high-in a full-factorial design. High-diet females evolved overall increased fecundity but showed reduced survival on low and standard diets. Low-diet females evolved reduced survival on low diet without corresponding increase in reproduction. In general, there was little correspondence between the evolution of survival and fecundity across all dietary regimes. Our results contradict the hypothesis that resource reallocation between fecundity and somatic maintenance underpins life span extension under dietary restriction.
Collapse
Affiliation(s)
- Felix Zajitschek
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.,Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden
| | | | - Anna Vourlou
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Maja Ericsson
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Susanne R K Zajitschek
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.,Doñana Biological Station, EBD-CSIC, Seville, Spain.,Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Urban Friberg
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,IFM Biology, AVIAN Behavioural, Genomics and Physiology Group, Linköping University, Sweden
| | - Alexei A Maklakov
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden.,School of Biological Sciences, Norwich Research Park, University of East Anglia, UK
| |
Collapse
|
57
|
Galimov ER, Gems D. Shorter life and reduced fecundity can increase colony fitness in virtual Caenorhabditis elegans. Aging Cell 2020; 19:e13141. [PMID: 32301222 PMCID: PMC7253062 DOI: 10.1111/acel.13141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 01/23/2023] Open
Abstract
In the nematode Caenorhabditis elegans, loss of function of many genes leads to increases in lifespan, sometimes of a very large magnitude. Could this reflect the occurrence of programmed death that, like apoptosis of cells, promotes fitness? The notion that programmed death evolves as a mechanism to remove worn out, old individuals in order to increase food availability for kin is not supported by classic evolutionary theory for most species. However, it may apply in organisms with colonies of closely related individuals such as C. elegans in which largely clonal populations subsist on spatially limited food patches. Here, we ask whether food competition between nonreproductive adults and their clonal progeny could favor programmed death by using an in silico model of C. elegans. Colony fitness was estimated as yield of dauer larva propagules from a limited food patch. Simulations showed that not only shorter lifespan but also shorter reproductive span and reduced adult feeding rate can increase colony fitness, potentially by reducing futile food consumption. Early adult death was particularly beneficial when adult food consumption rate was high. These results imply that programmed, adaptive death could promote colony fitness in C. elegans through a consumer sacrifice mechanism. Thus, C. elegans lifespan may be limited not by aging in the usual sense but rather by apoptosis-like programmed death.
Collapse
Affiliation(s)
- Evgeniy R. Galimov
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| |
Collapse
|
58
|
Mitaka Y, Tasaki E, Nozaki T, Fuchikawa T, Kobayashi K, Matsuura K. Transcriptomic analysis of epigenetic modification genes in the termite Reticulitermes speratus. INSECT SCIENCE 2020; 27:202-211. [PMID: 30203565 DOI: 10.1111/1744-7917.12640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Eusocial insects display a caste system in which different castes are morphologically and physiologically specialized for different tasks. Recent studies have revealed that epigenetic modifications, including DNA methylation and histone modification, mediate caste determination and differentiation, longevity, and polyethism in eusocial insects. Although there has been a growing interest in the relationship between epigenetic mechanisms and phenotypic plasticity in termites, there is little information about differential expression levels among castes and expression sites for these genes in termites. Here we show royal-tissue-specific expression of epigenetic modification genes in the termite Reticulitermes speratus. Using RNA-seq, we identified 74 genes, including three DNA methyltransferases, seven sirtuins, 48 Trithorax group proteins, and 16 Polycomb group proteins. Among these genes, 15 showed king-specific expression, and 52 showed age-dependent differential expression in kings and queens. Quantitative real-time PCR revealed that DNA methyltransferase 3 is expressed specifically in the king's testis and fat body, whereas some histone modification genes are remarkably expressed in the king's testis and queen's ovary. These findings imply that epigenetic modification plays important roles in the gamete production process in termite kings and queens.
Collapse
Affiliation(s)
- Yuki Mitaka
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
- Applied Entomology Laboratory, Center for Bioresource Field Science, Kyoto Institute of Technology, Ukyo-ku, Kyoto, Japan
| | - Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomonari Nozaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Taro Fuchikawa
- Laboratory of Animal Physiology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Kazuya Kobayashi
- Hokkaido Forest Research Station, Field Science Education and Research Center, Kyoto University, Kawakami-gun, Hokkaido, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
59
|
Łukasiewicz A. Juvenile diet quality and intensity of sexual conflict in the mite Sancassania berlesei. BMC Evol Biol 2020; 20:35. [PMID: 32164531 PMCID: PMC7069193 DOI: 10.1186/s12862-020-1599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differing evolutionary interests of males and females may result in sexual conflict, whereby traits or behaviours that are beneficial for male reproductive success (e.g., traits related to male-male competition) are costly for females. Since sexual conflict may play an important role in areas such as speciation, population persistence or evolution of life history traits, understanding what factors modulate the intensity of sexual conflict is important. This study aims to examine juvenile diet quality as one of the underestimated ecological factors that may affect the intensity of sexual conflict via individual conditions. I used food manipulation during the development of the mite Sancassania berlesei to investigate the effects on male reproductive behaviour and competitiveness, male-induced harm to female fitness and female resistance to this harm. RESULTS Males that were exposed to low-quality food started mating later than the control males, and number of their mating attempts were lower compared to those of control males. Moreover, males from the low-quality diet treatment sired fewer offspring under competition than males from the control treatment. However, the fitness of females exposed to males reared on a poor diet did not differ from that of females mated with control males. Furthermore, female diet quality did not alter their resistance to male-induced harm. CONCLUSION Overall, diet quality manipulation affected male reproductive behaviour and mating success. However, I found no evidence that the intensity of sexual conflict in S. berlesei depends on male or female conditions. Investigating a broader range of environmental factors will provide a better understanding of sexual conflict dynamics and its feedback into associated evolutionary mechanisms.
Collapse
Affiliation(s)
- Aleksandra Łukasiewicz
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
60
|
Dionísio R, Daniel D, Alkimin GDD, Nunes B. Multi-parametric analysis of ciprofloxacin toxicity at ecologically relevant levels: Short- and long-term effects on Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103295. [PMID: 31786495 DOI: 10.1016/j.etap.2019.103295] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The increased presence of emergent compounds, such as pharmaceuticals drugs, in the aquatic compartment has been acknowledged as an evolving environmental issue whose consequences are not yet fully characterized. Specific classes of pharmaceutical drugs, such as fluoroquinolone antibiotics, can exert toxic effects to non-target species with ecological significance, since these compounds are environmentally stable and persistent, and may interact with some of the key physiologic processes of organisms. Despite such characteristics, knowledge about the effects of these drugs is still scarce, especially to non-target organisms. The present study aimed to evaluate the effects of chronic and acute exposures of the cladoceran Daphnia magna to the fluoroquinolone antibiotic ciprofloxacin. Putative toxic effects were assessed, following acute and chronic exposures to ecologically relevant concentrations of ciprofloxacin, through enzymatic (cholinesterase - ChEs, catalase - CAT, glutathione S-transferases - GSTs) and non-enzymatic (thiobarbituric acid reactive substances - TBARS, glycogen - Gly) biomarkers. In addition, we also determined behavioural (swimming distance - SD) and morphological (body length of the first brood - BL1B) endpoints in animals exposed to this drug. Ciprofloxacin acute exposure resulted in increased CAT and ChEs activities, and inhibited GSTs activity. After chronic exposure, ChEs activity was significantly inhibited, while GSTs activity was significantly enhanced. TBARS levels were only increased at higher concentrations of ciprofloxacin. CAT activity and Gly content did not evidence a clear and significant pattern of variation. SD was slightly inhibited during dark cycles. BL1B presented a significant decrease for animals subjected to an intermediate concentration. Results showed that even ecologically relevant concentrations of ciprofloxacin may cause oxidative stress in individuals of D. magna. The present study showed important data that corroborate the occurrence of significant biochemical alterations in key features of an aquatic organism when exposed to relevant levels of a widely used antibiotic, establishing essential links between environmental exposure to this specific drug and putative toxic challenges that may result in irreversible changes and damages, especially at the individual level. However, changes in the size of neonates suggest that population alterations are likely to occur under real scenarios of chronic contamination by this drug.
Collapse
Affiliation(s)
- Ricardo Dionísio
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - David Daniel
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
61
|
Flatt T. Life-History Evolution and the Genetics of Fitness Components in Drosophila melanogaster. Genetics 2020; 214:3-48. [PMID: 31907300 PMCID: PMC6944413 DOI: 10.1534/genetics.119.300160] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022] Open
Abstract
Life-history traits or "fitness components"-such as age and size at maturity, fecundity and fertility, age-specific rates of survival, and life span-are the major phenotypic determinants of Darwinian fitness. Analyzing the evolution and genetics of these phenotypic targets of selection is central to our understanding of adaptation. Due to its simple and rapid life cycle, cosmopolitan distribution, ease of maintenance in the laboratory, well-understood evolutionary genetics, and its versatile genetic toolbox, the "vinegar fly" Drosophila melanogaster is one of the most powerful, experimentally tractable model systems for studying "life-history evolution." Here, I review what has been learned about the evolution and genetics of life-history variation in D. melanogaster by drawing on numerous sources spanning population and quantitative genetics, genomics, experimental evolution, evolutionary ecology, and physiology. This body of work has contributed greatly to our knowledge of several fundamental problems in evolutionary biology, including the amount and maintenance of genetic variation, the evolution of body size, clines and climate adaptation, the evolution of senescence, phenotypic plasticity, the nature of life-history trade-offs, and so forth. While major progress has been made, important facets of these and other questions remain open, and the D. melanogaster system will undoubtedly continue to deliver key insights into central issues of life-history evolution and the genetics of adaptation.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, CH-1700, Switzerland
| |
Collapse
|
62
|
Cui Z, Wang Z, Zhang S, Wang B, Lu J, Raubenheimer D. Living near the limits: Effects of interannual variation in food availability on diet and reproduction in a temperate primate, the Taihangshan macaque (Macaca mulatta tcheliensis). Am J Primatol 2019; 82:e23080. [PMID: 31858636 DOI: 10.1002/ajp.23080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Nutrient intake of animals is influenced by an interplay of external and internal factors, such as food availability and reproductive state, respectively. We used the nutritional geometry framework to analyze individual-based data on energy and nutrient intake in relation to reproductive state in a population of rhesus macaques (Macaca mulatta tcheliensis), which live in a harsh high-latitude habitat, the Taihangshan mountains of China, and exhibit strong reproductive seasonality. We combined data over a 3-year period on food availability, diets, reproductive output, and components of maternal investment to understand how Taihangshan macaques respond to variation in food availability and nutrition in reproduction. Our results show there was high interannual variation in availability of an important staple source of fat and carbohydrates (nonprotein energy), seeds of oak (Quercus spp). Despite this variability in seed availability skewing the dietary macronutrient ratios considerably (from 12.96% to 30.12% dietary energy from protein), total metabolizable energy intake was maintained across years during pregnancy. Lactating females had higher mean daily energy intakes than pregnant females. As in pregnant females, energy intake was maintained constant across years, but only when seed availability enabled the contribution of available protein to energy intake to be maintained between 15.32% (2013) and 17.97% (2015). In 2014, when seeds were scarce, lactating females had a shortfall in energy intake compared with 2013 and 2015. This corresponded with a reduction in the number of females giving birth (11 out of 23), but there was no interannual difference in survival rates. Compared to 2013 and 2015, in 2014 females had greater weight loss (drew on body reserves), moved less, and spent more time nursing their offspring. We discuss implications of these results for range limitation in Taihangshan macaques.
Collapse
Affiliation(s)
- Zhenwei Cui
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China.,School of Physical Education (main campus), Zhengzhou University, Zhengzhou, China.,School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhenlong Wang
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - Shiqiang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Baishi Wang
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Jiqi Lu
- School of Life Sciences, Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, China
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
63
|
Woodhouse RM, Buchmann G, Hoe M, Harney DJ, Low JKK, Larance M, Boag PR, Ashe A. Chromatin Modifiers SET-25 and SET-32 Are Required for Establishment but Not Long-Term Maintenance of Transgenerational Epigenetic Inheritance. Cell Rep 2019; 25:2259-2272.e5. [PMID: 30463020 DOI: 10.1016/j.celrep.2018.10.085] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Some epigenetic modifications are inherited from one generation to the next, providing a potential mechanism for the inheritance of environmentally acquired traits. Transgenerational inheritance of RNAi phenotypes in Caenorhabditis elegans provides an excellent model to study this phenomenon, and although studies have implicated both chromatin modifications and small RNA pathways in heritable silencing, their relative contributions remain unclear. Here, we demonstrate that the putative histone methyltransferases SET-25 and SET-32 are required for establishment of a transgenerational silencing signal but not for long-term maintenance of this signal between subsequent generations, suggesting that transgenerational epigenetic inheritance is a multi-step process with distinct genetic requirements for establishment and maintenance of heritable silencing. Furthermore, small RNA sequencing reveals that the abundance of secondary siRNAs (thought to be the effector molecules of heritable silencing) does not correlate with silencing phenotypes. Together, our results suggest that the current mechanistic models of epigenetic inheritance are incomplete.
Collapse
Affiliation(s)
- Rachel M Woodhouse
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Gabriele Buchmann
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Matthew Hoe
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Dylan J Harney
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Jason K K Low
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Mark Larance
- The University of Sydney, Charles Perkins Centre, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Peter R Boag
- Monash University, Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Clayton, VIC 3800, Australia
| | - Alyson Ashe
- The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia; The University of Wollongong, School of Biological Sciences and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
64
|
Li N, Zeng M, Xiao H, Lin S, Yang S, Huang H, Zhu S, Zhao Z, Ren C, Li S. Alteration of insulin and nutrition signal gene expression or depletion of Met reduce both lifespan and reproduction in the German cockroach. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103934. [PMID: 31449796 DOI: 10.1016/j.jinsphys.2019.103934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
In insects, nutrition and hormones coordinately regulate lifespan and reproduction, which might affect each other. We here investigated how nutrition, insulin, and juvenile hormone (JH) signal genes affect lifespan and reproduction in the German cockroach, Blattella germanica, a serious urban pest throughout the world. Starvation as well as altering insulin and nutrition signal genes by RNA interference (RNAi) knockdown of the expression of either positive or negative components in the two pathways simultaneously reduced lifespan and ootheca number of the mated female cockroaches. Meanwhile, depletion of the JH receptor Methoprene-tolerant (Met), but not kruppel homolog 1 (Kr-h1) that predominately transduces JH signaling to prevent metamorphosis, significantly reduced the two parameters. Moreover, suppressing the expression of several reproduction-related genes, including doublesex (Dsx), vitellogenin (Vg), and the Vg receptor (VgR), had little yet various effects on lifespan; nevertheless, it is likely that there are some reproduction-independent mating factors reducing lifespan. In conclusion, through blocking lifespan and reproduction in a simultaneous manner, the alteration of insulin and nutrient signal gene expression or the depletion of Met might provide a great potential for controlling the German cockroach.
Collapse
Affiliation(s)
- Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Mei Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Huilu Xiao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shuren Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shuting Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Haixin Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Zheng Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
65
|
Abstract
Despite tremendous progress in recent years, our understanding of the evolution of ageing is still incomplete. A dominant paradigm maintains that ageing evolves due to the competing energy demands of reproduction and somatic maintenance leading to slow accumulation of unrepaired cellular damage with age. However, the centrality of energy trade-offs in ageing has been increasingly challenged as studies in different organisms have uncoupled the trade-off between reproduction and longevity. An emerging theory is that ageing instead is caused by biological processes that are optimized for early-life function but become harmful when they continue to run-on unabated in late life. This idea builds on the realization that early-life regulation of gene expression can break down in late life because natural selection is too weak to optimize it. Empirical evidence increasingly supports the hypothesis that suboptimal gene expression in adulthood can result in physiological malfunction leading to organismal senescence. We argue that the current state of the art in the study of ageing contradicts the widely held view that energy trade-offs between growth, reproduction, and longevity are the universal underpinning of senescence. Future research should focus on understanding the relative contribution of energy and function trade-offs to the evolution and expression of ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
66
|
Durmaz E, Rajpurohit S, Betancourt N, Fabian DK, Kapun M, Schmidt P, Flatt T. A clinal polymorphism in the insulin signaling transcription factor foxo contributes to life-history adaptation in Drosophila. Evolution 2019; 73:1774-1792. [PMID: 31111462 PMCID: PMC6771989 DOI: 10.1111/evo.13759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
A fundamental aim of adaptation genomics is to identify polymorphisms that underpin variation in fitness traits. In Drosophila melanogaster, latitudinal life-history clines exist on multiple continents and make an excellent system for dissecting the genetics of adaptation. We have previously identified numerous clinal single-nucleotide polymorphism in insulin/insulin-like growth factor signaling (IIS), a pathway known from mutant studies to affect life history. However, the effects of natural variants in this pathway remain poorly understood. Here we investigate how two clinal alternative alleles at foxo, a transcriptional effector of IIS, affect fitness components (viability, size, starvation resistance, fat content). We assessed this polymorphism from the North American cline by reconstituting outbred populations, fixed for either the low- or high-latitude allele, from inbred DGRP lines. Because diet and temperature modulate IIS, we phenotyped alleles across two temperatures (18°C, 25°C) and two diets differing in sugar source and content. Consistent with clinal expectations, the high-latitude allele conferred larger body size and reduced wing loading. Alleles also differed in starvation resistance and expression of insulin-like receptor, a transcriptional target of FOXO. Allelic reaction norms were mostly parallel, with few GxE interactions. Together, our results suggest that variation in IIS makes a major contribution to clinal life-history adaptation.
Collapse
Affiliation(s)
- Esra Durmaz
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Subhash Rajpurohit
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
- Division of Biological and Life SciencesAhmedabad UniversityAhmedabadIndia
| | - Nicolas Betancourt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Daniel K. Fabian
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteWellcome Genome Campus, HinxtonCambridgeUnited Kingdom
- Institut für PopulationsgenetikVetmeduni ViennaViennaAustria
- Vienna Graduate School of Population, GeneticsViennaAustria
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Paul Schmidt
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvania19140
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| |
Collapse
|
67
|
Camus MF, Piper MD, Reuter M. Sex-specific transcriptomic responses to changes in the nutritional environment. eLife 2019; 8:47262. [PMID: 31436529 PMCID: PMC6773443 DOI: 10.7554/elife.47262] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
Males and females typically pursue divergent reproductive strategies and accordingly require different dietary compositions to maximise their fitness. Here we move from identifying sex-specific optimal diets to understanding the molecular mechanisms that underlie male and female responses to dietary variation in Drosophila melanogaster. We examine male and female gene expression on male-optimal (carbohydrate-rich) and female-optimal (protein-rich) diets. We find that the sexes share a large core of metabolic genes that are concordantly regulated in response to dietary composition. However, we also observe smaller sets of genes with divergent and opposing regulation, most notably in reproductive genes which are over-expressed on each sex's optimal diet. Our results suggest that nutrient sensing output emanating from a shared metabolic machinery are reversed in males and females, leading to opposing diet-dependent regulation of reproduction in males and females. Further analysis and experiments suggest that this reverse regulation occurs within the IIS/TOR network. "You are what you eat" is a popular saying that can often make scientific sense. Everything an animal eats gets broken down into smaller molecules that fuel the many biological processes required to survive, move and reproduce. However, the food that the sexes need to maximize their fertility may not be exactly the same, as males make lots of small, mobile sperm cells while females create a small number of large eggs. In fruit flies for example, females benefit most from foods that contain lots of protein, while males are more fertile when they eat foods that are rich in carbohydrates. However, it remained unclear how these differences have evolved. Here, Camus et al. examine the genes that are active in male and female fruit flies which eat a diet rich in either carbohydrates or in proteins. Their experiments showed that both sexes share a large collection of genes which respond to the two diets in the same way. However, the type of food had opposite effects on the activity of certain genes involved in male and female reproduction. When the fruit flies had a protein-rich diet, for example, genes that promoted reproduction got turned on in females, but switched off in males. The opposite pattern was observed when the insects were exposed to carbohydrate-rich diets. Further analyses suggested that these different responses might be linked to a molecular network called IIS/TOR, which is a specific cascade of reactions that responds to nutrient availability. The findings of Camus et al. suggest that male and female flies produce different signals in reaction to food, which helps them to reproduce when they are able to meet their particular nutritional needs. Armed with a better understanding of the fundamental differences between the sexes, it may be possible to improve research into human health and animal keeping.
Collapse
Affiliation(s)
- M Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Matthew Dw Piper
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Max Reuter
- Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
68
|
de Diego I, Peleg S, Fuchs B. The role of lipids in aging-related metabolic changes. Chem Phys Lipids 2019; 222:59-69. [DOI: 10.1016/j.chemphyslip.2019.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022]
|
69
|
Lee HJ, Noormohammadi A, Koyuncu S, Calculli G, Simic MS, Herholz M, Trifunovic A, Vilchez D. Prostaglandin signals from adult germ stem cells delay somatic aging of Caenorhabditis elegans. Nat Metab 2019; 1:790-810. [PMID: 31485561 PMCID: PMC6726479 DOI: 10.1038/s42255-019-0097-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A moderate reduction of body temperature can induce a remarkable lifespan extension. Here we examine the link between cold temperature, germ line fitness and organismal longevity. We show that low temperature reduces age-associated exhaustion of germ stem cells (GSCs) in Caenorhabditis elegans, a process modulated by thermosensory neurons. Notably, robust self-renewal of adult GSCs delays reproductive aging and is required for extended lifespan at cold temperatures. These cells release prostaglandin E2 (PGE2) to induce cbs-1 expression in the intestine, increasing somatic production of hydrogen sulfide (H2S), a gaseous signaling molecule that prolongs lifespan. Whereas loss of adult GSCs reduces intestinal cbs-1 expression and cold-induced longevity, application of exogenous PGE2 rescues these phenotypes. Importantly, tissue-specific intestinal overexpression of cbs-1 mimics cold-temperature conditions and extends longevity even at warm temperatures. Thus, our results indicate that GSCs communicate with somatic tissues to coordinate extended reproductive capacity with longevity.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Giuseppe Calculli
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Milos S Simic
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Marija Herholz
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
70
|
Qian M, Liu B. Pharmaceutical Intervention of Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1086:235-254. [PMID: 30232763 DOI: 10.1007/978-981-13-1117-8_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aging population represents a significant worldwide socioeconomic challenge. Aging is an inevitable and multifactorial biological process and primary risk factor for most age-related diseases, such as cardiovascular diseases, cancers, type 2 diabetes mellitus (T2DM), and neurodegenerative diseases. Pharmacological interventions targeting aging appear to be a more effective approach in preventing age-related disorders compared with the treatments targeted to specific disease. In this chapter, we focus on the latest findings on molecular compounds that mimic caloric restriction (CR), supplement nicotinamide adenine dinucleotide (NAD+) levels, and eliminate senescent cells, including metformin, resveratrol, spermidine, rapamycin, NAD+ boosters, as well as senolytics. All these interventions modulate the determinants and pathways responsible for aging/longevity, such as the kinase target of rapamycin (TOR), AMP-activated protein kinase (AMPK), sirtuins, and insulin-like growth factor (IGF-1) signaling (Fig. 15.1).
Collapse
Affiliation(s)
- Minxian Qian
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Medical Research Center, Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China.
| |
Collapse
|
71
|
Giaimo S, Traulsen A. Generation Time Measures the Trade-Off between Survival and Reproduction in a Life Cycle. Am Nat 2019; 194:285-290. [PMID: 31318288 DOI: 10.1086/704155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Survival and fertility are the two most basic components of fitness, and they drive the evolution of a life cycle. A trade-off between them is usually present: when survival increases, fertility decreases-and vice versa. Here we show that at an evolutionary optimum, the generation time is a measure of the strength of the trade-off between overall survival and overall fertility in a life cycle. Our result both helps to explain the known fact that the generation time describes the speed of living in the slow-fast continuum of life cycles and may have implications for the extrapolation from model organisms of longevity to humans.
Collapse
|
72
|
Moskalev AA, Shaposhnikov MV, Zemskaya NV, Koval LА, Schegoleva EV, Guvatova ZG, Krasnov GS, Solovev IA, Sheptyakov MA, Zhavoronkov A, Kudryavtseva AV. Transcriptome Analysis of Long-lived Drosophila melanogaster E(z) Mutants Sheds Light on the Molecular Mechanisms of Longevity. Sci Rep 2019; 9:9151. [PMID: 31235842 PMCID: PMC6591219 DOI: 10.1038/s41598-019-45714-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The E(z) histone methyltransferase heterozygous mutation in Drosophila is known to increase lifespan and stress resistance. However, the longevity mechanisms of E(z) mutants have not been revealed. Using genome-wide transcriptome analysis, we demonstrated that lifespan extension, increase of resistance to hyperthermia, oxidative stress and endoplasmic reticulum stress, and fecundity enhancement in E(z) heterozygous mutants are accompanied by changes in the expression level of 239 genes (p < 0.05). Our results demonstrated sex-specific effects of E(z) mutation on gene expression, which, however, did not lead to differences in lifespan extension in both sexes. We observed that a mutation in an E(z) gene leads to perturbations in gene expression, most of which participates in metabolism, such as Carbohydrate metabolism, Lipid metabolism, Drug metabolism, Nucleotide metabolism. Age-dependent changes in the expression of genes involved in pathways related to immune response, cell cycle, and ribosome biogenesis were found.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia. .,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | | | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Liubov А Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Solovev
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russia
| | | | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
73
|
Fiocca K, Barrett M, Waddell EA, Viveiros J, McNair C, O’Donnell S, Marenda DR. Mannitol ingestion causes concentration-dependent, sex-biased mortality in adults of the fruit fly (Drosophila melanogaster). PLoS One 2019; 14:e0213760. [PMID: 31150400 PMCID: PMC6544200 DOI: 10.1371/journal.pone.0213760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/16/2019] [Indexed: 01/19/2023] Open
Abstract
Mannitol, a sugar alcohol used in commercial food products, has been previously shown to induce sex-biased mortality in female Drosophila melanogaster when ingested at a single concentration (1 M). We hypothesized that sex differences in energy needs, related to reproductive costs, contributed to the increased mortality we observed in females compared to males. To test this, we compared the longevity of actively mating and non-mating flies fed increasing concentrations of mannitol. We also asked whether mannitol-induced mortality was concentration-dependent for both males and females, and if mannitol's sex-biased effects were consistent across concentrations. Females and males both showed concentration-dependent increases in mortality, but female mortality was consistently higher at concentrations of 0.75 M and above. Additionally, fly longevity decreased further for both sexes when housed in mixed sex vials as compared to single sex vials. This suggests that the increased energetic demands of mating and reproduction for both sexes increased the ingestion of mannitol. Finally, larvae raised on mannitol produced expected adult sex ratios, suggesting that sex-biased mortality due to the ingestion of mannitol occurs only in adults. We conclude that sex and reproductive status differences in mannitol ingestion drive sex-biased differences in adult fly mortality.
Collapse
Affiliation(s)
- Katherine Fiocca
- Department of Biology Drexel University, Philadelphia, PA, United States of America
| | - Meghan Barrett
- Department of Biology Drexel University, Philadelphia, PA, United States of America
| | - Edward A. Waddell
- Department of Biology Drexel University, Philadelphia, PA, United States of America
| | - Jennifer Viveiros
- Department of Biology Drexel University, Philadelphia, PA, United States of America
| | - Cheyenne McNair
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, United States of America
| | - Sean O’Donnell
- Department of Biology Drexel University, Philadelphia, PA, United States of America
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, United States of America
| | - Daniel R. Marenda
- Department of Biology Drexel University, Philadelphia, PA, United States of America
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
- * E-mail:
| |
Collapse
|
74
|
Lind MI, Ravindran S, Sekajova Z, Carlsson H, Hinas A, Maklakov AA. Experimentally reduced insulin/IGF-1 signaling in adulthood extends lifespan of parents and improves Darwinian fitness of their offspring. Evol Lett 2019; 3:207-216. [PMID: 31007945 PMCID: PMC6457396 DOI: 10.1002/evl3.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Classical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory uniquely predicts that optimizing nutrient-sensing molecular signaling in adulthood can simultaneously postpone ageing and increase Darwinian fitness. Here, we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signaling via daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing signaling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that suboptimal gene expression in late-life lies at the heart of ageing.
Collapse
Affiliation(s)
- Martin I. Lind
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Sanjana Ravindran
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Zuzana Sekajova
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Hanne Carlsson
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Andrea Hinas
- Department of Cell and Molecular BiologyUppsala UniversityUppsala751 24Sweden
| | - Alexei A. Maklakov
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
75
|
Karpova EK, Rauschenbach IY, Gruntenko NE. Comparative analysis of the ftness of Drosophila virilis lines contrasting in response to stress. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj.1834-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (Rindividuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NRindividuals). The study of reproductive characteristics of R and NRindividuals showed that under normal conditions Rindividuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NRindividuals die, but if its intensity is low, then they, unlike Rindividuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R and NRalleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the ftness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.
Collapse
|
76
|
Karpova EK, Rauschenbach IY, Gruntenko NE. Comparative analysis of the ftness of Drosophila virilis lines contrasting in response to stress. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
One of the crucial elements contributing to the adaptation of organisms to unfavorable environmental conditions is the reaction of stress. The study of its genetic control and role in adaptation to unfavorable conditions are of special interest. The juvenile hormone (JH) acts as a gonadotropic hormone in adult insects controlling the development of the ovaries, inducing vitellogenesis and oviposition. It was shown that a decrease in JH degradation in individuals reacting to adverse conditions by stress reaction (Rindividuals) causes delay in egg laying and seems to allow the population to “wait out” the unfavorable conditions, thereby contributing to the adaptation at the population level. However, monitoring natural populations of D. melanogaster for the capability of stress reaction demonstrated that they have a high percentage of individuals incapable of it (NRindividuals). The study of reproductive characteristics of R and NRindividuals showed that under normal conditions Rindividuals have the advantage of procreating offspring. Under unfavorable conditions, if the stressor is intense enough, NRindividuals die, but if its intensity is low, then they, unlike Rindividuals, continue to produce offspring. Based on these data, it was hypothesized that the balance of R and NRalleles in the population ensures its adaptation under frequent stresses of low intensity. To verify the hypothesis by an experiment, the ftness characteristics (lifespan, fecundity) of the R and NR lines of D. virilis were studied under normal conditions and under regular heat stress of various frequency.
Collapse
|
77
|
Farris M, Fang L, Aslamy A, Pineda V. Steroid signaling mediates longevity responses to the eat-2 genetic model of dietary restriction in Caenorhabditis elegans. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
78
|
Lushchak O, Strilbytska OM, Yurkevych I, Vaiserman AM, Storey KB. Implications of amino acid sensing and dietary protein to the aging process. Exp Gerontol 2019; 115:69-78. [DOI: 10.1016/j.exger.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/05/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
|
79
|
Graze RM, Tzeng RY, Howard TS, Arbeitman MN. Perturbation of IIS/TOR signaling alters the landscape of sex-differential gene expression in Drosophila. BMC Genomics 2018; 19:893. [PMID: 30526477 PMCID: PMC6288939 DOI: 10.1186/s12864-018-5308-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Background The core functions of the insulin/insulin-like signaling and target of rapamycin (IIS/TOR) pathway are nutrient sensing, energy homeostasis, growth, and regulation of stress responses. This pathway is also known to interact directly and indirectly with the sex determination regulatory hierarchy. The IIS/TOR pathway plays a role in directing sexually dimorphic traits, including dimorphism of growth, metabolism, stress and behavior. Previous studies of sexually dimorphic gene expression in the adult head, which includes both nervous system and endocrine tissues, have revealed variation in sex-differential expression, depending in part on genotype and environment. To understand the degree to which the environmentally responsive insulin signaling pathway contributes to sexual dimorphism of gene expression, we examined the effect of perturbation of the pathway on gene expression in male and female Drosophila heads. Results Our data reveal a large effect of insulin signaling on gene expression, with greater than 50% of genes examined changing expression. Males and females have a shared gene expression response to knock-down of InR function, with significant enrichment for pathways involved in metabolism. Perturbation of insulin signaling has a greater impact on gene expression in males, with more genes changing expression and with gene expression differences of larger magnitude. Primarily as a consequence of the response in males, we find that reduced insulin signaling results in a striking increase in sex-differential expression. This includes sex-differences in expression of immune, defense and stress response genes, genes involved in modulating reproductive behavior, genes linking insulin signaling and ageing, and in the insulin signaling pathway itself. Conclusions Our results demonstrate that perturbation of insulin signaling results in thousands of genes displaying sex differences in expression that are not differentially expressed in control conditions. Thus, insulin signaling may play a role in variability of somatic, sex-differential expression. The finding that perturbation of the IIS/TOR pathway results in an altered landscape of sex-differential expression suggests a role of insulin signaling in the physiological underpinnings of trade-offs, sexual conflict and sex differences in expression variability. Electronic supplementary material The online version of this article (10.1186/s12864-018-5308-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita M Graze
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences building, Auburn, AL, 36849-5407, USA.
| | - Ruei-Ying Tzeng
- Biomedical Sciences Department, Florida State University, College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Tiffany S Howard
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences building, Auburn, AL, 36849-5407, USA
| | - Michelle N Arbeitman
- Biomedical Sciences Department, Florida State University, College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306, USA.
| |
Collapse
|
80
|
Tasaki E, Matsuura K, Iuchi Y. Hypoxia adaptation in termites: hypoxic conditions enhance survival and reproductive activity in royals. INSECT MOLECULAR BIOLOGY 2018; 27:808-814. [PMID: 29989656 DOI: 10.1111/imb.12519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Termite royals (queen and king) exhibit extraordinary longevity without sacrificing reproductive performance, unlike most animals, in whom lifespan is generally negatively associated with reproduction. Therefore, the regulatory mechanisms underlying longevity have attracted much attention. Although the ageing process is influenced by environmental factors in many insects during their life cycle, it remains unclear whether any factors have an effect on the extended survival and high reproductive capacity of termite royals. Here, we show that hypoxia, possibly an important environmental factor in the nests, enhances survival and reproductive activity in incipient royals of the subterranean termite Reticulitermes speratus compared with those in control conditions. Quantitative real-time PCR analysis revealed that the expression levels of the vitellogenin gene in queens are maintained to a greater extent under hypoxic conditions than under control conditions. The expression levels of the antioxidant enzyme genes RsCAT1 and RsPHGPX are also significantly promoted by hypoxia in queens and kings respectively. These results suggest that hypoxic exposure can contribute in part to achieving high reproductive output by altering gene expression after founding of colonies in the royals. Our study provides novel insights into the effect of a nest environment on the reproductive characteristics in termite royals.
Collapse
Affiliation(s)
- E Tasaki
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
| | - K Matsuura
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Y Iuchi
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
81
|
Brengdahl M, Kimber CM, Maguire-Baxter J, Malacrinò A, Friberg U. Genetic Quality Affects the Rate of Male and Female Reproductive Aging Differently in Drosophila melanogaster. Am Nat 2018; 192:761-772. [DOI: 10.1086/700117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
82
|
Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Exp Gerontol 2018; 114:99-106. [PMID: 30399408 PMCID: PMC6336457 DOI: 10.1016/j.exger.2018.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 10/30/2018] [Indexed: 01/26/2023]
Abstract
Lifespan extension under low temperature is well conserved across both endothermic and exothermic taxa, but the mechanism underlying this change in aging is poorly understood. Low temperature is thought to decrease metabolic rate, thus slowing the accumulation of cellular damage from reactive oxygen species, although recent evidence suggests involvement of specific cold-sensing biochemical pathways. We tested the effect of low temperature on aging in 11 strains of Brachionus rotifers, with the hypothesis that if the mechanism of lifespan extension is purely thermodynamic, all strains should have a similar increase in lifespan. We found differences in change in median lifespan ranging from a 6% decrease to a 100% increase, as well as differences in maximum and relative lifespan extension and in mortality rate. Low temperature delays reproductive senescence in most strains, suggesting an extension of healthspan, even in strains with little to no change in lifespan. The combination of low temperature and caloric restriction in one strain resulted in an additive lifespan increase, indicating these interventions may work via non- or partially-overlapping pathways. The known low temperature sensor TRPA1 is present in the rotifer genome, but chemical TRPA1 agonists did not affect lifespan, suggesting that this gene may be involved in low temperature sensation but not in chemoreception in rotifers. The congeneric variability in response to low temperature suggests that the mechanism of low temperature lifespan extension is an active genetic process rather than a passive thermodynamic one and is dependent upon genotype.
Collapse
|
83
|
Lee EB, Kim JH, An CW, Kim YJ, Noh YJ, Kim SJ, Kim JE, Shrestha AC, Ham HN, Leem JY, Jo HK, Kim DS, Moon KH, Lee JH, Jeong KO, Kim DK. Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans. Biomol Ther (Seoul) 2018. [PMID: 29534560 PMCID: PMC6254644 DOI: 10.4062/biomolther.2017.215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In order to discover lifespan-extending compounds made from natural resources, activity-guided fractionation of Zingiber officinale Roscoe (Zingiberaceae) ethanol extract was performed using the Caenorhabditis elegans (C. elegans) model system. The compound 6-gingerol was isolated from the most active ethyl acetate soluble fraction, and showed potent longevity-promoting activity. It also elevated the survival rate of worms against stressful environment including thermal, osmotic, and oxidative conditions. Additionally, 6-gingerol elevated the antioxidant enzyme activities of C. elegans, and showed a dose-depend reduction of intracellular reactive oxygen species (ROS) accumulation in worms. Further studies demonstrated that the increased stress tolerance of 6-gingerol-mediated worms could result from the promotion of stress resistance proteins such as heat shock protein (HSP-16.2) and superoxide dismutase (SOD-3). The lipofuscin levels in 6-gingerol treated intestinal worms were decreased in comparison to the control group. No significant 6-gingerol-related changes, including growth, food intake, reproduction, and movement were noted. These results suggest that 6-gingerol exerted longevity-promoting activities independently of these factors and could extend the human lifespan.
Collapse
Affiliation(s)
- Eun Byeol Lee
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Jun Hyeong Kim
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Chang Wan An
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Yeong Jee Kim
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Yun Jeong Noh
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Su Jin Kim
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Ju-Eun Kim
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | | | - Ha-Neul Ham
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Jae-Yoon Leem
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| | - Hyung-Kwon Jo
- Hanpoong Pharm. Co., LTD, Wanju 55336, Republic of Korea
| | - Dae-Sung Kim
- Hanpoong Pharm. Co., LTD, Wanju 55336, Republic of Korea
| | - Kwang Hyun Moon
- Sunchang Research Institute of Health and Longevity, Sunchang 56015, Republic of Korea
| | - Jeong Ho Lee
- Sunchang Research Institute of Health and Longevity, Sunchang 56015, Republic of Korea
| | - Kyung Ok Jeong
- Sunchang Research Institute of Health and Longevity, Sunchang 56015, Republic of Korea
| | - Dae Keun Kim
- College of Pharmacy, Woosuk University, Jeonju 55338, Republic of Korea
| |
Collapse
|
84
|
Simmons LW, Lovegrove M, Lymbery SJ. Dietary antioxidants, but not courtship effort, affect oxidative balance in the testes and muscles of crickets. ACTA ACUST UNITED AC 2018; 221:jeb.184770. [PMID: 30190320 DOI: 10.1242/jeb.184770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/30/2018] [Indexed: 01/04/2023]
Abstract
Recent interest has focused on the role of reactive oxygen species (ROS) as universal constraints in life-history evolution. Empirical studies have examined the oxidative costs of reproduction for females, with little work conducted on males. The male germline is thought to be particularly susceptible to oxidative damage because the testes, and the sperm themselves, can be prolific producers of ROS. We tested the hypothesis that protection of the male germline from oxidative damage represents a cost of reproduction for males. We fed male crickets, Teleogryllus oceanicus, with one of two experimental diets in which we manipulated the availability of dietary antioxidants, and we induced variation in their expenditure on courtship effort by manipulating access to females. We measured the total antioxidant capacity, levels of ROS production and the amount of oxidative damage to proteins in both testis and thoracic muscle tissues. Dietary antioxidants contributed to positive oxidative balance in both tissue types. Although the testes had greater antioxidant defences than muscle tissue, they also produced considerably higher levels of ROS and sustained higher levels of oxidative damage. Courtship effort had no impact on any measure of oxidative balance. Our data confirm that the male germline is especially susceptible to oxidative stress and that dietary antioxidants can alleviate this oxidative cost of reproduction.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia
| | - Samuel J Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
85
|
Abstract
Between the 1930s and 50s, evolutionary biologists developed a successful theory of why organisms age, firmly rooted in population genetic principles. By the 1980s the evolution of aging had a secure experimental basis. Since the force of selection declines with age, aging evolves due to mutation accumulation or a benefit to fitness early in life. Here we review major insights and challenges that have emerged over the last 35 years: selection does not always necessarily decline with age; higher extrinsic (i.e., environmentally caused) mortality does not always accelerate aging; conserved pathways control aging rate; senescence patterns are more diverse than previously thought; aging is not universal; trade-offs involving lifespan can be 'broken'; aging might be 'druggable'; and human life expectancy continues to rise but compressing late-life morbidity remains a pressing challenge.
Collapse
Affiliation(s)
- Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Linda Partridge
- Max Planck Institute for Biology of Aging, Joseph-Stelzmann-Strasse 9b, D-50931, Cologne, Germany.
- Institute for Healthy Aging and GEE, University College London, Darwin Building, Gower Street, London, WC1E6BT, UK.
| |
Collapse
|
86
|
Lee EB, Kim JH, Kim YJ, Noh YJ, Kim SJ, Hwang IH, Kim DK. Lifespan-extending property of 6-shogaol from Zingiber officinale Roscoe in Caenorhabditis elegans. Arch Pharm Res 2018; 41:743-752. [PMID: 29978428 DOI: 10.1007/s12272-018-1052-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/04/2018] [Indexed: 11/28/2022]
Abstract
Aging is a key risk factor for many diseases, understanding the mechanism of which is becoming more important for drug development given the fast-growing aging population. In the course of our continued efforts to discover anti-aging natural products, the active constituent 6-shogaol was isolated from Zingiber officinale Roscoe. The chemical structure of 6-shogaol was identified by comparison of its NMR data with literature values. The lifespan-extending effect of 6-shogaol was observed in a dose-dependent manner in Caenorhabditis elegans that has been widely used as a model organism for human aging studies. Mechanism of such action was investigated using C. elegans models, suggesting that 6-shogaol is capable of increasing stress tolerances via enzyme induction. The proposed mechanism was further supported by observation of the increase in SOD and HSP expressions upon treatment with 6-shogaol in transgenic strains of C. elegans which contain GFP-based reporters. In addition, the mechanism was elaborated by confirming that the effect observed for 6-shogaol is independent from other aging-related factors that are known to affect the aging process of C. elegans.
Collapse
Affiliation(s)
- Eun Byeol Lee
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
- Department of Agro-food Resources, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jun Hyeong Kim
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
| | - Yeong Jee Kim
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
| | - Yun Jeong Noh
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
| | - Su Jin Kim
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
| | - In Hyun Hwang
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea
| | - Dae Keun Kim
- College of Pharmacy, Woosuk University, Jeonju, 55338, Republic of Korea.
| |
Collapse
|
87
|
Hotzi B, Kosztelnik M, Hargitai B, Takács‐Vellai K, Barna J, Bördén K, Málnási‐Csizmadia A, Lippai M, Ortutay C, Bacquet C, Pasparaki A, Arányi T, Tavernarakis N, Vellai T. Sex-specific regulation of aging in Caenorhabditis elegans. Aging Cell 2018; 17:e12724. [PMID: 29493066 PMCID: PMC5946081 DOI: 10.1111/acel.12724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 02/03/2023] Open
Abstract
A fascinating aspect of sexual dimorphism in various animal species is that the two sexes differ substantially in lifespan. In humans, for example, women's life expectancy exceeds that of men by 3-7 years. Whether this trait can be attributed to dissimilar lifestyles or genetic (regulatory) factors remains to be elucidated. Herein, we demonstrate that in the nematode Caenorhabditis elegans, the significantly longer lifespan of hermaphrodites-which are essentially females capable of sperm production-over males is established by TRA-1, the terminal effector of the sex-determination pathway. This transcription factor directly controls the expression of daf-16/FOXO, which functions as a major target of insulin/IGF-1 signaling (IIS) and key modulator of aging across diverse animal phyla. TRA-1 extends hermaphrodite lifespan through promoting daf-16 activity. Furthermore, TRA-1 also influences reproductive growth in a DAF-16-dependent manner. Thus, the sex-determination machinery is an important regulator of IIS in this organism. These findings provide a mechanistic insight into how longevity and development are specified unequally in the two genders. As TRA-1 is orthologous to mammalian GLI (glioma-associated) proteins, a similar sex-specific mechanism may also operate in humans to determine lifespan.
Collapse
Affiliation(s)
| | | | - Balázs Hargitai
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | | | - János Barna
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | - Kincső Bördén
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
| | | | - Mónika Lippai
- Department of Anatomy, Cell‐ and Developmental BiologyEötvös Loránd UniversityBudapestHungary
| | | | - Caroline Bacquet
- Institute of EnzymologyResearch Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Angela Pasparaki
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Tamás Arányi
- Institute of EnzymologyResearch Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
- BNMI (INSERM 1083/CNRS 6214)Université d'AngersAngersFrance
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology‐HellasHeraklionGreece
| | - Tibor Vellai
- Department of GeneticsEötvös Loránd UniversityBudapestHungary
- MTA‐ELTE Genetics Research GroupEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
88
|
Kubo A, Matsuka M, Minami R, Kimura F, Sakata-Niitsu R, Kokuryo A, Taniguchi K, Adachi-Yamada T, Nakagoshi H. Nutrient conditions sensed by the reproductive organ during development optimize male fecundity in Drosophila. Genes Cells 2018; 23:557-567. [DOI: 10.1111/gtc.12600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ayuko Kubo
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Mirai Matsuka
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Ryunosuke Minami
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Fumika Kimura
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| | - Rumi Sakata-Niitsu
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo Japan
| | - Akihiko Kokuryo
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo Japan
| | - Kiichiro Taniguchi
- Department of Life Science; Faculty of Science; Gakushuin University; Tokyo Japan
| | | | - Hideki Nakagoshi
- Graduate School of Natural Science and Technology; Okayama University; Okayama Japan
| |
Collapse
|
89
|
Reece AS, Wang W, Hulse GK. Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. Med Hypotheses 2018; 116:10-21. [PMID: 29857889 DOI: 10.1016/j.mehy.2018.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
The recent demonstration that addiction-relevant neuronal ensembles defined by known master transcription factors and their connectome is networked throughout mesocorticolimbic reward circuits and resonates harmonically at known frequencies implies that single-cell pan-omics techniques can improve our understanding of Substance Use Disorders (SUD's). Application of machine learning algorithms to such data could find diagnostic utility as biomarkers both to define the presence of the disorder and to quantitate its severity and find myriad applications in a developmental pipeline towards therapeutics and cure. Recent epigenomic studies have uncovered a wealth of clinically important data relating to synapse-nucleus signalling, memory storage, lineage-fate determination and cellular control and are contributing greatly to our understanding of all SUD's. Epigenetics interacts extensively with glycobiology. Glycans decorate DNA, RNA and many circulating critical proteins particularly immunoglobulins. Glycosylation is emerging as a major information-laden post-translational protein modification with documented application for biomarker development. The integration of these two emerging cutting-edge technologies provides a powerful and fertile algorithmic-bioinformatic space for the development both of SUD biomarkers and novel cutting edge therapeutics. HYPOTHESES These lines of evidence provide fertile ground for hypotheses relating to both diagnosis and treatment. They suggest that biomarkers derived from epigenomics complemented by glycobiology may potentially provide a bedside diagnostic tool which could be developed into a clinically useful biomarker to gauge both the presence and the severity of SUD's. Moreover they suggest that modern information-based therapeutics acting on the epigenome, via RNA interference or by DNA antisense oligonucleotides may provide a novel 21st century therapeutic development pipeline towards the radical cure of addictive disorders. Such techniques could be focussed and potentiated by neurotrophic vectors or the application of interfering electric or magnetic fields deep in the medial temporal lobes of the brain.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia 6009, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia 6009, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
90
|
Tasaki E, Kobayashi K, Matsuura K, Iuchi Y. Long-Lived Termite Queens Exhibit High Cu/Zn-Superoxide Dismutase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5127251. [PMID: 29636846 PMCID: PMC5831368 DOI: 10.1155/2018/5127251] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 01/11/2023]
Abstract
In most organisms, superoxide dismutases (SODs) are among the most effective antioxidant enzymes that regulate the reactive oxygen species (ROS) generated by oxidative energy metabolism. ROS are considered main proximate causes of aging. However, it remains unclear if SOD activities are associated with organismal longevity. The queens of eusocial insects, such as termites, ants, and honeybees, exhibit extraordinary longevity in comparison with the nonreproductive castes, such as workers. Therefore, the queens are promising candidates to study the underlying mechanisms of aging. Here, we found that queens have higher Cu/Zn-SOD activity than nonreproductive individuals of the termite Reticulitermes speratus. We identified three Cu/Zn-SOD sequences and one Mn-SOD sequence by RNA sequencing in R. speratus. Although the queens showed higher Cu/Zn-SOD activity than the nonreproductive individuals, there were no differences in their expression levels of the Cu/Zn-SOD genes RsSOD1 and RsSOD3A. Copper (Cu2+ and Cu+) is an essential cofactor for Cu/Zn-SOD enzyme activity, and the queens had higher concentrations of copper than the workers. These results suggest that the high Cu/Zn-SOD activity of termite queens is related to their high levels of the cofactor rather than gene expression. This study highlights that Cu/Zn-SOD activity contributes to extraordinary longevity in termites.
Collapse
Affiliation(s)
- Eisuke Tasaki
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Kazuya Kobayashi
- Hokkaido Forest Research Station, Field Science Education and Research Center, Kyoto University, 553 Tawa Shibecha-cho Kawakami-gun, Hokkaido 088-2339, Japan
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Kyoto 606-8502, Japan
| | - Yoshihito Iuchi
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, 4-101 Koyamacho-minami, Tottori 680-8553, Japan
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
91
|
Duxbury EML, Rostant WG, Chapman T. Manipulation of feeding regime alters sexual dimorphism for lifespan and reduces sexual conflict in Drosophila melanogaster. Proc Biol Sci 2018; 284:rspb.2017.0391. [PMID: 28469030 PMCID: PMC5443951 DOI: 10.1098/rspb.2017.0391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
Sexual dimorphism for lifespan (SDL) is widespread, but poorly understood. A leading hypothesis, which we test here, is that strong SDL can reduce sexual conflict by allowing each sex to maximize its sex-specific fitness. We used replicated experimental evolution lines of the fruit fly, Drosophila melanogaster, which had been maintained for over 360 generations on either unpredictable ‘Random’ or predictable ‘Regular’ feeding regimes. This evolutionary manipulation of feeding regime led to robust, enhanced SDL in Random over control, Regular lines. Enhanced SDL was associated with a significant increase in the fitness of focal males, tested with wild-type (WT) females. This was due to sex-specific changes to male life history, manifested as increased early reproductive output and reduced survival. In contrast, focal female fitness, tested with WT males, did not differ across regimes. Hence increased SDL was associated with a reduction in sexual conflict, which increased male fitness and maintained fitness in females. Differences in SDL were not associated with developmental time or developmental survival. Overall, the results showed that the expression of enhanced SDL, resulting from experimental evolution of feeding regimes, was associated with male-specific changes in life history, leading to increased fitness and reduced sexual conflict.
Collapse
Affiliation(s)
- Elizabeth M L Duxbury
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7HP, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Wayne G Rostant
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7HP, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7HP, UK
| |
Collapse
|
92
|
Maklakov AA, Carlsson H, Denbaum P, Lind MI, Mautz B, Hinas A, Immler S. Antagonistically pleiotropic allele increases lifespan and late-life reproduction at the cost of early-life reproduction and individual fitness. Proc Biol Sci 2018; 284:rspb.2017.0376. [PMID: 28615498 DOI: 10.1098/rspb.2017.0376] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/15/2017] [Indexed: 01/03/2023] Open
Abstract
Evolutionary theory of ageing maintains that increased allocation to early-life reproduction results in reduced somatic maintenance, which is predicted to compromise longevity and late-life reproduction. This prediction has been challenged by the discovery of long-lived mutants with no loss of fecundity. The first such long-lived mutant was found in the nematode worm Caenorhabditis elegans Specifically, partial loss-of-function mutation in the age-1 gene, involved in the nutrient-sensing insulin/insulin-like growth factor signalling pathway, confers longevity, as well as increased resistance to pathogens and to temperature stress without appreciable fitness detriment. Here, we show that the long-lived age-1(hx546) mutant has reduced fecundity and offspring production in early-life, but increased fecundity, hatching success, and offspring production in late-life compared with wild-type worms under standard conditions. However, reduced early-life performance of long-lived mutant animals was not fully compensated by improved performance in late-life and resulted in reduced individual fitness. These results suggest that the age-1(hx546) allele has opposing effects on early-life versus late-life fitness in accordance with antagonistic pleiotropy (AP) and disposable soma theories of ageing. These findings support the theoretical conjecture that experimental studies based on standing genetic variation underestimate the importance of AP in the evolution of ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| | - Hanne Carlsson
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Philip Denbaum
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Martin I Lind
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Brian Mautz
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden
| | - Andrea Hinas
- Department of Cell and Molecular Biology, Uppsala University, PO Box 596, Uppsala 75124, Sweden
| | - Simone Immler
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvagen 18D, Uppsala 752 36, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, Norfolk, UK
| |
Collapse
|
93
|
Templeman NM, Murphy CT. Regulation of reproduction and longevity by nutrient-sensing pathways. J Cell Biol 2018; 217:93-106. [PMID: 29074705 PMCID: PMC5748989 DOI: 10.1083/jcb.201707168] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 12/23/2022] Open
Abstract
Nutrients are necessary for life, as they are a crucial requirement for biological processes including reproduction, somatic growth, and tissue maintenance. Therefore, signaling systems involved in detecting and interpreting nutrient or energy levels-most notably, the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway, mechanistic target of rapamycin (mTOR), and adenosine monophosphate-activated protein kinase (AMPK)-play important roles in regulating physiological decisions to reproduce, grow, and age. In this review, we discuss the connections between reproductive senescence and somatic aging and give an overview of the involvement of nutrient-sensing pathways in controlling both reproductive function and lifespan. Although the molecular mechanisms that affect these processes can be influenced by distinct tissue-, temporal-, and pathway-specific signaling events, the progression of reproductive aging and somatic aging is systemically coordinated by integrated nutrient-sensing signaling pathways regulating somatic tissue maintenance in conjunction with reproductive capacity.
Collapse
Affiliation(s)
- Nicole M Templeman
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Coleen T Murphy
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ
| |
Collapse
|
94
|
Senior AM, Nakagawa S, Raubenheimer D, Simpson SJ, Noble DWA. Dietary restriction increases variability in longevity. Biol Lett 2017; 13:rsbl.2017.0057. [PMID: 28298596 DOI: 10.1098/rsbl.2017.0057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/20/2017] [Indexed: 11/12/2022] Open
Abstract
Nutritional environments, particularly those experienced during early life, are hypothesized to affect longevity. A recent cross-taxa meta-analysis found that, depending upon circumstance, average longevity may be increased or decreased by early-life dietary restriction. Unstudied are the effects of diet during development on among-individual variance in longevity. Here, we address this issue using emerging methods for meta-analysis of variance. We found that, in general, standard deviation (s.d.) in longevity is around 8% higher under early-life dietary restriction than a standard diet. The effects became especially profound when dietary insults were experienced prenatally (s.d. increased by 29%) and/or extended into adulthood (s.d. increased by 36.6%). Early-life dietary restriction may generate variance in longevity as a result of increased variance in resource acquisition or allocation, but the mechanisms underlying these largely overlooked patterns clearly warrant elucidation.
Collapse
Affiliation(s)
- A M Senior
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia .,School of Mathematics and Statistics, The University of Sydney, New South Wales 2006, Australia
| | - S Nakagawa
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - D Raubenheimer
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
| | - S J Simpson
- Charles Perkins Centre, The University of Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
| | - D W A Noble
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
95
|
Moatt JP, Hambly C, Heap E, Kramer A, Moon F, Speakman JR, Walling CA. Body macronutrient composition is predicted by lipid and not protein content of the diet. Ecol Evol 2017; 7:10056-10065. [PMID: 29238536 PMCID: PMC5723615 DOI: 10.1002/ece3.3529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/29/2017] [Accepted: 09/28/2017] [Indexed: 11/23/2022] Open
Abstract
Diet is an important determinant of fitness-related traits including growth, reproduction, and survival. Recent work has suggested that variation in protein:lipid ratio and particularly the amount of protein in the diet is a key nutritional parameter. However, the traits that mediate the link between dietary macronutrient ratio and fitness-related traits are less well understood. An obvious candidate is body composition, given its well-known link to health. Here, we investigate the relationship between dietary and body macronutrient composition using a first-generation laboratory population of a freshwater fish, the three-spine stickleback (Gasterosteus aculeatus). Carbohydrate is relatively unimportant in the diet of predatory fish, facilitating the exploration of how dietary protein-to-lipid ratio affects their relative deposition in the body. We find a significant effect of lipid intake, rather than protein, on body protein:lipid ratio. Importantly, this was not a result of absorbing macronutrients in relation to their relative abundance in the diet, as the carcass protein:lipid ratios differed from those of the diets, with ratios usually lower in the body than in the diet. This indicates that individuals can moderate their utilization, or uptake, of ingested macronutrients to reach a target balance within the body. We found no effect of diet on swimming endurance, activity, or testes size. However, there was an effect of weight on testes size, with larger males having larger testes. Our results provide evidence for the adjustment of body protein:lipid ratio away from that of the diet. As dietary lipid intake was the key determinant of body composition, we suggest this occurs via metabolism of excess protein, which conflicts with the predictions of the protein leverage hypothesis. These results could imply that the conversion and excretion of protein is one of the causes of the survival costs associated with high-protein diets.
Collapse
Affiliation(s)
- Joshua P. Moatt
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Catherine Hambly
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
| | - Elizabeth Heap
- Edinburgh GenomicsRoslin InstituteUniversity of EdinburghEdinburghUK
| | - Anna Kramer
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Fiona Moon
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - John R. Speakman
- Institute of Biological and Environmental SciencesUniversity of AberdeenAberdeenUK
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesGuangzhou ShiChina
| | - Craig A. Walling
- School of Biological SciencesInstitute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
96
|
Vekhnik VA. The Edible Dormouse (Glis glis, Gliridae, Rodentia) in the Periphery of Its Distribution Range: Body Size and Life History Parameters. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017090163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
97
|
Gaillard JM, Lemaître JF. The Williams' legacy: A critical reappraisal of his nine predictions about the evolution of senescence. Evolution 2017; 71:2768-2785. [DOI: 10.1111/evo.13379] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
|
98
|
Antoch MP, Wrobel M, Kuropatwinski KK, Gitlin I, Leonova KI, Toshkov I, Gleiberman AS, Hutson AD, Chernova OB, Gudkov AV. Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice. Aging (Albany NY) 2017; 9:615-626. [PMID: 28325885 PMCID: PMC5391222 DOI: 10.18632/aging.101206] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/11/2017] [Indexed: 11/25/2022]
Abstract
The development of healthspan-extending pharmaceuticals requires quantitative estimation of age-related progressive physiological decline. In humans, individual health status can be quantitatively assessed by means of a frailty index (FI), a parameter which reflects the scale of accumulation of age-related deficits. However, adaptation of this methodology to animal models is a challenging task since it includes multiple subjective parameters. Here we report a development of a quantitative non-invasive procedure to estimate biological age of an individual animal by creating physiological frailty index (PFI). We demonstrated the dynamics of PFI increase during chronological aging of male and female NIH Swiss mice. We also demonstrated acceleration of growth of PFI in animals placed on a high fat diet, reflecting aging acceleration by obesity and provide a tool for its quantitative assessment. Additionally, we showed that PFI could reveal anti-aging effect of mTOR inhibitor rapatar (bioavailable formulation of rapamycin) prior to registration of its effects on longevity. PFI revealed substantial sex-related differences in normal chronological aging and in the efficacy of detrimental (high fat diet) or beneficial (rapatar) aging modulatory factors. Together, these data introduce PFI as a reliable, non-invasive, quantitative tool suitable for testing potential anti-aging pharmaceuticals in pre-clinical studies.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Michelle Wrobel
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.,Everon Biosciences, Inc., Buffalo, NY 14203, USA
| | - Karen K Kuropatwinski
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Ilya Gitlin
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Katerina I Leonova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Ilia Toshkov
- Everon Biosciences, Inc., Buffalo, NY 14203, USA
| | | | - Alan D Hutson
- Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
99
|
Ørsted M, Malmendal A, Muñoz J, Kristensen TN. Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
100
|
Abstract
It was recently reported that the extragonadal actions of follicle‐stimulating hormone (FSH) include regulation of brown and white adipose tissue function and thermogenesis. Based on these findings and on our evidence for reduced FSH levels and enhanced thermogenesis in long‐lived growth hormone (GH)‐deficient mice and GH‐resistant mice, we suggest that FSH may have a role in the control of aging and longevity. We speculate that alterations in FSH secretion may represent one of the mechanisms of trade‐offs between reproduction and aging.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine; SIU School of Medicine; 801 N. Rutledge, P.O. Box 19628 Springfield IL 62704-9628 USA
| |
Collapse
|