51
|
Whitley K, Comstock M, Chemla Y. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy. Methods Enzymol 2017; 582:137-169. [PMID: 28062033 PMCID: PMC5540136 DOI: 10.1016/bs.mie.2016.10.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We describe the design, construction, and application of an instrument combining dual-trap, high-resolution optical tweezers and a confocal microscope. This hybrid instrument allows nanomechanical manipulation and measurement simultaneously with single-molecule fluorescence detection. We present the general design principles that overcome the challenges of maximizing optical trap resolution while maintaining single-molecule fluorescence sensitivity, and provide details on the construction and alignment of the instrument. This powerful new tool is just beginning to be applied to biological problems. We present step-by-step instructions on an application of this technique that highlights the instrument's capabilities, detecting conformational dynamics in a nucleic acid-processing enzyme.
Collapse
Affiliation(s)
- K.D. Whitley
- University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - M.J. Comstock
- Michigan State University, East Lansing, MI, United States
| | - Y.R. Chemla
- University of Illinois at Urbana–Champaign, Urbana, IL, United States,Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, IL, United States,Corresponding author:
| |
Collapse
|
52
|
High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection. Methods Mol Biol 2017; 1486:183-256. [PMID: 27844430 DOI: 10.1007/978-1-4939-6421-5_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in optical tweezers have greatly expanded their measurement capabilities. A new generation of hybrid instrument that combines nanomechanical manipulation with fluorescence detection-fluorescence optical tweezers, or "fleezers"-is providing a powerful approach to study complex macromolecular dynamics. Here, we describe a combined high-resolution optical trap/confocal fluorescence microscope that can simultaneously detect sub-nanometer displacements, sub-piconewton forces, and single-molecule fluorescence signals. The primary technical challenge to these hybrid instruments is how to combine both measurement modalities without sacrificing the sensitivity of either one. We present general design principles to overcome this challenge and provide detailed, step-by-step instructions to implement them in the construction and alignment of the instrument. Lastly, we present a set of protocols to perform a simple, proof-of-principle experiment that highlights the instrument capabilities.
Collapse
|
53
|
Arias-Gonzalez JR. Information management in DNA replication modeled by directional, stochastic chains with memory. J Chem Phys 2016; 145:185103. [DOI: 10.1063/1.4967335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- J. Ricardo Arias-Gonzalez
- Instituto Madrileño de Estudios Avanzados en Nanociencia, CNB-CSIC-IMDEA Nanociencia Associated Unit “Unidad de Nanobiotecnología,” C/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
54
|
Hou X, DeSantis MC, Tian C, Cheng W. Optical manipulation of a single human virus for study of viral-cell interactions. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9922. [PMID: 27746582 DOI: 10.1117/12.2239051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although Ashkin and Dziedzic first demonstrated optical trapping of individual tobacco mosaic viruses in suspension as early as 1987, this pioneering work has not been followed up only until recently. Using human immunodeficiency virus type 1 (HIV-1) as a model virus, we have recently demonstrated that a single HIV-1 virion can be stabled trapped, manipulated and measured in physiological media with high precision. The capability to optically trap a single virion in suspension not only allows us to determine, for the first time, the refractive index of a single virus with high precision, but also quantitate the heterogeneity among individual virions with single-molecule resolution, the results of which shed light on the molecular mechanisms of virion infectivity. Here we report the further development of a set of microscopic techniques to physically deliver a single HIV-1 virion to a single host cell in solution. Combined with simultaneous epifluorescence imaging, the attachment and dissociation events of individual manipulated virions on host cell surface can be measured and the results help us understand the role of diffusion in mediating viral attachment to host cells. The establishment of these techniques opens up new ways for investigation of a wide range of virion-cell interactions, and should be applicable for study of B cell interactions with particulate antigens such as viruses.
Collapse
Affiliation(s)
- Ximiao Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Michael C DeSantis
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Chunjuan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA
| | - Wei Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan Medical School, 428 Church Street, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
55
|
Dulin D, Cui TJ, Cnossen J, Docter MW, Lipfert J, Dekker NH. High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics. Biophys J 2016; 109:2113-25. [PMID: 26588570 DOI: 10.1016/j.bpj.2015.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 11/16/2022] Open
Abstract
The observation of biological processes at the molecular scale in real time requires high spatial and temporal resolution. Magnetic tweezers are straightforward to implement, free of radiation or photodamage, and provide ample multiplexing capability, but their spatiotemporal resolution has lagged behind that of other single-molecule manipulation techniques, notably optical tweezers and AFM. Here, we present, to our knowledge, a new high-resolution magnetic tweezers apparatus. We systematically characterize the achievable spatiotemporal resolution for both incoherent and coherent light sources, different types and sizes of beads, and different types and lengths of tethered molecules. Using a bright coherent laser source for illumination and tracking at 6 kHz, we resolve 3 Å steps with a 1 s period for surface-melted beads and 5 Å steps with a 0.5 s period for double-stranded-dsDNA-tethered beads, in good agreement with a model of stochastic bead motion in the magnetic tweezers. We demonstrate how this instrument can be used to monitor the opening and closing of a DNA hairpin on millisecond timescales in real time, together with attendant changes in the hairpin dynamics upon the addition of deoxythymidine triphosphate. Our approach opens up the possibility of observing biological events at submillisecond timescales with subnanometer resolution using camera-based detection.
Collapse
Affiliation(s)
- David Dulin
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | - Tao Ju Cui
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jelmer Cnossen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Margreet W Docter
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Jan Lipfert
- Department of Physics, Nanosystems Initiative Munich and Center for Nanoscience, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
56
|
Berghuis BA, Köber M, van Laar T, Dekker NH. High-throughput, high-force probing of DNA-protein interactions with magnetic tweezers. Methods 2016; 105:90-8. [DOI: 10.1016/j.ymeth.2016.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022] Open
|
57
|
Chemla YR. High‐resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins. Biopolymers 2016; 105:704-14. [DOI: 10.1002/bip.22880] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Yann R. Chemla
- Department of Physics, Center for the Physics of Living Cells, Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbana‐Champaign
| |
Collapse
|
58
|
Astumian RD, Mukherjee S, Warshel A. The Physics and Physical Chemistry of Molecular Machines. Chemphyschem 2016; 17:1719-41. [PMID: 27149926 PMCID: PMC5518708 DOI: 10.1002/cphc.201600184] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Indexed: 12/25/2022]
Abstract
The concept of a "power stroke"-a free-energy releasing conformational change-appears in almost every textbook that deals with the molecular details of muscle, the flagellar rotor, and many other biomolecular machines. Here, it is shown by using the constraints of microscopic reversibility that the power stroke model is incorrect as an explanation of how chemical energy is used by a molecular machine to do mechanical work. Instead, chemically driven molecular machines operating under thermodynamic constraints imposed by the reactant and product concentrations in the bulk function as information ratchets in which the directionality and stopping torque or stopping force are controlled entirely by the gating of the chemical reaction that provides the fuel for the machine. The gating of the chemical free energy occurs through chemical state dependent conformational changes of the molecular machine that, in turn, are capable of generating directional mechanical motions. In strong contrast to this general conclusion for molecular machines driven by catalysis of a chemical reaction, a power stroke may be (and often is) an essential component for a molecular machine driven by external modulation of pH or redox potential or by light. This difference between optical and chemical driving properties arises from the fundamental symmetry difference between the physics of optical processes, governed by the Bose-Einstein relations, and the constraints of microscopic reversibility for thermally activated processes.
Collapse
Affiliation(s)
- R Dean Astumian
- Department of Physics, University of Maine, Orono, ME, 04469, USA.
| | - Shayantani Mukherjee
- Department of Chemistry, University of Southern California, Los Angeles, California, USA.
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
59
|
Abstract
The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.
Collapse
Affiliation(s)
- Jason C Bell
- Department of Microbiology and Molecular Genetics, and Department of Molecular and Cellular Biology, University of California, Davis, California 95616;
| | - Stephen C Kowalczykowski
- Department of Microbiology and Molecular Genetics, and Department of Molecular and Cellular Biology, University of California, Davis, California 95616;
| |
Collapse
|
60
|
Kamsma D, Creyghton R, Sitters G, Wuite GJL, Peterman EJG. Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0. Methods 2016; 105:26-33. [PMID: 27163865 DOI: 10.1016/j.ymeth.2016.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/18/2022] Open
Abstract
AFS is a recently introduced high-throughput single-molecule technique that allows studying structural and mechanochemical properties of many biomolecules in parallel. To further improve the method, we developed a modelling tool to optimize the layer thicknesses, and a calibration method to experimentally validate the modelled force profiles. After optimization, we are able to apply 350pN on 4.5μm polystyrene beads, without the use of an amplifier, at the coverslip side of the AFS chip. Furthermore, we present the use of a transparent piezo to generate the acoustic force and we show that AFS can be combined with high-NA oil or water-immersion objectives. With this set of developments AFS will be applicable to a broad range of single-molecule experiments.
Collapse
Affiliation(s)
- Douwe Kamsma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ramon Creyghton
- Department of Physics and Astronomy, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerrit Sitters
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; LUMICKS B.V., Amsterdam, The Netherlands
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
61
|
Wang C, Han B, Zhou R, Zhuang X. Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells. Cell 2016; 165:990-1001. [PMID: 27153499 PMCID: PMC4905760 DOI: 10.1016/j.cell.2016.04.040] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Translation is under tight spatial and temporal controls to ensure protein production in the right time and place in cells. Methods that allow real-time, high-resolution visualization of translation in live cells are essential for understanding the spatiotemporal dynamics of translation regulation. Based on multivalent fluorescence amplification of the nascent polypeptide signal, we develop a method to image translation on individual mRNA molecules in real time in live cells, allowing direct visualization of translation events at the translation sites. Using this approach, we monitor transient changes of translation dynamics in responses to environmental stresses, capture distinct mobilities of individual polysomes in different subcellular compartments, and detect 3' UTR-dependent local translation and active transport of polysomes in dendrites of primary neurons.
Collapse
Affiliation(s)
- Chong Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Boran Han
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ruobo Zhou
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
62
|
Jack MW, Tumlin C. Intrinsic irreversibility limits the efficiency of multidimensional molecular motors. Phys Rev E 2016; 93:052109. [PMID: 27300832 DOI: 10.1103/physreve.93.052109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 06/06/2023]
Abstract
We consider the efficiency limits of Brownian motors able to extract work from the temperature difference between reservoirs or from external thermodynamic forces. These systems can operate in a variety of modes, including as isothermal engines, heat engines, refrigerators, and heat pumps. We derive analytical results showing that certain classes of multidimensional Brownian motor, including the Smoluchowski-Feynman ratchet, are unable to attain perfect efficiency (Carnot efficiency for heat engines). This demonstrates the presence of intrinsic irreversibilities in their operating mechanism. We present numerical simulations showing that in some cases the loss process that limits efficiency is associated with vortices in the probability current.
Collapse
Affiliation(s)
- M W Jack
- Department of Physics, University of Otago, Dunedin, New Zealand
| | - C Tumlin
- Department of Physics, University of Otago, Dunedin, New Zealand
| |
Collapse
|
63
|
Pincus DL, Chakrabarti S, Thirumalai D. Helicase processivity and not the unwinding velocity exhibits universal increase with force. Biophys J 2016. [PMID: 26200858 DOI: 10.1016/j.bpj.2015.05.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Helicases, involved in a number of cellular functions, are motors that translocate along single-stranded nucleic acid and couple the motion to unwinding double-strands of a duplex nucleic acid. The junction between double- and single-strands creates a barrier to the movement of the helicase, which can be manipulated in vitro by applying mechanical forces directly on the nucleic acid strands. Single-molecule experiments have demonstrated that the unwinding velocities of some helicases increase dramatically with increase in the external force, while others show little response. In contrast, the unwinding processivity always increases when the force increases. The differing responses of the unwinding velocity and processivity to force have lacked explanation. By generalizing a previous model of processive unwinding by helicases, we provide a unified framework for understanding the dependence of velocity and processivity on force and the nucleic acid sequence. We predict that the sensitivity of unwinding processivity to external force is a universal feature that should be observed in all helicases. Our prediction is illustrated using T7 and NS3 helicases as case studies. Interestingly, the increase in unwinding processivity with force depends on whether the helicase forces basepair opening by direct interaction or if such a disruption occurs spontaneously due to thermal fluctuations. Based on the theoretical results, we propose that proteins like single-strand binding proteins associated with helicases in the replisome may have coevolved with helicases to increase the unwinding processivity even if the velocity remains unaffected.
Collapse
Affiliation(s)
- David L Pincus
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| | - Shaon Chakrabarti
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland.
| |
Collapse
|
64
|
Multiplexed single-molecule force spectroscopy using a centrifuge. Nat Commun 2016; 7:11026. [PMID: 26984516 PMCID: PMC4800429 DOI: 10.1038/ncomms11026] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/12/2016] [Indexed: 11/30/2022] Open
Abstract
We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. Single molecule force spectroscopy (SMFS) has limitations in throughput and the ability to repeatedly interrogate single bonds. Here the authors repurpose a benchtop centrifuge and use DNA nanoswitches to enable high throughput SMFS capable of repeatedly measuring forces of single molecular pairs.
Collapse
|
65
|
Price AC, Pilkiewicz KR, Graham TGW, Song D, Eaves JD, Loparo JJ. DNA motion capture reveals the mechanical properties of DNA at the mesoscale. Biophys J 2016; 108:2532-2540. [PMID: 25992731 DOI: 10.1016/j.bpj.2015.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/26/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022] Open
Abstract
Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length.
Collapse
Affiliation(s)
- Allen C Price
- Department of Chemistry and Physics, Emmanuel College, Boston, Massachusetts
| | - Kevin R Pilkiewicz
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Thomas G W Graham
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Dan Song
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts; Harvard Biophysics Program, Harvard Medical School, Boston, Massachusetts
| | - Joel D Eaves
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
66
|
Kemmerich FE, Swoboda M, Kauert DJ, Grieb MS, Hahn S, Schwarz FW, Seidel R, Schlierf M. Simultaneous Single-Molecule Force and Fluorescence Sampling of DNA Nanostructure Conformations Using Magnetic Tweezers. NANO LETTERS 2016; 16:381-6. [PMID: 26632021 DOI: 10.1021/acs.nanolett.5b03956] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a hybrid single-molecule technique combining magnetic tweezers and Förster resonance energy transfer (FRET) measurements. Through applying external forces to a paramagnetic sphere, we induce conformational changes in DNA nanostructures, which are detected in two output channels simultaneously. First, by tracking a magnetic bead with high spatial and temporal resolution, we observe overall DNA length changes along the force axis. Second, the measured FRET efficiency between two fluorescent probes monitors local conformational changes. The synchronized orthogonal readout in different observation channels will facilitate deciphering the complex mechanisms of biomolecular machines.
Collapse
Affiliation(s)
- Felix E Kemmerich
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - Marko Swoboda
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Dominik J Kauert
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - M Svea Grieb
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Steffen Hahn
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| | - Friedrich W Schwarz
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
- cfaed - Center for Advancing Electronics Dresden, TU Dresden , 01307 Dresden, Germany
| | - Ralf Seidel
- Institute for Molecular Cell Biology, University of Münster , 48149 Münster, Germany
- Institute of Experimental Physics I, Universität Leipzig , 04103 Leipzig, Germany
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
67
|
Lee S, Jang Y, Lee SJ, Hohng S. Single-Molecule Multicolor FRET Assay for Studying Structural Dynamics of Biomolecules. Methods Enzymol 2016; 581:461-486. [DOI: 10.1016/bs.mie.2016.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
68
|
Serebrov V, Moore MJ. Single Molecule Approaches in RNA-Protein Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:89-106. [DOI: 10.1007/978-3-319-29073-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
69
|
Astumian RD. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys J 2015; 108:291-303. [PMID: 25606678 DOI: 10.1016/j.bpj.2014.11.3459] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 11/19/2022] Open
Abstract
A simple model for a chemically driven molecular walker shows that the elastic energy stored by the molecule and released during the conformational change known as the power-stroke (i.e., the free-energy difference between the pre- and post-power-stroke states) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Further, the apportionment of the dependence on the externally applied force between the forward and reverse rate constants of the power-stroke (or indeed among all rate constants) is irrelevant for determining the directionality, stopping force, and efficiency of the motor. Arguments based on the principle of microscopic reversibility demonstrate that this result is general for all chemically driven molecular machines, and even more broadly that the relative energies of the states of the motor have no role in determining the directionality, stopping force, or optimal efficiency of the machine. Instead, the directionality, stopping force, and optimal efficiency are determined solely by the relative heights of the energy barriers between the states. Molecular recognition--the ability of a molecular machine to discriminate between substrate and product depending on the state of the machine--is far more important for determining the intrinsic directionality and thermodynamics of chemo-mechanical coupling than are the details of the internal mechanical conformational motions of the machine. In contrast to the conclusions for chemical driving, a power-stroke is very important for the directionality and efficiency of light-driven molecular machines and for molecular machines driven by external modulation of thermodynamic parameters.
Collapse
|
70
|
Muñoz R, Aguilar Sandoval F, Wilson CAM, Melo F. Pulling on super paramagnetic beads with micro cantilevers: single molecule mechanical assay application. Phys Biol 2015. [PMID: 26200136 DOI: 10.1088/1478-3975/12/4/046011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper demonstrates that it is possible to trap and release a super paramagnetic micro bead by fixing three super paramagnetic micro beads in a triangular array at the sensitive end of a micro cantilever, and by simply switching on/off an external magnetic field. To provide evidence of this principle we trap a micro bead that is attached to the free end of single DNA molecule and that has been previously fixed at the other end to a glass surface, using the standard sample preparation protocol of magnetic tweezers assays. The switching process is reversible which preserves the integrity of the tethered molecule, and a local force applied over the tethered bead excludes the neighbouring beads from the magnetic trap. We have developed a quadrature phase interferometer which is able to perform under fluid environments to accurately measure small deflections, which permits the exploration of DNA elasticity. Our results agree with measurements from magnetic tweezer assays performed under similar conditions. Furthermore, compared to the magnetic tweezer methodology, the combination of the magnetic trap with a suitable measurement system for cantilever deflection, allows for the exploration of a wide range of forces using a local method that has an improved temporal resolution.
Collapse
Affiliation(s)
- Romina Muñoz
- Departamento de Física, Facultad de Ciencia, Universidad de Santiago de Chile, Av. Ecuador 3493, Estación Central, Santiago, Chile
| | | | | | | |
Collapse
|
71
|
D'Heygère F, Schwartz A, Coste F, Castaing B, Boudvillain M. ATP-dependent motor activity of the transcription termination factor Rho from Mycobacterium tuberculosis. Nucleic Acids Res 2015; 43:6099-111. [PMID: 25999346 PMCID: PMC4499133 DOI: 10.1093/nar/gkv505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
The bacterial transcription termination factor Rho-a ring-shaped molecular motor displaying directional, ATP-dependent RNA helicase/translocase activity-is an interesting therapeutic target. Recently, Rho from Mycobacterium tuberculosis (MtbRho) has been proposed to operate by a mechanism uncoupled from molecular motor action, suggesting that the manner used by Rho to dissociate transcriptional complexes is not conserved throughout the bacterial kingdom. Here, however, we demonstrate that MtbRho is a bona fide molecular motor and directional helicase which requires a catalytic site competent for ATP hydrolysis to disrupt RNA duplexes or transcription elongation complexes. Moreover, we show that idiosyncratic features of the MtbRho enzyme are conferred by a large, hydrophilic insertion in its N-terminal 'RNA binding' domain and by a non-canonical R-loop residue in its C-terminal 'motor' domain. We also show that the 'motor' domain of MtbRho has a low apparent affinity for the Rho inhibitor bicyclomycin, thereby contributing to explain why M. tuberculosis is resistant to this drug. Overall, our findings support that, in spite of adjustments of the Rho motor to specific traits of its hosting bacterium, the basic principles of Rho action are conserved across species and could thus constitute pertinent screening criteria in high-throughput searches of new Rho inhibitors.
Collapse
Affiliation(s)
- François D'Heygère
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France Ecole doctorale Santé, Sciences Biologiques et Chimie du Vivant (ED 549), Université d'Orléans, Orléans, France
| | - Annie Schwartz
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France ITP Sciences Biologiques & Chimie du Vivant, Université d'Orléans, Orléans, France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire, CNRS UPR4301, rue Charles Sadron, 45071 Orléans cedex 2, France ITP Sciences Biologiques & Chimie du Vivant, Université d'Orléans, Orléans, France
| |
Collapse
|
72
|
Zhong Z, Soh LH, Lim MH, Chen G. A U⋅U Pair-to-U⋅C Pair Mutation-Induced RNA Native Structure Destabilisation and Stretching-Force-Induced RNA Misfolding. Chempluschem 2015; 80:1267-1278. [PMID: 31973291 DOI: 10.1002/cplu.201500144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Little is known about how a non-Watson-Crick pair affects the RNA folding dynamics. We studied the effects of a U⋅U-to-U⋅C pair mutation on the folding of a hairpin in human telomerase RNA. The ensemble thermal melting of the hairpins shows an on-pathway intermediate with the disruption of the internal loop structure containing the U⋅U/U⋅C pairs. By using optical tweezers, we applied a stretching force on the terminal ends of the hairpins to probe directly the non-nearest-neighbour effects upon the mutations. The single U⋅U to U⋅C mutations are observed to 1) lower the mechanical unfolding force by approximately 1 picoNewton (pN) per mutation without affecting the unfolding reaction transition-state position (thus suggesting that removing a single hydrogen bond affects the structural dynamics at least two base pairs away), 2) result in more frequent misfolding into a small hairpin at approximately 10 pN and 3) shift the folding reaction transition-state position towards the native hairpin structure and slightly increase the mechanical folding kinetics (thus suggesting that untrapping from the misfolded state is not the rate-limiting step).
Collapse
Affiliation(s)
- Zhensheng Zhong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Lai Huat Soh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Ming Hui Lim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore), Fax: (+65) 6791-1961
| |
Collapse
|
73
|
Mechetin GV, Zharkov DO. Mechanisms of diffusional search for specific targets by DNA-dependent proteins. BIOCHEMISTRY (MOSCOW) 2015; 79:496-505. [PMID: 25100007 DOI: 10.1134/s0006297914060029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To perform their functions, many DNA-dependent proteins have to quickly locate specific targets against the vast excess of nonspecific DNA. Although this problem was first formulated over 40 years ago, the mechanism of such search remains one of the unsolved fundamental problems in the field of protein-DNA interactions. Several complementary mechanisms have been suggested: sliding, based on one-dimensional random diffusion along the DNA contour; hopping, in which the protein "jumps" between the closely located DNA fragments; macroscopic association-dissociation of the protein-DNA complex; and intersegmental transfer. This review covers the modern state of the problem of target DNA search, theoretical descriptions, and methods of research at the macroscopic (molecule ensembles) and microscopic (individual molecules) levels. Almost all studied DNA-dependent proteins search for specific targets by combined three-dimensional diffusion and one-dimensional diffusion along the DNA contour.
Collapse
Affiliation(s)
- G V Mechetin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
74
|
Sirbuly DJ, Friddle RW, Villanueva J, Huang Q. Nanomechanical force transducers for biomolecular and intracellular measurements: is there room to shrink and why do it? REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:024101. [PMID: 25629797 DOI: 10.1088/0034-4885/78/2/024101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Over the past couple of decades there has been a tremendous amount of progress on the development of ultrasensitive nanomechanical instruments, which has enabled scientists to peer for the first time into the mechanical world of biomolecular systems. Currently, work-horse instruments such as the atomic force microscope and optical/magnetic tweezers have provided the resolution necessary to extract quantitative force data from various molecular systems down to the femtonewton range, but it remains difficult to access the intracellular environment with these analytical tools as they have fairly large sizes and complicated feedback systems. This review is focused on highlighting some of the major milestones and discoveries in the field of biomolecular mechanics that have been made possible by the development of advanced atomic force microscope and tweezer techniques as well as on introducing emerging state-of-the-art nanomechanical force transducers that are addressing the size limitations presented by these standard tools. We will first briefly cover the basic setup and operation of these instruments, and then focus heavily on summarizing advances in in vitro force studies at both the molecular and cellular level. The last part of this review will include strategies for shrinking down the size of force transducers and provide insight into why this may be important for gaining a more complete understanding of cellular activity and function.
Collapse
Affiliation(s)
- Donald J Sirbuly
- Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, USA. Materials Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | | | | |
Collapse
|
75
|
Astumian RD. Huxley's Model for Muscle Contraction Revisited: The Importance of Microscopic Reversibility. Top Curr Chem (Cham) 2015; 369:285-316. [PMID: 26122749 DOI: 10.1007/128_2015_644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Andrew Huxley's model for muscle contraction is the first mechanistic description of how an energy-providing chemical reaction, ATP hydrolysis, can be coupled by a molecule (myosin) to do work in the environment in a cyclic process. The model was originally used to fit experimentally obtained force vs velocity curves, and has served as a paradigm for understanding mechanochemical coupling ever since. Despite the remarkable success in fitting kinetic data, Huxley's model is thermodynamically inconsistent in several regards, most notably in its failure to include thermal noise in the description of the mechanical transitions by which motion occurs. This inconsistency has led subsequent workers to incorrect conclusions regarding the importance of mechanical transitions for determining the direction of motion, the efficiency of energy conversion, the ratio of forward to backward steps, and the applied force necessary to stop the motion of chemically driven molecular motors. In this chapter an extension of Huxley's model is described where the principle of microscopic reversibility provides a framework for developing a thermodynamically consistent description of a molecular machine. The results show clearly that mechanical strain and the so-called "power stroke" are irrelevant for determining the directionality and thermodynamic properties of any chemically driven molecular motor. Instead these properties are controlled entirely by the chemical specificity that describes how the relative rates of the ATP hydrolysis reaction depend, by allosteric interactions, on the mechanical state of the molecule. This mechanism has been termed an "information ratchet" in the literature. In contrast to the results for chemical driving, a power stroke can be a key component for the operation of an optically driven motor, the transitions of which do not obey microscopic reversibility.
Collapse
Affiliation(s)
- R Dean Astumian
- Department of Physics, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
76
|
Astumian RD. Enhanced diffusion, chemotaxis, and pumping by active enzymes: progress toward an organizing principle of molecular machines. ACS NANO 2014; 8:11917-11924. [PMID: 25533171 DOI: 10.1021/nn507039b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Active enzymes diffuse more rapidly than inactive enzymes. This phenomenon may be due to catalysis-driven conformational changes that result in "swimming" through the aqueous solution. Recent additional work has demonstrated that active enzymes can undergo chemotaxis toward regions of high substrate concentration, whereas inactive enzymes do not, and, further, that active enzymes immobilized at surfaces can directionally pump liquids. In this Perspective, I will discuss these phenomena in light of Purcell's work on directed motion at low Reynold's number and in the context of microscopic reversibility. The conclusions suggest that a deep understanding of catalytically driven enhanced diffusion of enzymes and related phenomena can lead toward a general organizing principle for the design, characterization, and operation of molecular machines.
Collapse
Affiliation(s)
- R Dean Astumian
- Department of Physics, The University of Maine , 5709 Bennett Hall, Orono, Maine 04469-5709, United States
| |
Collapse
|
77
|
Cui Y, Irudayaraj J. Inside single cells: quantitative analysis with advanced optics and nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:387-407. [PMID: 25430077 DOI: 10.1002/wnan.1321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/17/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
Single-cell explorations offer a unique window to inspect molecules and events relevant to mechanisms and heterogeneity constituting the central dogma of biology. A large number of nucleic acids, proteins, metabolites, and small molecules are involved in determining and fine-tuning the state and function of a single cell at a given time point. Advanced optical platforms and nanotools provide tremendous opportunities to probe intracellular components with single-molecule accuracy, as well as promising tools to adjust single-cell activity. To obtain quantitative information (e.g., molecular quantity, kinetics, and stoichiometry) within an intact cell, achieving the observation with comparable spatiotemporal resolution is a challenge. For single-cell studies, both the method of detection and the biocompatibility are critical factors as they determine the feasibility, especially when considering live-cell analysis. Although a considerable proportion of single-cell methodologies depend on specialized expertise and expensive instruments, it is our expectation that the information content and implication will outweigh the costs given the impact on life science enabled by single-cell analysis.
Collapse
Affiliation(s)
- Yi Cui
- Department of Agricultural and Biological Engineering, Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
78
|
|
79
|
Abstract
One of the most important discoveries in the field of microbiology in the last two decades is that bacterial cells have intricate subcellular organization. This understanding has emerged mainly from the depiction of spatial and temporal organization of proteins in specific domains within bacterial cells, e.g., midcell, cell poles, membrane and periplasm. Because translation of bacterial RNA molecules was considered to be strictly coupled to their synthesis, they were not thought to specifically localize to regions outside the nucleoid. However, the increasing interest in RNAs, including non-coding RNAs, encouraged researchers to explore the spatial and temporal localization of RNAs in bacteria. The recent technological improvements in the field of fluorescence microscopy allowed subcellular imaging of RNAs even in the tiny bacterial cells. It has been reported by several groups, including ours that transcripts may specifically localize in such cells. Here we review what is known about localization of RNA and of the pathways that determine RNA fate in bacteria, and discuss the possible cues and mechanisms underlying these distribution patterns.
Collapse
Affiliation(s)
- Avi-ad Avraam Buskila
- a Department of Microbiology and Molecular Genetics; IMRIC ; The Hebrew University Faculty of Medicine ; Israel
| | | | | |
Collapse
|
80
|
Chong S, Chen C, Ge H, Xie XS. Mechanism of transcriptional bursting in bacteria. Cell 2014; 158:314-326. [PMID: 25036631 DOI: 10.1016/j.cell.2014.05.038] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/17/2014] [Accepted: 05/08/2014] [Indexed: 11/18/2022]
Abstract
Transcription of highly expressed genes has been shown to occur in stochastic bursts. But the origin of such ubiquitous phenomenon has not been understood. Here, we present the mechanism in bacteria. We developed a high-throughput, in vitro, single-molecule assay to follow transcription on individual DNA templates in real time. We showed that positive supercoiling buildup on a DNA segment by transcription slows down transcription elongation and eventually stops transcription initiation. Transcription can be resumed upon gyrase binding to the DNA segment. Furthermore, using single-cell mRNA counting fluorescence in situ hybridization (FISH), we found that duty cycles of transcriptional bursting depend on the intracellular gyrase concentration. Together, these findings prove that transcriptional bursting of highly expressed genes in bacteria is primarily caused by reversible gyrase dissociation from and rebinding to a DNA segment, changing the supercoiling level of the segment.
Collapse
Affiliation(s)
- Shasha Chong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chongyi Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China; Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing 100871, China
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China.
| |
Collapse
|
81
|
Li PC, Chang JC, La Porta A, Yu ET. Fabrication of birefringent nanocylinders for single-molecule force and torque measurement. NANOTECHNOLOGY 2014; 25:235304. [PMID: 24850364 DOI: 10.1088/0957-4484/25/23/235304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Optically anisotropic subwavelength scale dielectric particles have been shown to enable studies of the mechanical properties of bio-molecules via optical trapping and manipulation. However, techniques emphasized to date for fabrication of such particles generally suffer from limited uniformity and control over particle dimensions, or low throughput and high cost. Here, an approach for rapid, low-cost, fabrication of large quantities of birefringent quartz nanocylinders with dimensions optimized for optical torque wrench experiments is described. For a typical process, 10(8) or more quartz cylinders with diameters of 500 nm and heights of 800 nm, with uniformity of ±5% in each dimension, can be fabricated over ∼10 cm(2) areas, for binding to a single bio-molecule, and harvested for use in optical trapping experiments. Use of these structures to measure extensional and torsional dynamics of single DNA molecules is demonstrated with measured forces and torques shown to be in very good agreement with previously reported results.
Collapse
Affiliation(s)
- Ping-Chun Li
- Microelectronics Research Center, 10100 Burnet Road, Austin, TX 78758, USA
| | | | | | | |
Collapse
|
82
|
Abstract
Comparative genome analyses reveal that organismal complexity scales not with gene number but with gene regulation. Recent efforts indicate that the human genome likely contains hundreds of thousands of enhancers, with a typical gene embedded in a milieu of tens of enhancers. Proliferation of cis-regulatory DNAs is accompanied by increased complexity and functional diversification of transcriptional machineries recognizing distal enhancers and core promoters and by the high-order spatial organization of genetic elements. We review progress in unraveling one of the outstanding mysteries of modern biology: the dynamic communication of remote enhancers with target promoters in the specification of cellular identity.
Collapse
|
83
|
Yu J. Coordination and control inside simple biomolecular machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 805:353-84. [PMID: 24446369 DOI: 10.1007/978-3-319-02970-2_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biomolecular machines can achieve physiological functions precisely and efficiently, though they always operate under fluctuations and noises. We review two types of simple machinery that we have recently studied. The machinery can be regarded as molecular motors. They transform chemical free energy from NTP hydrolysis to mechanical work. One type belongs to small monomeric helicases that move directionally along single-stranded nucleic acid, and may further unwind the duplex part for gene replication or repair. The other type belongs to ring-shaped NTPase motors that also move or transport nucleic acid or protein substrate in a directional manner, such as for genome packaging or protein degradation. The central issue in this review is on how the machinery coordinates essential degrees of freedom during the mechanochemical coupling process. Further concerns include how the coordination and control are manifested in experiments, and how they can be captured well in modeling and computational research. We employed atomistic molecular dynamics simulations, coarse-grained analyses, and stochastic modeling techniques to examine the molecular machines at multiple resolutions and timescales. Detailed descriptions on how the protein interacts with its substrate at interface, as well as how multiple protein subunits are coordinated are summarized.
Collapse
Affiliation(s)
- Jin Yu
- Beijing Computational Science Research Center, No 3 Heqing Road, Haidian District, Beijing, 100084, China,
| |
Collapse
|
84
|
Abstract
The Michaelis-Menten equation provides a hundred-year-old prediction by which any increase in the rate of substrate unbinding will decrease the rate of enzymatic turnover. Surprisingly, this prediction was never tested experimentally nor was it scrutinized using modern theoretical tools. Here we show that unbinding may also speed up enzymatic turnover--turning a spotlight to the fact that its actual role in enzymatic catalysis remains to be determined experimentally. Analytically constructing the unbinding phase space, we identify four distinct categories of unbinding: inhibitory, excitatory, superexcitatory, and restorative. A transition in which the effect of unbinding changes from inhibitory to excitatory as substrate concentrations increase, and an overlooked tradeoff between the speed and efficiency of enzymatic reactions, are naturally unveiled as a result. The theory presented herein motivates, and allows the interpretation of, groundbreaking experiments in which existing single-molecule manipulation techniques will be adapted for the purpose of measuring enzymatic turnover under a controlled variation of unbinding rates. As we hereby show, these experiments will not only shed first light on the role of unbinding but will also allow one to determine the time distribution required for the completion of the catalytic step in isolation from the rest of the enzymatic turnover cycle.
Collapse
|
85
|
Mishra A, Panwar AS, Chakrabarti B. Equilibrium Morphologies and Force Extension Behavior for Polymers with Hydrophobic Patches: Role of Quenched Disorder. MACROMOL THEOR SIMUL 2014. [DOI: 10.1002/mats.201300154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ankur Mishra
- Department of Metallurgical Engineering and Materials Science; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
- Department of Mathematical Sciences; Durham University; Durham DH1 3LE UK
- Isaac Newton Institute of Mathematical Sciences; 20 Clarkson Road Cambridge CB3 0EH UK
| | - Ajay Singh Panwar
- Department of Metallurgical Engineering and Materials Science; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
- Department of Mathematical Sciences; Durham University; Durham DH1 3LE UK
- Isaac Newton Institute of Mathematical Sciences; 20 Clarkson Road Cambridge CB3 0EH UK
| | - Buddhapriya Chakrabarti
- Department of Metallurgical Engineering and Materials Science; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
- Department of Mathematical Sciences; Durham University; Durham DH1 3LE UK
- Isaac Newton Institute of Mathematical Sciences; 20 Clarkson Road Cambridge CB3 0EH UK
| |
Collapse
|
86
|
Chowdhury D. Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules. Biophys J 2014; 104:2331-41. [PMID: 23746505 DOI: 10.1016/j.bpj.2013.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/14/2023] Open
Abstract
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here.
Collapse
|
87
|
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res 2014; 42:20-44. [PMID: 24068554 PMCID: PMC3874165 DOI: 10.1093/nar/gkt847] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restriction-modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes.
Collapse
Affiliation(s)
- Wil A. M. Loenen
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - David T. F. Dryden
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Elisabeth A. Raleigh
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| | - Geoffrey G. Wilson
- Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands, EastChem School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9, 3JJ, Scotland, UK and New England Biolabs Inc., 240 County Road Ipswich, MA 01938-2723, USA
| |
Collapse
|
88
|
Mehta P, Jovanovic G, Lenn T, Bruckbauer A, Engl C, Ying L, Buck M. Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 2013; 4:1997. [PMID: 23764692 PMCID: PMC3709507 DOI: 10.1038/ncomms2997] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/09/2013] [Indexed: 12/02/2022] Open
Abstract
Bacterial enhancer-dependent transcription systems support major adaptive responses and offer a singular paradigm in gene control analogous to complex eukaryotic systems. Here we report new mechanistic insights into the control of one-membrane stress-responsive bacterial enhancer-dependent system. Using millisecond single-molecule fluorescence microscopy of live cells we determine the localizations, two-dimensional diffusion dynamics and stoichiometries of complexes of the bacterial enhancer-binding ATPase PspF during its action at promoters as regulated by inner membrane interacting negative controller PspA. We establish that a stable repressive PspF–PspA complex is located in the nucleoid, transiently communicating with the inner membrane via PspA. The PspF as a hexamer stably binds only one of the two psp promoters at a time, suggesting that psp promoters will fire asynchronously and cooperative interactions of PspF with the basal transcription complex influence dynamics of the PspF hexamer–DNA complex and regulation of the psp promoters. Cellular adaptive responses require temporal and spatial control of key regulatory protein complexes. Mehta et al. describe the dynamic interaction of a transcriptional activator mediating membrane stress response in E. coli with its negative regulator, the cell membrane and the transcription machinery.
Collapse
Affiliation(s)
- Parul Mehta
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
89
|
Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 2013; 15:69-81. [PMID: 24342920 DOI: 10.1038/nrg3623] [Citation(s) in RCA: 344] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The interaction of regulatory proteins with the complex nucleoprotein structures that are found in mammalian cells involves chromatin reorganization at multiple levels. Mechanisms that support these transitions are complex on many timescales, which range from milliseconds to minutes or hours. In this Review, we discuss emerging concepts regarding the function of regulatory elements in living cells. We also explore the involvement of these dynamic and stochastic processes in the evolution of fluctuating transcriptional activity states that are now commonly reported in eukaryotic systems.
Collapse
|
90
|
Affiliation(s)
- Sanghwa Lee
- Department
of Physics and Astronomy, Department of Biophysics and Chemical Biology,
and National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| | - Sungchul Hohng
- Department
of Physics and Astronomy, Department of Biophysics and Chemical Biology,
and National Center for Creative Research Initiatives, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
91
|
Challis KJ, Jack MW. Energy transfer in a molecular motor in the Kramers regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042114. [PMID: 24229123 DOI: 10.1103/physreve.88.042114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/19/2013] [Indexed: 06/02/2023]
Abstract
We present a theoretical treatment of energy transfer in a molecular motor described in terms of overdamped Brownian motion on a multidimensional tilted periodic potential. The tilt represents a thermodynamic force driving the system out of equilibrium and, for nonseparable potentials, energy transfer occurs between degrees of freedom. For deep potential wells, the continuous theory transforms to a discrete master equation that is tractable analytically. We use this master equation to derive formal expressions for the hopping rates, drift and diffusion, and the efficiency and rate of energy transfer in terms of the thermodynamic force. These results span both strong and weak coupling between degrees of freedom, describe the near and far from equilibrium regimes, and are consistent with generalized detailed balance and the Onsager relations. We thereby derive a number of diverse results for molecular motors within a single theoretical framework.
Collapse
Affiliation(s)
- K J Challis
- Scion, 49 Sala Street, Rotorua 3010, New Zealand
| | | |
Collapse
|
92
|
Yan Z, Wang J. Optimizing scoring function of protein-nucleic acid interactions with both affinity and specificity. PLoS One 2013; 8:e74443. [PMID: 24098651 PMCID: PMC3787031 DOI: 10.1371/journal.pone.0074443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/02/2013] [Indexed: 12/14/2022] Open
Abstract
Protein-nucleic acid (protein-DNA and protein-RNA) recognition is fundamental to the regulation of gene expression. Determination of the structures of the protein-nucleic acid recognition and insight into their interactions at molecular level are vital to understanding the regulation function. Recently, quantitative computational approach has been becoming an alternative of experimental technique for predicting the structures and interactions of biomolecular recognition. However, the progress of protein-nucleic acid structure prediction, especially protein-RNA, is far behind that of the protein-ligand and protein-protein structure predictions due to the lack of reliable and accurate scoring function for quantifying the protein-nucleic acid interactions. In this work, we developed an accurate scoring function (named as SPA-PN, SPecificity and Affinity of the Protein-Nucleic acid interactions) for protein-nucleic acid interactions by incorporating both the specificity and affinity into the optimization strategy. Specificity and affinity are two requirements of highly efficient and specific biomolecular recognition. Previous quantitative descriptions of the biomolecular interactions considered the affinity, but often ignored the specificity owing to the challenge of specificity quantification. We applied our concept of intrinsic specificity to connect the conventional specificity, which circumvents the challenge of specificity quantification. In addition to the affinity optimization, we incorporated the quantified intrinsic specificity into the optimization strategy of SPA-PN. The testing results and comparisons with other scoring functions validated that SPA-PN performs well on both the prediction of binding affinity and identification of native conformation. In terms of its performance, SPA-PN can be widely used to predict the protein-nucleic acid structures and quantify their interactions.
Collapse
Affiliation(s)
- Zhiqiang Yan
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Jin Wang
- Department of Chemistry & Physics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| |
Collapse
|
93
|
Insights into chromatin fibre structure by in vitro and in silico single-molecule stretching experiments. Biochem Soc Trans 2013; 41:494-500. [PMID: 23514142 DOI: 10.1042/bst20120349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The detailed structure and dynamics of the chromatin fibre and their relation to gene regulation represent important open biological questions. Recent advances in single-molecule force spectroscopy experiments have addressed these questions by directly measuring the forces that stabilize and alter the folded states of chromatin, and by investigating the mechanisms of fibre unfolding. We present examples that demonstrate how complementary modelling approaches have helped not only to interpret the experimental findings, but also to advance our knowledge of force-induced events such as unfolding of chromatin with dynamically bound linker histones and nucleosome unwrapping.
Collapse
|
94
|
Cell signaling experiments driven by optical manipulation. Int J Mol Sci 2013; 14:8963-84. [PMID: 23698758 PMCID: PMC3676767 DOI: 10.3390/ijms14058963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 01/09/2023] Open
Abstract
Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection.
Collapse
|
95
|
Wang L, Wasserman MR, Feldman MB, Altman RB, Blanchard SC. Mechanistic insights into antibiotic action on the ribosome through single-molecule fluorescence imaging. Ann N Y Acad Sci 2013; 1241:E1-16. [PMID: 23419024 DOI: 10.1111/j.1749-6632.2012.06839.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule fluorescence imaging has provided unprecedented access to the dynamics of ribosome function, revealing transient intermediate states that are critical to ribosome activity. Imaging platforms have now been developed that are capable of probing many hundreds of molecules simultaneously at temporal and spatial resolutions approaching the sub-millisecond time and the sub-nanometer scales. These advances enable both steady- and pre-steady state measurements of individual steps in the translation process as well as processive reactions. The data generated using these methods have yielded new, quantitative structural and kinetic insights into ribosomal activity. They have also shed light on the mechanisms of antibiotic targeting the translation apparatus, revealing features of the structure-function relationship that would be difficult to obtain by other means. This review provides an overview of the types of information that can be obtained using such imaging platforms and a blueprint for using the technique to assess how small-molecule antibiotics alter macromolecular functions.
Collapse
Affiliation(s)
- Leyi Wang
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
96
|
Bacterial replication, transcription and translation: mechanistic insights from single-molecule biochemical studies. Nat Rev Microbiol 2013; 11:303-15. [DOI: 10.1038/nrmicro2994] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
97
|
Arunajadai SG, Cheng W. Step detection in single-molecule real time trajectories embedded in correlated noise. PLoS One 2013; 8:e59279. [PMID: 23533612 PMCID: PMC3606409 DOI: 10.1371/journal.pone.0059279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Single-molecule real time trajectories are embedded in high noise. To extract kinetic or dynamic information of the molecules from these trajectories often requires idealization of the data in steps and dwells. One major premise behind the existing single-molecule data analysis algorithms is the gaussian 'white' noise, which displays no correlation in time and whose amplitude is independent on data sampling frequency. This so-called 'white' noise is widely assumed but its validity has not been critically evaluated. We show that correlated noise exists in single-molecule real time trajectories collected from optical tweezers. The assumption of white noise during analysis of these data can lead to serious over- or underestimation of the number of steps depending on the algorithms employed. We present a statistical method that quantitatively evaluates the structure of the underlying noise, takes the noise structure into account, and identifies steps and dwells in a single-molecule trajectory. Unlike existing data analysis algorithms, this method uses Generalized Least Squares (GLS) to detect steps and dwells. Under the GLS framework, the optimal number of steps is chosen using model selection criteria such as Bayesian Information Criterion (BIC). Comparison with existing step detection algorithms showed that this GLS method can detect step locations with highest accuracy in the presence of correlated noise. Because this method is automated, and directly works with high bandwidth data without pre-filtering or assumption of gaussian noise, it may be broadly useful for analysis of single-molecule real time trajectories.
Collapse
Affiliation(s)
- Srikesh G Arunajadai
- Department of Biostatistics, Columbia University, New York, New York, United States of America.
| | | |
Collapse
|
98
|
Ganim Z. Single-molecule vibrational spectroscopy adds structural resolution to the optical trap. Biophys J 2013; 104:4-5. [PMID: 23332052 DOI: 10.1016/j.bpj.2012.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 12/01/2022] Open
Abstract
The ability to apply forces on single molecules with an optical trap is combined with the endogenous structural resolution of Raman spectroscopy in an article in this issue, and applied to measure the Raman spectrum of ds-DNA during force-extension.
Collapse
Affiliation(s)
- Ziad Ganim
- Physik Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
99
|
Driessen RPC, Meng H, Suresh G, Shahapure R, Lanzani G, Priyakumar UD, White MF, Schiessel H, van Noort J, Dame RT. Crenarchaeal chromatin proteins Cren7 and Sul7 compact DNA by inducing rigid bends. Nucleic Acids Res 2012; 41:196-205. [PMID: 23155062 PMCID: PMC3592393 DOI: 10.1093/nar/gks1053] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein–DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.
Collapse
Affiliation(s)
- Rosalie P C Driessen
- Molecular Genetics, Leiden Institute of Chemistry and Cell Observatory, Physics of Life Processes, Leiden Institute of Physics and Cell Observatory, Leiden University, 2333 CC Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Dieci G, Bosio MC, Fermi B, Ferrari R. Transcription reinitiation by RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:331-41. [PMID: 23128323 DOI: 10.1016/j.bbagrm.2012.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/19/2012] [Accepted: 10/23/2012] [Indexed: 01/11/2023]
Abstract
The retention of transcription proteins at an actively transcribed gene contributes to maintenance of the active transcriptional state and increases the rate of subsequent transcription cycles relative to the initial cycle. This process, called transcription reinitiation, generates the abundant RNAs in living cells. The persistence of stable preinitiation intermediates on activated genes representing at least a subset of basal transcription components has long been recognized as a shared feature of RNA polymerase (Pol) I, II and III-dependent transcription in eukaryotes. Studies of the Pol III transcription machinery and its target genes in eukaryotic genomes over the last fifteen years, has uncovered multiple details on transcription reinitiation. In addition to the basal transcription factors that recruit the polymerase, Pol III itself can be retained on the same gene through multiple transcription cycles by a facilitated recycling pathway. The molecular bases for facilitated recycling are progressively being revealed with advances in structural and functional studies. At the same time, progress in our understanding of Pol III transcriptional regulation in response to different environmental cues points to the specific mechanism of Pol III reinitiation as a key target of signaling pathway regulation of cell growth. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Bioscienze, Università degli Studi di Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy.
| | | | | | | |
Collapse
|