51
|
Sugasawa K. Molecular mechanisms of DNA damage recognition for mammalian nucleotide excision repair. DNA Repair (Amst) 2016; 44:110-117. [PMID: 27264556 DOI: 10.1016/j.dnarep.2016.05.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
For faithful DNA repair, it is crucial for cells to locate lesions precisely within the vast genome. In the mammalian global genomic nucleotide excision repair (NER) pathway, this difficult task is accomplished through multiple steps, in which the xeroderma pigmentosum group C (XPC) protein complex plays a central role. XPC senses the presence of oscillating 'normal' bases in the DNA duplex, and its binding properties contribute to the extremely broad substrate specificity of NER. Unlike XPC, which acts as a versatile sensor of DNA helical distortion, the UV-damaged DNA-binding protein (UV-DDB) is more specialized, recognizing UV-induced photolesions and facilitating recruitment of XPC. Recent single-molecule analyses and structural studies have advanced our understanding of how UV-DDB finds its targets, particularly in the context of chromatin. After XPC binds DNA, it is necessary to verify the presence of damage in order to avoid potentially deleterious incisions at damage-free sites. Accumulating evidence suggests that XPA and the helicase activity of transcription factor IIH (TFIIH) cooperate to verify abnormalities in DNA chemistry. This chapter reviews recent findings about the mechanisms underlying the efficiency, versatility, and accuracy of NER.
Collapse
Affiliation(s)
- Kaoru Sugasawa
- Biosignal Research Center, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
52
|
XPC Promotes Pluripotency of Human Dental Pulp Cells through Regulation of Oct-4/Sox2/c-Myc. Stem Cells Int 2016; 2016:3454876. [PMID: 27127517 PMCID: PMC4834411 DOI: 10.1155/2016/3454876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 01/08/2023] Open
Abstract
Introduction. Xeroderma pigmentosum group C (XPC), essential component of multisubunit stem cell coactivator complex (SCC), functions as the critical factor modulating pluripotency and genome integrity through interaction with Oct-4/Sox2. However, its specific role in regulating pluripotency and multilineage differentiation of human dental pulp cells (DPCs) remains unknown. Methods. To elucidate the functional role XPC played in pluripotency and multilineage differentiation of DPCs, expressions of XPC in DPCs with long-term culture were examined by real-time PCR and western blot. DPCs were transfected with lentiviral-mediated human XPC gene; then transfection rate was investigated by real-time PCR and western blot. Cell cycle, apoptosis, proliferation, senescence, multilineage differentiation, and expression of Oct-4/Sox2/c-Myc in transfected DPCs were examined. Results. XPC, Oct-4, Sox2, and c-Myc were downregulated at P7 compared with P3 in DPCs with long-term culture. XPC genes were upregulated in DPCs at P2 after transfection and maintained high expression level at P3 and P7. Cell proliferation, PI value, and telomerase activity were enhanced, whereas apoptosis was suppressed in transfected DPCs. Oct-4/Sox2/c-Myc were significantly upregulated, and multilineage differentiation in DPCs with XPC overexpression was enhanced after transfection. Conclusions. XPC plays an essential role in the modulation of pluripotency and multilineage differentiation of DPCs through regulation of Oct-4/Sox2/c-Myc.
Collapse
|
53
|
Rüthemann P, Balbo Pogliano C, Naegeli H. Global-genome Nucleotide Excision Repair Controlled by Ubiquitin/Sumo Modifiers. Front Genet 2016; 7:68. [PMID: 27200078 PMCID: PMC4848295 DOI: 10.3389/fgene.2016.00068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/12/2016] [Indexed: 11/13/2022] Open
Abstract
Global-genome nucleotide excision repair (GG-NER) prevents genome instability by excising a wide range of different DNA base adducts and crosslinks induced by chemical carcinogens, ultraviolet (UV) light or intracellular side products of metabolism. As a versatile damage sensor, xeroderma pigmentosum group C (XPC) protein initiates this generic defense reaction by locating the damage and recruiting the subunits of a large lesion demarcation complex that, in turn, triggers the excision of aberrant DNA by endonucleases. In the very special case of a DNA repair response to UV radiation, the function of this XPC initiator is tightly controlled by the dual action of cullin-type CRL4(DDB2) and sumo-targeted RNF111 ubiquitin ligases. This twofold protein ubiquitination system promotes GG-NER reactions by spatially and temporally regulating the interaction of XPC protein with damaged DNA across the nucleosome landscape of chromatin. In the absence of either CRL4(DDB2) or RNF111, the DNA excision repair of UV lesions is inefficient, indicating that these two ubiquitin ligases play a critical role in mitigating the adverse biological effects of UV light in the exposed skin.
Collapse
Affiliation(s)
- Peter Rüthemann
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich Zurich, Switzerland
| | - Chiara Balbo Pogliano
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich Zurich, Switzerland
| |
Collapse
|
54
|
Cui T, Srivastava AK, Han C, Yang L, Zhao R, Zou N, Qu M, Duan W, Zhang X, Wang QE. XPC inhibits NSCLC cell proliferation and migration by enhancing E-Cadherin expression. Oncotarget 2016; 6:10060-72. [PMID: 25871391 PMCID: PMC4496340 DOI: 10.18632/oncotarget.3542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair. Deletion of XPC is associated with early stages of human lung carcinogenesis, and reduced XPC mRNA levels predict poor patient outcome for non-small cell lung cancer (NSCLC). However, the mechanisms linking loss of XPC expression and poor prognosis in lung cancer are still unclear. Here, we report evidence that XPC silencing drives proliferation and migration of NSCLC cells by down-regulating E-Cadherin. XPC knockdown enhanced proliferation and migration while decreasing E-Cadherin expression in NSCLC cells with an epithelial phenotype. Restoration of E-Cadherin in these cells suppressed XPC knockdown-induced cell growth both in vitro and in vivo. Mechanistic studies showed that the loss of XPC repressed E-Cadherin expression by activating the ERK pathway and upregulating Snail expression. Our findings indicate that XPC silencing-induced reduction of E-Cadherin expression contributes, at least in part, to the poor outcome of NSCLC patients with low XPC expression.
Collapse
Affiliation(s)
- Tiantian Cui
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amit Kumar Srivastava
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chunhua Han
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Linlin Yang
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ran Zhao
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Zou
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Meihua Qu
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wenrui Duan
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Qi-En Wang
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
55
|
Myers SA, Peddada S, Chatterjee N, Friedrich T, Tomoda K, Krings G, Thomas S, Maynard J, Broeker M, Thomson M, Pollard K, Yamanaka S, Burlingame AL, Panning B. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. eLife 2016; 5:e10647. [PMID: 26949256 PMCID: PMC4841768 DOI: 10.7554/elife.10647] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
Abstract
The transcription factor SOX2 is central in establishing and maintaining pluripotency. The processes that modulate SOX2 activity to promote pluripotency are not well understood. Here, we show SOX2 is O-GlcNAc modified in its transactivation domain during reprogramming and in mouse embryonic stem cells (mESCs). Upon induction of differentiation SOX2 O-GlcNAcylation at serine 248 is decreased. Replacing wild type with an O-GlcNAc-deficient SOX2 (S248A) increases reprogramming efficiency. ESCs with O-GlcNAc-deficient SOX2 exhibit alterations in gene expression. This change correlates with altered protein-protein interactions and genomic occupancy of the O-GlcNAc-deficient SOX2 compared to wild type. In addition, SOX2 O-GlcNAcylation impairs the SOX2-PARP1 interaction, which has been shown to regulate ESC self-renewal. These findings show that SOX2 activity is modulated by O-GlcNAc, and provide a novel regulatory mechanism for this crucial pluripotency transcription factor. DOI:http://dx.doi.org/10.7554/eLife.10647.001 Embryos develop from stem cells, which have the ability to mature into any type of cell in the body. The activity of proteins called transcription factors determines whether a stem cell will become a specialized cell type or remain in an immature “pluripotent” state that has the potential to become any cell type. These transcription factors bind to the cell’s DNA to regulate the activity of target genes. SOX2 is a transcription factor that helps to maintain embryonic stem cells in a pluripotent state. In 2011, a group of researchers showed that a specific sugar molecule was added to SOX2 in mouse embryonic stem cells, in a process called O-GlcNAcylation. Now, Myers, Peddada et al. – including the researchers who performed the 2011 study – have studied the effects of this SOX2 modification in more detail. Transcription factors have two major activities – they bind to DNA and recruit other proteins that can turn target genes on or off. Myers, Peddada et al. found that, in pluripotent stem cells, a complex pattern of O-GlcNAcylation is present on SOX2 in a region that is responsible for recruiting other proteins. In addition, SOX2 O-GlcNAcylation decreases when stem cells are directed to become a new cell type. Further experiments investigated gene activity in stem cells that contained a mutant form of SOX2 that cannot be O-GlcNAc modified. In these cells, genes that help to maintain the cell in a pluripotent state were more active than in normal cells. The mutant form of SOX2 was altered in its ability to bind DNA and to associate with proteins that control gene activity. Myers, Peddada et al.’s findings raise several questions. Does O-GlcNAcylation control the activity of SOX2 in other cell types, such as neurons and cancer cells, in which this modification can be detected on SOX2? Why does a modification on the portion of the SOX2 that is thought to interact with other proteins affect SOX2 DNA binding activity? Finally, understanding how O-GlcNAcylation is employed to regulate SOX2 activity in response to developmental cues remains a major challenge. DOI:http://dx.doi.org/10.7554/eLife.10647.002
Collapse
Affiliation(s)
- Samuel A Myers
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
| | - Sailaja Peddada
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Nilanjana Chatterjee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Tara Friedrich
- Gladstone Institute University of California, San Francisco, San Francisco, United States
| | - Kiichrio Tomoda
- Gladstone Institute University of California, San Francisco, San Francisco, United States
| | - Gregor Krings
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Sean Thomas
- Gladstone Institute University of California, San Francisco, San Francisco, United States
| | - Jason Maynard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Michael Broeker
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
| | - Matthew Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
| | - Katherine Pollard
- Gladstone Institute University of California, San Francisco, San Francisco, United States.,Institute for Human Genetics, Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - Shinya Yamanaka
- Gladstone Institute University of California, San Francisco, San Francisco, United States.,Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
56
|
Puumalainen MR, Rüthemann P, Min JH, Naegeli H. Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation. Cell Mol Life Sci 2016; 73:547-66. [PMID: 26521083 PMCID: PMC4713717 DOI: 10.1007/s00018-015-2075-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
The cellular defense system known as global-genome nucleotide excision repair (GG-NER) safeguards genome stability by eliminating a plethora of structurally unrelated DNA adducts inflicted by chemical carcinogens, ultraviolet (UV) radiation or endogenous metabolic by-products. Xeroderma pigmentosum group C (XPC) protein provides the promiscuous damage sensor that initiates this versatile NER reaction through the sequential recruitment of DNA helicases and endonucleases, which in turn recognize and excise insulting base adducts. As a DNA damage sensor, XPC protein is very unique in that it (a) displays an extremely wide substrate range, (b) localizes DNA lesions by an entirely indirect readout strategy, (c) recruits not only NER factors but also multiple repair players, (d) interacts avidly with undamaged DNA, (e) also interrogates nucleosome-wrapped DNA irrespective of chromatin compaction and (f) additionally functions beyond repair as a co-activator of RNA polymerase II-mediated transcription. Many recent reports highlighted the complexity of a post-translational circuit that uses polypeptide modifiers to regulate the spatiotemporal activity of this multiuse sensor during the UV damage response in human skin. A newly emerging concept is that stringent regulation of the diverse XPC functions is needed to prioritize DNA repair while avoiding the futile processing of undamaged genes or silent genomic sequences.
Collapse
Affiliation(s)
- Marjo-Riitta Puumalainen
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057, Zurich, Switzerland
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Rüthemann
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057, Zurich, Switzerland
| | - Jun-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057, Zurich, Switzerland.
| |
Collapse
|
57
|
de Melo JTA, de Souza Timoteo AR, Lajus TBP, Brandão JA, de Souza-Pinto NC, Menck CFM, Campalans A, Radicella JP, Vessoni AT, Muotri AR, Agnez-Lima LF. XPC deficiency is related to APE1 and OGG1 expression and function. Mutat Res 2016; 784-785:25-33. [PMID: 26811994 DOI: 10.1016/j.mrfmmm.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Oxidative DNA damage is considered to be a major cause of neurodegeneration and internal tumors observed in syndromes that result from nucleotide excision repair (NER) deficiencies, such as Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS). Recent evidence has shown that NER aids in removing oxidized DNA damage and may interact with base excision repair (BER) enzymes. Here, we investigated APE1 and OGG1 expression, localization and activity after oxidative stress in XPC-deficient cells. The endogenous APE1 and OGG1 mRNA levels were lower in XPC-deficient fibroblasts. However, XPC-deficient cells did not show hypersensitivity to oxidative stress compared with NER-proficient cells. To confirm the impact of an XPC deficiency in regulating APE1 and OGG1 expression and activity, we established an XPC-complemented cell line. Although the XPC complementation was only partial and transient, the transfected cells exhibited greater OGG1 expression and activity compared with XPC-deficient cells. However, the APE1 expression and activity did not significantly change. Furthermore, we observed a physical interaction between the XPC and APE1 proteins. Together, the results indicate that the responses of XPC-deficient cells under oxidative stress may not only be associated with NER deficiency per se but may also include new XPC functions in regulating BER proteins.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Rafaela de Souza Timoteo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Tirzah Braz Petta Lajus
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Alves Brandão
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Nadja Cristhina de Souza-Pinto
- Laboratório de Genética Mitocondrial, Departamento de Química, Instituto de Química, Universidade de São Paulo-USP, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- Laboratório de Reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo-USP, São Paulo, Brazil
| | - Anna Campalans
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 Route du Panorama, F-92265 Fontenay aux Roses, France
| | - J Pablo Radicella
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 Route du Panorama, F-92265 Fontenay aux Roses, France
| | - Alexandre Teixeira Vessoni
- Laboratório de Reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo-USP, São Paulo, Brazil; Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Alysson Renato Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
58
|
Coleman RA, Liu Z, Darzacq X, Tjian R, Singer RH, Lionnet T. Imaging Transcription: Past, Present, and Future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2016; 80:1-8. [PMID: 26763984 DOI: 10.1101/sqb.2015.80.027201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transcription, the first step of gene expression, is exquisitely regulated in higher eukaryotes to ensure correct development and homeostasis. Traditional biochemical, genetic, and genomic approaches have proved successful at identifying factors, regulatory sequences, and potential pathways that modulate transcription. However, they typically only provide snapshots or population averages of the highly dynamic, stochastic biochemical processes involved in transcriptional regulation. Single-molecule live-cell imaging has, therefore, emerged as a complementary approach capable of circumventing these limitations. By observing sequences of molecular events in real time as they occur in their native context, imaging has the power to derive cause-and-effect relationships and quantitative kinetics to build predictive models of transcription. Ongoing progress in fluorescence imaging technology has brought new microscopes and labeling technologies that now make it possible to visualize and quantify the transcription process with single-molecule resolution in living cells and animals. Here we provide an overview of the evolution and current state of transcription imaging technologies. We discuss some of the important concepts they uncovered and present possible future developments that might solve long-standing questions in transcriptional regulation.
Collapse
Affiliation(s)
- Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Zhe Liu
- HHMI Janelia Research Campus, Ashburn, Virginia 20147
| | - Xavier Darzacq
- HHMI Janelia Research Campus, Ashburn, Virginia 20147 Department of MCB, LKS Biomedical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, California 94720
| | - Robert Tjian
- HHMI Janelia Research Campus, Ashburn, Virginia 20147 Department of MCB, LKS Biomedical and Health Sciences Center, CIRM Center of Excellence, University of California, Berkeley, California 94720
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461 HHMI Janelia Research Campus, Ashburn, Virginia 20147
| | | |
Collapse
|
59
|
Hogan MS, Parfitt DE, Zepeda-Mendoza CJ, Shen MM, Spector DL. Transient pairing of homologous Oct4 alleles accompanies the onset of embryonic stem cell differentiation. Cell Stem Cell 2016; 16:275-88. [PMID: 25748933 DOI: 10.1016/j.stem.2015.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/03/2014] [Accepted: 02/02/2015] [Indexed: 12/21/2022]
Abstract
The relationship between chromatin organization and transcriptional regulation is an area of intense investigation. We characterized the spatial relationships between alleles of the Oct4, Sox2, and Nanog genes in single cells during the earliest stages of mouse embryonic stem cell (ESC) differentiation and during embryonic development. We describe homologous pairing of the Oct4 alleles during ESC differentiation and embryogenesis, and we present evidence that pairing is correlated with the kinetics of ESC differentiation. Importantly, we identify critical DNA elements within the Oct4 promoter/enhancer region that mediate pairing of Oct4 alleles. Finally, we show that mutation of OCT4/SOX2 binding sites within this region abolishes inter-chromosomal interactions and affects accumulation of the repressive H3K9me2 modification at the Oct4 enhancer. Our findings demonstrate that chromatin organization and transcriptional programs are intimately connected in ESCs and that the dynamic positioning of the Oct4 alleles is associated with the transition from pluripotency to lineage specification.
Collapse
Affiliation(s)
- Megan S Hogan
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - David-Emlyn Parfitt
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Cinthya J Zepeda-Mendoza
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Michael M Shen
- Departments of Medicine and Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, One Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
60
|
Induced Pluripotent Stem Cells: Generation Strategy and Epigenetic Mystery behind Reprogramming. Stem Cells Int 2016; 2016:8415010. [PMID: 26880993 PMCID: PMC4736417 DOI: 10.1155/2016/8415010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 01/06/2023] Open
Abstract
Possessing the ability of self-renewal with immortalization and potential for differentiation into different cell types, stem cells, particularly embryonic stem cells (ESC), have attracted significant attention since their discovery. As ESC research has played an essential role in developing our understanding of the mechanisms underlying reproduction, development, and cell (de)differentiation, significant efforts have been made in the biomedical study of ESC in recent decades. However, such studies of ESC have been hampered by the ethical issues and technological challenges surrounding them, therefore dramatically inhibiting the potential applications of ESC in basic biomedical studies and clinical medicine. Induced pluripotent stem cells (iPSCs), generated from the reprogrammed somatic cells, share similar characteristics including but not limited to the morphology and growth of ESC, self-renewal, and potential differentiation into various cell types. The discovery of the iPSC, unhindered by the aforementioned limitations of ESC, introduces a viable alternative to ESC. More importantly, the applications of iPSC in the development of disease models such as neurodegenerative disorders greatly enhance our understanding of the pathogenesis of such diseases and also facilitate the development of clinical therapeutic strategies using iPSC generated from patient somatic cells to avoid an immune rejection. In this review, we highlight the advances in iPSCs generation methods as well as the mechanisms behind their reprogramming. We also discuss future perspectives for the development of iPSC generation methods with higher efficiency and safety.
Collapse
|
61
|
Anwar MA, Yesudhas D, Shah M, Choi S. Structural and conformational insights into SOX2/OCT4-bound enhancer DNA: a computational perspective. RSC Adv 2016. [DOI: 10.1039/c6ra15176k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The roles of SOX2 and OCT4 are critical in stem cell maintenance either in the context of iPSCs generation or cancer stem cell growth; therefore, it is imperative to study their cooperative binding and SOX2/OCT4-induced DNA conformational switching.
Collapse
Affiliation(s)
- Muhammad Ayaz Anwar
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Dhanusha Yesudhas
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Masaud Shah
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology
- Ajou University
- Suwon 443-749
- Korea
| |
Collapse
|
62
|
Architecture of the human XPC DNA repair and stem cell coactivator complex. Proc Natl Acad Sci U S A 2015; 112:14817-22. [PMID: 26627236 PMCID: PMC4672820 DOI: 10.1073/pnas.1520104112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Xeroderma pigmentosum complementation group C (XPC) complex is a versatile factor involved in both nucleotide excision repair and transcriptional coactivation as a critical component of the NANOG, OCT4, and SOX2 pluripotency gene regulatory network. Here we present the structure of the human holo-XPC complex determined by single-particle electron microscopy to reveal a flexible, ear-shaped structure that undergoes localized loss of order upon DNA binding. We also determined the structure of the complete yeast homolog Rad4 holo-complex to find a similar overall architecture to the human complex, consistent with their shared DNA repair functions. Localized differences between these structures reflect an intriguing phylogenetic divergence in transcriptional capabilities that we present here. Having positioned the constituent subunits by tagging and deletion, we propose a model of key interaction interfaces that reveals the structural basis for this difference in functional conservation. Together, our findings establish a framework for understanding the structure-function relationships of the XPC complex in the interplay between transcription and DNA repair.
Collapse
|
63
|
Talebi A, Kianersi K, Beiraghdar M. Comparison of gene expression of SOX2 and OCT4 in normal tissue, polyps, and colon adenocarcinoma using immunohistochemical staining. Adv Biomed Res 2015; 4:234. [PMID: 26645019 PMCID: PMC4647122 DOI: 10.4103/2277-9175.167958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/29/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cancer stem cells have been isolated and characterized in all common cancers. SOX2 and OCT4 are important genes to enhance the self-renewal ability as activate stem cells and inhibit the genes that start differentiation and thus maintain the self-renewal ability of stem cells. Also, the aim of this study is "Comparison of gene expression of SOX2 and OCT4 in normal tissue, polyps, and colon adenocarcinoma using immunohistochemical staining." MATERIALS AND METHODS This cross-sectional study conducted on 20 patients so that for each patient, a sample of healthy tissue, dysplastic polyp tissue, and colon adenocarcinoma were provided as microscopic sections and staining on each tissue was performed through immunohistochemistry method by markers OCT4 and SOX2. The collected data were interred into SPSS version 18.0, (SPSS Inc., Chicago, IL, USA) software and the level of significance were considered as <0.05. RESULTS The study sample consisted of 20 patients including 11 men (55%) and 9 women (45%) with a mean age of 55.6 ± 9.88 years. There was no association between Oct4 and colorectal cancer (CRC) patients (P > 0.05), but there was a significant correlation between Sox2 expression and CRC (P < 0.05). Patients in many aspects such as race, type of polyp, presence of lymph node, grade and intensity of Sox2 in different types of patients' tissues (P < 0.05). CONCLUSION Regarding our findings, the expression of Sox2 would be a liable marker for evaluating of cancer progression and could be a treatment target of CRC cells.
Collapse
Affiliation(s)
- Ardeshir Talebi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kianoosh Kianersi
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mozhdeh Beiraghdar
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
64
|
Abstract
XPC has long been considered instrumental in DNA damage recognition during global genome nucleotide excision repair (GG-NER). While this recognition is crucial for organismal health and survival, as XPC's recognition of lesions stimulates global genomic repair, more recent lines of research have uncovered many new non-canonical pathways in which XPC plays a role, such as base excision repair (BER), chromatin remodeling, cell signaling, proteolytic degradation, and cellular viability. Since the first discovery of its yeast homolog, Rad4, the involvement of XPC in cellular regulation has expanded considerably. Indeed, our understanding appears to barely scratch the surface of the incredible potential influence of XPC on maintaining proper cellular function. Here, we first review the canonical role of XPC in lesion recognition and then explore the new world of XPC function.
Collapse
|
65
|
Yang C, Zhang Y, Zhang Y, Zhang Z, Peng J, Li Z, Han L, You Q, Chen X, Rao X, Zhu Y, Liao Z. Downregulation of cancer stem cell properties via mTOR signaling pathway inhibition by rapamycin in nasopharyngeal carcinoma. Int J Oncol 2015. [PMID: 26202311 PMCID: PMC4532219 DOI: 10.3892/ijo.2015.3100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rapamycin, a mammalian target of rapamycin (mTOR) signaling inhibitor, inhibits cancer cell proliferation and tumor formation, including in nasopharyngeal carcinoma (NPC), which we proved in a previous study. However, whether rapamycin affects cancer stem cells (CSCs) is unclear. In examining samples of NPCs, we found regions of CD44-positive cancer cells co-expressing the stem cell biomarker OCT4, suggesting the presence of CSCs. Following this, we used double-label immunohistochemistry to identify whether the mTOR signaling pathway was activated in CD44-positive CSCs in NPCs. We used a CCK-8 assay and western blotting to explore whether the stem cell biomarkers CD44 and SOX2 and the invasion protein MMP-2 could be suppressed by treatment with rapamycin in cultured primary NPC cells and secondary tumors in BALB/c nude mice. Interestingly, we found that rapamycin inhibited mTOR signaling in addition to simultaneously downregulating the expression of CD44, SOX2 and MMP-2 and that it affected cell growth and tumor size and weight both in vitro and in vivo. Collectively, we confirmed for the first time that CSC properties are reduced and invasion potential is restrained in response to mTOR signaling inhibition in NPC. This evidence indicates that the targeted inhibition of CSC properties may provide a novel strategy to treat cancer.
Collapse
Affiliation(s)
- Chunguang Yang
- Department of Otolaryngology, Head and Neck Surgery, Xiang Ya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yue Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yu Zhang
- Department of Otolaryngology, Dong Feng Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Ziheng Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Jianhua Peng
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhi Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Liang Han
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Quanjie You
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xiaoyu Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Xingwang Rao
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yi Zhu
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Zhisu Liao
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| |
Collapse
|
66
|
Zhou Z, Humphryes N, van Eijk P, Waters R, Yu S, Kraehenbuehl R, Hartsuiker E, Reed SH. UV induced ubiquitination of the yeast Rad4-Rad23 complex promotes survival by regulating cellular dNTP pools. Nucleic Acids Res 2015; 43:7360-70. [PMID: 26150418 PMCID: PMC4551923 DOI: 10.1093/nar/gkv680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/22/2015] [Indexed: 11/13/2022] Open
Abstract
Regulating gene expression programmes is a central facet of the DNA damage response. The Dun1 kinase protein controls expression of many DNA damage induced genes, including the ribonucleotide reductase genes, which regulate cellular dNTP pools. Using a combination of gene expression profiling and chromatin immunoprecipitation, we demonstrate that in the absence of DNA damage the yeast Rad4–Rad23 nucleotide excision repair complex binds to the promoters of certain DNA damage response genes including DUN1, inhibiting their expression. UV radiation promotes the loss of occupancy of the Rad4–Rad23 complex from the regulatory regions of these genes, enabling their induction and thereby controlling the production of dNTPs. We demonstrate that this regulatory mechanism, which is dependent on the ubiquitination of Rad4 by the GG-NER E3 ligase, promotes UV survival in yeast cells. These results support an unanticipated regulatory mechanism that integrates ubiquitination of NER DNA repair factors with the regulation of the transcriptional response controlling dNTP production and cellular survival after UV damage.
Collapse
Affiliation(s)
- Zheng Zhou
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK College of Biology, Hunan University, Changsha 410082, China
| | - Neil Humphryes
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK New York University Department of Biology,1009 Silver Center, 100 Washington Square East, NY, USA
| | - Patrick van Eijk
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Raymond Waters
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Shirong Yu
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK Cambridge Epigenetix, Jonas Webb Building, Babraham Campus, Cambridge, CB22 3AT, UK
| | - Rolf Kraehenbuehl
- North West Cancer Research Institute, Bangor University, Brambell Building, Bangor, LL57 2UW, UK
| | - Edgar Hartsuiker
- North West Cancer Research Institute, Bangor University, Brambell Building, Bangor, LL57 2UW, UK
| | - Simon H Reed
- Institute of Cancer & Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
67
|
Pluripotency and Epigenetic Factors in Mouse Embryonic Stem Cell Fate Regulation. Mol Cell Biol 2015; 35:2716-28. [PMID: 26031336 DOI: 10.1128/mcb.00266-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Embryonic stem cells (ESCs) are characterized by their ability to self-renew and to differentiate into all cell types of a given organism. Understanding the molecular mechanisms that govern the ESC state is of great interest not only for basic research-for instance, ESCs represent a perfect system to study cellular differentiation in vitro-but also for their potential implications in human health, as these mechanisms are likewise involved in cancer progression and could be exploited in regenerative medicine. In this minireview, we focus on the latest insights into the molecular mechanisms mediated by the pluripotency factors as well as their roles during differentiation. We also discuss recent advances in understanding the function of the epigenetic regulators, Polycomb and MLL complexes, in ESC biology.
Collapse
|
68
|
Ong CW, Chong PY, McArt DG, Chan JY, Tan HT, Kumar AP, Chung MCM, Clément MV, Soong R, Van Schaeybroeck S, Waugh DJJ, Johnston PG, Dunne PD, Salto-Tellez M. The prognostic value of the stem-like group in colorectal cancer using a panel of immunohistochemistry markers. Oncotarget 2015; 6:12763-73. [PMID: 25906747 PMCID: PMC4494972 DOI: 10.18632/oncotarget.3497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/07/2015] [Indexed: 11/28/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the Western world. It is becoming increasingly clear that CRC is a diverse disease, as exemplified by the identification of subgroups of CRC tumours that are driven by distinct biology. Recently, a number of studies have begun to define panels of diagnostically relevant markers to align patients into individual subgroups in an attempt to give information on prognosis and treatment response. We examined the immunohistochemical expression profile of 18 markers, each representing a putative role in cancer development, in 493 primary colorectal carcinomas using tissue microarrays. Through unsupervised clustering in stage II cancers, we identified two cluster groups that are broadly defined by inflammatory or immune-related factors (CD3, CD8, COX-2 and FOXP3) and stem-like factors (CD44, LGR5, SOX2, OCT4). The expression of the stem-like group markers was associated with a significantly worse prognosis compared to cases with lower expression. In addition, patients classified in the stem-like subgroup displayed a trend towards a benefit from adjuvant treatment. The biologically relevant and poor prognostic stem-like group could also be identified in early stage I cancers, suggesting a potential opportunity for the identification of aggressive tumors at a very early stage of the disease.
Collapse
Affiliation(s)
- Chee Wee Ong
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland
| | - Pei Yi Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Darragh G. McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland
| | | | - Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Western Australia, Australia
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Maxey C. M. Chung
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marie-Véronique Clément
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - David J. J. Waugh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland
| | - Patrick G. Johnston
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland
| | - Philip D. Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland
| | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland
| |
Collapse
|
69
|
Bischof O, Martínez-Zamudio RI. MicroRNAs and lncRNAs in senescence: A re-view. IUBMB Life 2015; 67:255-67. [PMID: 25990945 PMCID: PMC5008183 DOI: 10.1002/iub.1373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a stress response to a variety of extrinsic and intrinsic insults that cause genomic or epigenomic perturbations. It is now widely recognized as a potent tumor suppressor mechanism as well as a biological process impacting aging and organismal development. Like other cell fate decisions, senescence is executed and maintained by an intricate network of transcription factors (TFs), chromatin modifiers, and noncoding RNAs (ncRNAs). Altogether, these factors cooperate to implement the gene expression program that initiates and sustains the senescent phenotype. In the context of senescence, microRNAs (miRs) and long ncRNAs have been found to play regulatory roles at both the transcriptional and post‐transcriptional levels. In this review, we discuss recent developments in the field and point toward future research directions to gain a better understanding of ncRNAs in senescence. © 2015 IUBMB Life, 67(4):255–267, 2015
Collapse
Affiliation(s)
- Oliver Bischof
- Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Paris, France.,INSERM, U993, Paris, France
| | - Ricardo Iván Martínez-Zamudio
- Institut Pasteur, Laboratory of Nuclear Organization and Oncogenesis, Department of Cell Biology and Infection, Paris, France.,INSERM, U993, Paris, France
| |
Collapse
|
70
|
dDsk2 regulates H2Bub1 and RNA polymerase II pausing at dHP1c complex target genes. Nat Commun 2015; 6:7049. [PMID: 25916810 DOI: 10.1038/ncomms8049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
dDsk2 is a conserved extraproteasomal ubiquitin receptor that targets ubiquitylated proteins for degradation. Here we report that dDsk2 plays a nonproteolytic function in transcription regulation. dDsk2 interacts with the dHP1c complex, localizes at promoters of developmental genes and is required for transcription. Through the ubiquitin-binding domain, dDsk2 interacts with H2Bub1, a modification that occurs at dHP1c complex-binding sites. H2Bub1 is not required for binding of the complex; however, dDsk2 depletion strongly reduces H2Bub1. Co-depletion of the H2Bub1 deubiquitylase dUbp8/Nonstop suppresses this reduction and rescues expression of target genes. RNA polymerase II is strongly paused at promoters of dHP1c complex target genes and dDsk2 depletion disrupts pausing. Altogether, these results suggest that dDsk2 prevents dUbp8/Nonstop-dependent H2Bub1 deubiquitylation at promoters of dHP1c complex target genes and regulates RNA polymerase II pausing. These results expand the catalogue of nonproteolytic functions of ubiquitin receptors to the epigenetic regulation of chromatin modifications.
Collapse
|
71
|
Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proc Natl Acad Sci U S A 2015; 112:E2317-26. [PMID: 25901318 DOI: 10.1073/pnas.1505569112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The embryonic stem cell (ESC) state is transcriptionally controlled by OCT4, SOX2, and NANOG with cofactors, chromatin regulators, noncoding RNAs, and other effectors of signaling pathways. Uncovering components of these regulatory circuits and their interplay provides the knowledge base to deploy ESCs and induced pluripotent stem cells. We recently identified the DNA-repair complex xeroderma pigmentosum C (XPC)-RAD23B-CETN2 as a stem cell coactivator (SCC) required for OCT4/SOX2 transcriptional activation. Here we investigate the role of SCC genome-wide in murine ESCs by mapping regions bound by RAD23B and analyzing transcriptional profiles of SCC-depleted ESCs. We establish OCT4 and SOX2 as the primary transcription factors recruiting SCC to regulatory regions of pluripotency genes and identify the XPC subunit as essential for interaction with the two proteins. The present study reveals new mechanistic and functional aspects of SCC transcriptional activity, and thus underscores the diversified functions of this regulatory complex.
Collapse
|
72
|
Sarlak G, Vincent B. The Roles of the Stem Cell-Controlling Sox2 Transcription Factor: from Neuroectoderm Development to Alzheimer's Disease? Mol Neurobiol 2015; 53:1679-1698. [PMID: 25691455 DOI: 10.1007/s12035-015-9123-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/04/2015] [Indexed: 12/23/2022]
Abstract
Sox2 is a component of the core transcriptional regulatory network which maintains the totipotency of the cells during embryonic preimplantation period, the pluripotency of embryonic stem cells, and the multipotency of neural stem cells. This maintenance is controlled by internal loops between Sox2 and other transcription factors of the core such as Oct4, Nanog, Dax1, and Klf4, downstream proteins of extracellular ligands, epigenetic modifiers, and miRNAs. As Sox2 plays an important role in the balance between stem cells maintenance and commitment to differentiated lineages throughout the lifetime, it is supposed that Sox2 could regulate stem cells aging processes. In this review, we provide an update concerning the involvement of Sox2 in neurogenesis during normal aging and discuss its possible role in Alzheimer's disease.
Collapse
Affiliation(s)
- Golmaryam Sarlak
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Research Center for Neuroscience, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand. .,Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
73
|
Singh VK, Kalsan M, Kumar N, Saini A, Chandra R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 2015; 3:2. [PMID: 25699255 PMCID: PMC4313779 DOI: 10.3389/fcell.2015.00002] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/06/2015] [Indexed: 12/12/2022] Open
Abstract
Recent progresses in the field of Induced Pluripotent Stem Cells (iPSCs) have opened up many gateways for the research in therapeutics. iPSCs are the cells which are reprogrammed from somatic cells using different transcription factors. iPSCs possess unique properties of self renewal and differentiation to many types of cell lineage. Hence could replace the use of embryonic stem cells (ESC), and may overcome the various ethical issues regarding the use of embryos in research and clinics. Overwhelming responses prompted worldwide by a large number of researchers about the use of iPSCs evoked a large number of peple to establish more authentic methods for iPSC generation. This would require understanding the underlying mechanism in a detailed manner. There have been a large number of reports showing potential role of different molecules as putative regulators of iPSC generating methods. The molecular mechanisms that play role in reprogramming to generate iPSCs from different types of somatic cell sources involves a plethora of molecules including miRNAs, DNA modifying agents (viz. DNA methyl transferases), NANOG, etc. While promising a number of important roles in various clinical/research studies, iPSCs could also be of great use in studying molecular mechanism of many diseases. There are various diseases that have been modeled by uing iPSCs for better understanding of their etiology which maybe further utilized for developing putative treatments for these diseases. In addition, iPSCs are used for the production of patient-specific cells which can be transplanted to the site of injury or the site of tissue degeneration due to various disease conditions. The use of iPSCs may eliminate the chances of immune rejection as patient specific cells may be used for transplantation in various engraftment processes. Moreover, iPSC technology has been employed in various diseases for disease modeling and gene therapy. The technique offers benefits over other similar techniques such as animal models. Many toxic compounds (different chemical compounds, pharmaceutical drugs, other hazardous chemicals, or environmental conditions) which are encountered by humans and newly designed drugs may be evaluated for toxicity and effects by using iPSCs. Thus, the applications of iPSCs in regenerative medicine, disease modeling, and drug discovery are enormous and should be explored in a more comprehensive manner.
Collapse
Affiliation(s)
- Vimal K Singh
- INSPIRE Faculty, Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Manisha Kalsan
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Neeraj Kumar
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- B. R. Ambedkar Centre for Biomedical Research, University of Delhi Delhi, India
| |
Collapse
|
74
|
Puc J, Kozbial P, Li W, Tan Y, Liu Z, Suter T, Ohgi KA, Zhang J, Aggarwal AK, Rosenfeld MG. Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 2015; 160:367-80. [PMID: 25619691 DOI: 10.1016/j.cell.2014.12.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/28/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
Abstract
The discovery that enhancers are regulated transcription units, encoding eRNAs, has raised new questions about the mechanisms of their activation. Here, we report an unexpected molecular mechanism that underlies ligand-dependent enhancer activation, based on DNA nicking to relieve torsional stress from eRNA synthesis. Using dihydrotestosterone (DHT)-induced binding of androgen receptor (AR) to prostate cancer cell enhancers as a model, we show rapid recruitment, within minutes, of DNA topoisomerase I (TOP1) to a large cohort of AR-regulated enhancers. Furthermore, we show that the DNA nicking activity of TOP1 is a prerequisite for robust eRNA synthesis and enhancer activation and is kinetically accompanied by the recruitment of ATR and the MRN complex, followed by additional components of DNA damage repair machinery to the AR-regulated enhancers. Together, our studies reveal a linkage between eRNA synthesis and ligand-dependent TOP1-mediated nicking-a strategy exerting quantitative effects on eRNA expression in regulating AR-bound enhancer-dependent transcriptional programs.
Collapse
Affiliation(s)
- Janusz Puc
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Piotr Kozbial
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Wenbo Li
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Yuliang Tan
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Zhijie Liu
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Tom Suter
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA; Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Kenneth A Ohgi
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Jie Zhang
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0648, USA.
| |
Collapse
|
75
|
Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 2015; 35:1014-25. [PMID: 25582194 DOI: 10.1128/mcb.01105-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT (facilitates chromatin transactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.
Collapse
|
76
|
Chen X, Velmurugu Y, Zheng G, Park B, Shim Y, Kim Y, Liu L, Van Houten B, He C, Ansari A, Min JH. Kinetic gating mechanism of DNA damage recognition by Rad4/XPC. Nat Commun 2015; 6:5849. [PMID: 25562780 PMCID: PMC4354021 DOI: 10.1038/ncomms6849] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/13/2014] [Indexed: 01/24/2023] Open
Abstract
The xeroderma pigmentosum C (XPC) complex initiates nucleotide excision repair by recognizing DNA lesions before recruiting downstream factors. How XPC detects structurally diverse lesions embedded within normal DNA is unknown. Here we present a crystal structure that captures the yeast XPC orthologue (Rad4) on a single register of undamaged DNA. The structure shows that a disulphide-tethered Rad4 flips out normal nucleotides and adopts a conformation similar to that seen with damaged DNA. Contrary to many DNA repair enzymes that can directly reject non-target sites as structural misfits, our results suggest that Rad4/XPC uses a kinetic gating mechanism whereby lesion selectivity arises from the kinetic competition between DNA opening and the residence time of Rad4/XPC per site. This mechanism is further supported by measurements of Rad4-induced lesion-opening times using temperature-jump perturbation spectroscopy. Kinetic gating may be a general mechanism used by site-specific DNA-binding proteins to minimize time-consuming interrogations of non-target sites. XPC nucleotide excision repair factor is key to starting the repair of diverse helix-distorting DNA lesions caused by environmental insults. Here, the authors propose a kinetic gating mechanism whereby XPC recognizes DNA lesions by preferentially opening damaged sites while readily diffusing away from undamaged sites.
Collapse
Affiliation(s)
- Xuejing Chen
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, USA
| | - Yogambigai Velmurugu
- Department of Physics, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, USA
| | - Guanqun Zheng
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Beomseok Park
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, USA
| | - Yoonjung Shim
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, USA
| | - Youngchang Kim
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - Lili Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA
| | - Anjum Ansari
- 1] Department of Physics, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, USA [2] Department of Bioengineering, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, USA
| | - Jung-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, USA
| |
Collapse
|
77
|
Wang S, Tie J, Wang R, Hu F, Gao L, Wang W, Wang L, Li Z, Hu S, Tang S, Li M, Wang X, Nie Y, Wu K, Fan D. SOX2, a predictor of survival in gastric cancer, inhibits cell proliferation and metastasis by regulating PTEN. Cancer Lett 2014; 358:210-219. [PMID: 25543086 DOI: 10.1016/j.canlet.2014.12.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/08/2014] [Accepted: 12/19/2014] [Indexed: 01/02/2023]
Abstract
Inconsistent results of SOX2 expression have been reported in gastric cancer (GC). Here, we demonstrated that SOX2 was progressively downregulated during GC development via immunochemistry in 755 human gastric specimens. Low SOX2 levels were associated with pathological stage and clinical outcome. Multivariate analysis indicated that SOX2 protein expression served as an independent prognostic marker for GC. Gain-and loss-of function studies showed the anti-proliferative, anti-metastatic, and pro-apoptotic effects of SOX2 in GC. PTEN was selected as SOX2 targets by cDNA microarray and ChIP-DSL, further identified by luciferase assays, EMSA and ChIP-PCR. PTEN upregulation in response to SOX2-enforced expression suppressed GC malignancy via regulating Akt dephosphorylation. PTEN inhibition reversed SOX2-induced anticancer effects. Moreover, concordant positivity of SOX2 and PTEN proteins in nontumorous tissues but lost in matched GC specimens predicted a worse patient prognosis. Thus, SOX2 proved to be a new marker for evaluating GC outcome.
Collapse
Affiliation(s)
- Simeng Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Tie
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fengrong Hu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Liucun Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenlan Wang
- Department of Aerospace Hygiene and Health Service, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lifeng Wang
- Department of Biochemistry and Molecular Biology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zengshan Li
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Sijun Hu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shanhong Tang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mengbin Li
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yongzhan Nie
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kaichun Wu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Daiming Fan
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
78
|
Fong YW, Ho JJ, Inouye C, Tjian R. The dyskerin ribonucleoprotein complex as an OCT4/SOX2 coactivator in embryonic stem cells. eLife 2014; 3. [PMID: 25407680 PMCID: PMC4270071 DOI: 10.7554/elife.03573] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023] Open
Abstract
Acquisition of pluripotency is driven largely at the transcriptional level by activators OCT4, SOX2, and NANOG that must in turn cooperate with diverse coactivators to execute stem cell-specific gene expression programs. Using a biochemically defined in vitro transcription system that mediates OCT4/SOX2 and coactivator-dependent transcription of the Nanog gene, we report the purification and identification of the dyskerin (DKC1) ribonucleoprotein complex as an OCT4/SOX2 coactivator whose activity appears to be modulated by a subset of associated small nucleolar RNAs (snoRNAs). The DKC1 complex occupies enhancers and regulates the expression of key pluripotency genes critical for self-renewal in embryonic stem (ES) cells. Depletion of DKC1 in fibroblasts significantly decreased the efficiency of induced pluripotent stem (iPS) cell generation. This study thus reveals an unanticipated transcriptional role of the DKC1 complex in stem cell maintenance and somatic cell reprogramming. DOI:http://dx.doi.org/10.7554/eLife.03573.001 The stem cells found in an embryo are able to develop into any of the cell types found in the body of the animal: an ability called pluripotency. When a cell becomes a specialized cell type, such as a nerve cell or a muscle cell, it loses this ability. However, mature cells can be reprogrammed back to a pluripotent state by artificially introducing certain proteins (known as ‘reprogramming factors’) into the mature cells. A core group of reprogramming factors are known to activate networks of genes that are normally only expressed in stem cells, and by doing so trigger and maintain a pluripotent state. Other proteins help these core factors to regulate these networks of genes. In 2011, researchers discovered that a protein complex called XPC—which is normally involved in DNA repair—also helps two core reprogramming factors to activate an important gene related to pluripotency. Now, Fong et al., including several of the researchers involved in the 2011 work, have identified another unexpected partner for the same two core reprogramming factors. The protein complex, called DKC1, has a number of known functions related to the processing of RNA molecules. This complex has also been linked to a fatal, rare human disorder called dyskeratosis congenita—a condition that affects many parts of the body, including the skin and bone marrow. Fong et al. found that when embryonic stems cells from mice are depleted of the DKC1 complex, the activation of important pluripotency-related genes by two of the core reprogramming factors is markedly reduced. The XPC and DKC1 protein complexes were found to interact in pluripotent cells, and together they can activate a pluripotency-related gene to a greater extent than either can individually. Fong et al. propose that DKC1 binds to XPC, which in turn binds to two of the core reprogramming factors. The DKC1 complex also binds to RNA molecules, and Fong et al. found that when the DKC1 complex binds to certain RNAs it is more able to help reprogramming factors activate pluripotency-related genes. On the other hand, other RNA molecules seem to inhibit the complex's ability to activate these genes. Mutations identified in people with dyskeratosis congenita can prevent the DKC1 complex from binding to a subset of human RNA molecules. Moreover, the activity of stem cells is impaired in people with this developmental condition. As such, one of the next challenges will be to investigate if these mutations and RNA binding could be linked to problems with the activation of genes related to pluripotency in stem cells. DOI:http://dx.doi.org/10.7554/eLife.03573.002
Collapse
Affiliation(s)
- Yick W Fong
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Jaclyn J Ho
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Carla Inouye
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
79
|
Stem cells: the pursuit of genomic stability. Int J Mol Sci 2014; 15:20948-67. [PMID: 25405730 PMCID: PMC4264205 DOI: 10.3390/ijms151120948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022] Open
Abstract
Stem cells harbor significant potential for regenerative medicine as well as basic and clinical translational research. Prior to harnessing their reparative nature for degenerative diseases, concerns regarding their genetic integrity and mutation acquisition need to be addressed. Here we review pluripotent and multipotent stem cell response to DNA damage including differences in DNA repair kinetics, specific repair pathways (homologous recombination vs. non-homologous end joining), and apoptotic sensitivity. We also describe DNA damage and repair strategies during reprogramming and discuss potential genotoxic agents that can reduce the inherent risk for teratoma formation and mutation accumulation. Ensuring genomic stability in stem cell lines is required to achieve the quality control standards for safe clinical application.
Collapse
|
80
|
Abstract
Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin-Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry.
Collapse
|
81
|
Navarro S, Moleiro V, Molina-Estevez FJ, Lozano ML, Chinchon R, Almarza E, Quintana-Bustamante O, Mostoslavsky G, Maetzig T, Galla M, Heinz N, Schiedlmeier B, Torres Y, Modlich U, Samper E, Río P, Segovia JC, Raya A, Güenechea G, Izpisua-Belmonte JC, Bueren JA. Generation of iPSCs from genetically corrected Brca2 hypomorphic cells: implications in cell reprogramming and stem cell therapy. Stem Cells 2014; 32:436-46. [PMID: 24420904 DOI: 10.1002/stem.1586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/24/2022]
Abstract
Fanconi anemia (FA) is a complex genetic disease associated with a defective DNA repair pathway known as the FA pathway. In contrast to many other FA proteins, BRCA2 participates downstream in this pathway and has a critical role in homology-directed recombination (HDR). In our current studies, we have observed an extremely low reprogramming efficiency in cells with a hypomorphic mutation in Brca2 (Brca2(Δ) (27/) (Δ27)), that was associated with increased apoptosis and defective generation of nuclear RAD51 foci during the reprogramming process. Gene complementation facilitated the generation of Brca2(Δ) (27/) (Δ27) induced pluripotent stem cells (iPSCs) with a disease-free FA phenotype. Karyotype analyses and comparative genome hybridization arrays of complemented Brca2(Δ) (27/) (Δ27) iPSCs showed, however, the presence of different genetic alterations in these cells, most of which were not evident in their parental Brca2(Δ) (27/) (Δ27) mouse embryonic fibroblasts. Gene-corrected Brca2(Δ) (27/) (Δ27) iPSCs could be differentiated in vitro toward the hematopoietic lineage, although with a more limited efficacy than WT iPSCs or mouse embryonic stem cells, and did not engraft in irradiated Brca2(Δ) (27/) (Δ27) recipients. Our results are consistent with previous studies proposing that HDR is critical for cell reprogramming and demonstrate that reprogramming defects characteristic of Brca2 mutant cells can be efficiently overcome by gene complementation. Finally, based on analysis of the phenotype, genetic stability, and hematopoietic differentiation potential of gene-corrected Brca2(Δ) (27/) (Δ) (27) iPSCs, achievements and limitations in the application of current reprogramming approaches in hematopoietic stem cell therapy are also discussed.
Collapse
Affiliation(s)
- S Navarro
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Attramadal CG, Halstensen TS, Dhakal HP, Ulekleiv CH, Boysen ME, Nesland JM, Bryne M. High nuclear SOX2 expression is associated with radiotherapy response in small (T1/T2) oral squamous cell carcinoma. J Oral Pathol Med 2014; 44:515-22. [PMID: 25224722 DOI: 10.1111/jop.12261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Expression of the stem cell transcription factor SOX2 is often used to imply stemness and poor prognosis in cancer. However, its role in oral squamous cell carcinoma (OSCC) is not fully elucidated. MATERIAL AND METHODS Tumour tissues from 62 patients with primary, node negative and non-metastatic OSCCs were used to evaluate SOX2 expression by immunohistochemistry. The results were correlated to clinicopathology, treatment and disease recurrences. RESULTS The majority of the OSCCs (88%) expressed SOX2. Patients with higher nuclear SOX2 staining intensity in the invasive front compared to the adjacent normal epithelium, had a remarkable longer disease-free period if they received adjuvant post-operative radiotherapy (P = 0.001). This was in particular evident for highly differentiated OSCCs, as none of the high SOX2-expressing tumours reoccurred in contrast to all low SOX2-expressing OSCCs. CONCLUSIONS High nuclear SOX2 expression in the invasive front was associated with dramatic longer disease-free period than low SOX2-expressing carcinomas after post-operative radiotherapy in small OSCCs. The result suggested that high nuclear SOX2 expression at the invasive front may predict radiosensitivity.
Collapse
Affiliation(s)
- Cecilie G Attramadal
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Trond S Halstensen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Hari P Dhakal
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla H Ulekleiv
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Morten E Boysen
- Department for Otorhinolaryngology, Head and Neck Surgery, Oslo University Hospital, Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jahn M Nesland
- Department of Pathology, Oslo University Hospital, The Norwegian Radium Hospital, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Magne Bryne
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
83
|
Huang X, Wang J. The extended pluripotency protein interactome and its links to reprogramming. Curr Opin Genet Dev 2014; 28:16-24. [PMID: 25173149 DOI: 10.1016/j.gde.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/07/2014] [Accepted: 08/08/2014] [Indexed: 12/22/2022]
Abstract
A pluripotent state of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) is maintained through the combinatorial activity of core transcriptional factors (TFs) such as Oct4, Sox2, and Nanog in conjunction with many other factors including epigenetic regulators. Proteins rarely act alone, and knowledge of protein-protein interaction network (interactome) provides an extraordinary resource about how pluripotency TFs collaborate and crosstalk with epigenetic regulators in ESCs. Recent advances in affinity purification coupled with mass spectrometry (AP-MS) allow for efficient, high-throughput identification of hundreds of interacting protein partners, which can be used to map the pluripotency landscape. Here we review recent publications employing AP-MS to investigate protein interaction networks in ESCs, discuss how protein-protein connections reveal novel pluripotency regulatory circuits and new factors for efficient reprogramming of somatic cells.
Collapse
Affiliation(s)
- Xin Huang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianlong Wang
- The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
84
|
Molina-Estevez FJ, Lozano ML, Navarro S, Torres Y, Grabundzija I, Ivics Z, Samper E, Bueren JA, Guenechea G. Brief report: impaired cell reprogramming in nonhomologous end joining deficient cells. Stem Cells 2014; 31:1726-30. [PMID: 23630174 DOI: 10.1002/stem.1406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/28/2013] [Indexed: 01/14/2023]
Abstract
Although there is an increasing interest in defining the role of DNA damage response mechanisms in cell reprogramming, the relevance of proteins participating in nonhomologous end joining (NHEJ), a major mechanism of DNA double-strand breaks repair, in this process remains to be investigated. Herein, we present data related to the reprogramming of primary mouse embryonic fibroblasts (MEF) from severe combined immunodeficient (Scid) mice defective in DNA-PKcs, a key protein for NHEJ. Reduced numbers of induced pluripotent stem cell (iPSC) colonies were generated from Scid cells using reprogramming lentiviral vectors (LV), being the reprogramming efficiency fourfold to sevenfold lower than that observed in wt cells. Moreover, these Scid iPSC-like clones were prematurely lost or differentiated spontaneously. While the Scid mutation neither reduce the proliferation rate nor the transduction efficacy of fibroblasts transduced with reprogramming LV, both the expression of SA-β-Gal and of P16/INK(4a) senescence markers were highly increased in Scid versus wt MEFs during the reprogramming process, accounting for the reduced reprogramming efficacy of Scid MEFs. The use of improved Sleeping Beauty transposon/transposase systems allowed us, however, to isolate DNA-PKcs-deficient iPSCs which preserved their parental genotype and hypersensitivity to ionizing radiation. This new disease-specific iPSC model would be useful to understand the physiological consequences of the DNA-PKcs mutation during development and would help to improve current cell and gene therapy strategies for the disease.
Collapse
Affiliation(s)
- F Javier Molina-Estevez
- Division of Hematopoietic Innovative Therapies (HIT), Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)/Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBER-ER), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
Deciphering the mechanisms of epigenetic reprogramming provides fundamental insights into cell fate decisions, which in turn reveal strategies to make the reprogramming process increasingly efficient. Here we review recent advances in epigenetic reprogramming to pluripotency with a focus on the principal molecular regulators. We examine the trajectories connecting somatic and pluripotent cells, genetic and chemical methodologies for inducing pluripotency, the role of endogenous master transcription factors in establishing the pluripotent state, and functional interactions between reprogramming factors and epigenetic regulators. Defining the crosstalk among the diverse molecular actors implicated in cellular reprogramming presents a major challenge for future inquiry.
Collapse
Affiliation(s)
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
86
|
Abstract
Comparative genome analyses reveal that organismal complexity scales not with gene number but with gene regulation. Recent efforts indicate that the human genome likely contains hundreds of thousands of enhancers, with a typical gene embedded in a milieu of tens of enhancers. Proliferation of cis-regulatory DNAs is accompanied by increased complexity and functional diversification of transcriptional machineries recognizing distal enhancers and core promoters and by the high-order spatial organization of genetic elements. We review progress in unraveling one of the outstanding mysteries of modern biology: the dynamic communication of remote enhancers with target promoters in the specification of cellular identity.
Collapse
|
87
|
Comegna M, Succoio M, Napolitano M, Vitale M, D'Ambrosio C, Scaloni A, Passaro F, Zambrano N, Cimino F, Faraonio R. Identification of miR-494 direct targets involved in senescence of human diploid fibroblasts. FASEB J 2014; 28:3720-33. [PMID: 24823364 DOI: 10.1096/fj.13-239129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellular senescence is a permanent cell cycle arrest triggered by different stimuli. We recently identified up-regulation of microRNA (miR)-494 as a component of the genetic program leading to senescence of human diploid IMR90 fibroblasts. Here, we used 2-dimensional differential gel electrophoresis (2D-DIGE) coupled to mass spectrometry to profile protein expression changes induced by adoptive overexpression of miR-494 in IMR90 cells. miR-494 induced robust perturbation of the IMR90 proteome by significantly (P≤0.05) down-regulating a number of proteins. Combination of mass spectrometry-based identification of down-regulated proteins and bioinformatic prediction of the miR-494 binding sites on the relevant mRNAs identified 26 potential targets of miR-494. Among them, computational analysis identified 7 potential evolution-conserved miR-494 targets. Functional miR-494 binding sites were confirmed in 3'-untranslated regions (UTRs) of 4 of them [heterogeneous nuclear ribonucleoprotein A3 (hnRNPA3), protein disulfide isomerase A3 (PDIA3), UV excision repair protein RAD23 homolog B (RAD23B), and synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP)/heterogeneous nuclear ribonucleoprotein Q (hnRNPQ)]. Their reduced expression correlated with miR-494 up-regulation in senescent cells. RNA interference-mediated knockdown of hnRNPA3 and, to a lesser extent, RAD23B mirrored the senescent phenotype induced by miR-494 overexpression, blunting cell proliferation and causing up-regulation of SA-β-galactosidase and DNA damage. Ectopic expression of hnRNPA3 or RAD23B slowed the appearance of the senescent phenotype induced by miR-494. Overall, these findings identify novel miR-494 direct targets that are involved in cellular senescence.
Collapse
Affiliation(s)
- Marika Comegna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Mariangela Succoio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Marco Napolitano
- Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Fabiana Passaro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Filiberto Cimino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| |
Collapse
|
88
|
Mouw KW, D'Andrea AD. Crosstalk between the nucleotide excision repair and Fanconi anemia/BRCA pathways. DNA Repair (Amst) 2014; 19:130-4. [PMID: 24768451 DOI: 10.1016/j.dnarep.2014.03.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cells have evolved multiple distinct DNA repair pathways to efficiently correct a variety of genotoxic lesions, and decades of study have led to an improved understanding of the mechanisms and regulation of these individual pathways. However, there is now an increasing appreciation that extensive crosstalk exists among DNA repair pathways and that this crosstalk serves to increase the efficiency and diversity of response to damage. The Fanconi anemia (FA)/BRCA and nucleotide excision repair (NER) pathways have been shown to share common factors, and often work in concert to repair damage. Genomic studies are now revealing that many tumors harbor somatic mutations in FA/BRCA or NER genes, which may provide a growth advantage, but which could also be exploited therapeutically.
Collapse
Affiliation(s)
- Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States; Harvard Radiation Oncology Program, Boston, MA, United States
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
89
|
Rizzino A. Concise review: The Sox2-Oct4 connection: critical players in a much larger interdependent network integrated at multiple levels. Stem Cells 2014; 31:1033-9. [PMID: 23401375 DOI: 10.1002/stem.1352] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/03/2013] [Indexed: 11/08/2022]
Abstract
The transcription factors Sox2 and Oct4 have been a major focus of stem cell biology since the discovery, more than 10 years ago, that they play critical roles during embryogenesis. Early work established that these two transcription factors work together to regulate genes required for the self-renewal and pluripotency of embryonic stem cells (ESC). Surprisingly, small changes (∼twofold) in the levels of either Oct4 or Sox2 induce the differentiation of ESC. Consequently, ESC must maintain the levels of these two transcription factors within narrow limits. Genome-wide binding studies and unbiased proteomic screens have been conducted to decipher the complex roles played by Oct4 and Sox2 in the transcriptional circuitry of ESC. Together, these and other studies provide a comprehensive understanding of the molecular machinery that sustains the self-renewal of ESC and restrains their differentiation. Importantly, these studies paint a landscape in which Oct4 and Sox2 are part of a much larger interdependent network composed of many transcription factors that are interconnected at multiple levels of function.
Collapse
Affiliation(s)
- Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.
| |
Collapse
|
90
|
Abstract
Despite intense research efforts that have provided enormous insight, cancer continues to be a poorly understood disease. There has been much debate over whether the cancerous state can be said to originate in a single cell or whether it is a reflection of aberrant behaviour on the part of a 'society of cells'. This article presents, in the form of a debate conducted among the authors, three views of how the problem might be addressed. We do not claim that the views exhaust all possibilities. These views are (a) the tissue organization field theory (TOFT) that is based on a breakdown of tissue organization involving many cells from different embryological layers, (b) the cancer stem cell (CSC) hypothesis that focuses on genetic and epigenetic changes that take place within single cells, and (c) the proposition that rewiring of the cell's protein interaction networks mediated by intrinsically disordered proteins (IDPs) drives the tumorigenic process. The views are based on different philosophical approaches. In detail, they differ on some points and agree on others. It is left to the reader to decide whether one approach to understanding cancer appears more promising than the other.
Collapse
Affiliation(s)
- Carlos Sonnenschein
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
- Centre Cavaillès, École Normale Supérieure, 45 rue d’Ulm, Paris 75005, France
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
- Centre Cavaillès, École Normale Supérieure, 45 rue d’Ulm, Paris 75005, France
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560 012, India
| | - Prakash Kulkarni
- Department of Urology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
91
|
Kim H, Dejsuphong D, Adelmant G, Ceccaldi R, Yang K, Marto JA, D'Andrea AD. Transcriptional repressor ZBTB1 promotes chromatin remodeling and translesion DNA synthesis. Mol Cell 2014; 54:107-118. [PMID: 24657165 DOI: 10.1016/j.molcel.2014.02.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/07/2014] [Accepted: 02/07/2014] [Indexed: 12/27/2022]
Abstract
Timely DNA replication across damaged DNA is critical for maintaining genomic integrity. Translesion DNA synthesis (TLS) allows bypass of DNA lesions using error-prone TLS polymerases. The E3 ligase RAD18 is necessary for proliferating cell nuclear antigen (PCNA) monoubiquitination and TLS polymerase recruitment; however, the regulatory steps upstream of RAD18 activation are less understood. Here, we show that the UBZ4 domain-containing transcriptional repressor ZBTB1 is a critical upstream regulator of TLS. The UBZ4 motif is required for PCNA monoubiquitination and survival after UV damage. ZBTB1 associates with KAP-1, a transcriptional repressor whose phosphorylation relaxes chromatin after DNA damage. ZBTB1 depletion impairs formation of phospho-KAP-1 at UV damage sites and reduces RAD18 recruitment. Furthermore, phosphorylation of KAP-1 is necessary for efficient PCNA modification. We propose that ZBTB1 is required for localizing phospho-KAP-1 to chromatin and enhancing RAD18 accessibility. Collectively, our study implicates a ubiquitin-binding protein in orchestrating chromatin remodeling during DNA repair.
Collapse
Affiliation(s)
- Hyungjin Kim
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Donniphat Dejsuphong
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guillaume Adelmant
- Blais Proteomic Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Raphael Ceccaldi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kailin Yang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jarrod A Marto
- Blais Proteomic Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
92
|
Chitikova ZV, Gordeev SA, Bykova TV, Zubova SG, Pospelov VA, Pospelova TV. Sustained activation of DNA damage response in irradiated apoptosis-resistant cells induces reversible senescence associated with mTOR downregulation and expression of stem cell markers. Cell Cycle 2014; 13:1424-39. [PMID: 24626185 PMCID: PMC4050140 DOI: 10.4161/cc.28402] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells respond to genotoxic stress by activating the DNA damage response (DDR). When injury is severe or irreparable, cells induce apoptosis or cellular senescence to prevent transmission of the lesions to the daughter cells upon cell division. Resistance to apoptosis is a hallmark of cancer that challenges the efficacy of cancer therapy. In this work, the effects of ionizing radiation on apoptosis-resistant E1A + E1B transformed cells were investigated to ascertain whether the activation of cellular senescence could provide an alternative tumor suppressor mechanism. We show that irradiated cells arrest cell cycle at G2/M phase and resume DNA replication in the absence of cell division followed by formation of giant polyploid cells. Permanent activation of DDR signaling due to impaired DNA repair results in the induction of cellular senescence in E1A + E1B cells. However, irradiated cells bypass senescence and restore the population by dividing cells, which have near normal size and ploidy and do not express senescence markers. Reversion of senescence and appearance of proliferating cells were associated with downregulation of mTOR, activation of autophagy, mitigation of DDR signaling, and expression of stem cell markers.
Collapse
Affiliation(s)
- Zhanna V Chitikova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Serguei A Gordeev
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Tatiana V Bykova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Svetlana G Zubova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Valery A Pospelov
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| | - Tatiana V Pospelova
- Institute of Cytology; Russian Academy of Sciences; St. Petersburg, Russia; Saint Petersburg State University; St. Petersburg, Russia
| |
Collapse
|
93
|
The C-terminal region of Xpc is dispensable for the transcriptional activity of Oct3/4 in mouse embryonic stem cells. FEBS Lett 2014; 588:1128-35. [PMID: 24607542 DOI: 10.1016/j.febslet.2014.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 12/18/2022]
Abstract
The transcription factor Oct3/4 is essential to maintain pluripotency in mouse embryonic stem (ES) cells. It was reported that the Xpc DNA repair complex is involved in this process. Here we examined the role of Xpc on the transcriptional activation of the target genes by Oct3/4 using the inducible knockout strategy. We found that the removal of the C-terminal region of Xpc, including the interaction sites with Rad23 and Cetn2, showed faint impact on the gene expression profile of ES cells and the functional Xpc-ΔC ES cell lines retained proper gene expression profile as well as pluripotency to contribute chimeric embryos. These data indicated that the C-terminal region of Xpc is dispensable for the transcriptional activity of Oct3/4 in mouse ES cells.
Collapse
|
94
|
Lubin A, Zhang L, Chen H, White VM, Gong F. A human XPC protein interactome--a resource. Int J Mol Sci 2013; 15:141-58. [PMID: 24366067 PMCID: PMC3907802 DOI: 10.3390/ijms15010141] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 12/13/2022] Open
Abstract
Global genome nucleotide excision repair (GG-NER) is responsible for identifying and removing bulky adducts from non-transcribed DNA that result from damaging agents such as UV radiation and cisplatin. Xeroderma pigmentosum complementation group C (XPC) is one of the essential damage recognition proteins of the GG-NER pathway and its dysfunction results in xeroderma pigmentosum (XP), a disorder involving photosensitivity and a predisposition to cancer. To better understand the identification of DNA damage by XPC in the context of chromatin and the role of XPC in the pathogenesis of XP, we characterized the interactome of XPC using a high throughput yeast two-hybrid screening. Our screening showed 49 novel interactors of XPC involved in DNA repair and replication, proteolysis and post-translational modifications, transcription regulation, signal transduction, and metabolism. Importantly, we validated the XPC-OTUD4 interaction by co-IP and provided evidence that OTUD4 knockdown in human cells indeed affects the levels of ubiquitinated XPC, supporting a hypothesis that the OTUD4 deubiquitinase is involved in XPC recycling by cleaving the ubiquitin moiety. This high-throughput characterization of the XPC interactome provides a resource for future exploration and suggests that XPC may have many uncharacterized cellular functions.
Collapse
Affiliation(s)
- Abigail Lubin
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Ling Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Hua Chen
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Victoria M. White
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| | - Feng Gong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33156, USA; E-Mails: (A.L.); (L.Z.); (H.C.); (V.M.W.)
| |
Collapse
|
95
|
Krzeszinski JY, Choe V, Shao J, Bao X, Cheng H, Luo S, Huo K, Rao H. XPC promotes MDM2-mediated degradation of the p53 tumor suppressor. Mol Biol Cell 2013; 25:213-21. [PMID: 24258024 PMCID: PMC3890342 DOI: 10.1091/mbc.e13-05-0293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
XPC binds MDM2 ubiquitin ligase and participates in the MDM2-mediated p53 degradation. Furthermore, XPC overexpression stimulates p53 degradation following UV irradiation. Combined, the results suggest a key role of XPC in p53 degradation. Although ubiquitin receptor Rad23 has been implicated in bringing ubiquitylated p53 to the proteasome, how Rad23 recognizes p53 remains unclear. We demonstrate that XPC, a Rad23-binding protein, regulates p53 turnover. p53 protein in XPC-deficient cells remains ubiquitylated, but its association with the proteasome is drastically reduced, indicating that XPC regulates a postubiquitylation event. Furthermore, we found that XPC participates in the MDM2-mediated p53 degradation pathway via direct interaction with MDM2. XPC W690S pathogenic mutant is specifically defective for MDM2 binding and p53 degradation. p53 is known to become stabilized following UV irradiation but can be rendered unstable by XPC overexpression, underscoring a critical role of XPC in p53 regulation. Elucidation of the proteolytic role of XPC in cancer cells will help to unravel the detailed mechanisms underlying the coordination of DNA repair and proteolysis.
Collapse
Affiliation(s)
- Jing Yan Krzeszinski
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 First Affiliated Hospital, Nanchang University, Jiangxi 330006, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Post-translational modifications (PTMs) are known to be essential mechanisms used by eukaryotic cells to diversify their protein functions and dynamically coordinate their signaling networks. Defects in PTMs have been linked to numerous developmental disorders and human diseases, highlighting the importance of PTMs in maintaining normal cellular states. Human pluripotent stem cells (hPSCs), including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), are capable of self-renewal and differentiation into a variety of functional somatic cells; these cells hold a great promise for the advancement of biomedical research and clinical therapy. The mechanisms underlying cellular pluripotency in human cells have been extensively explored in the past decade. In addition to the vast amount of knowledge obtained from the genetic and transcriptional research in hPSCs, there is a rapidly growing interest in the stem cell biology field to examine pluripotency at the protein and PTM level. This review addresses recent progress toward understanding the role of PTMs (glycosylation, phosphorylation, acetylation and methylation) in the regulation of cellular pluripotency.
Collapse
|
97
|
Abstract
Transcription is apparently risky business. Its intrinsic mutagenic potential must be kept in check by networks of DNA repair factors that monitor the transcription process to repair DNA lesions that could otherwise compromise transcriptional fidelity and genome integrity. Intriguingly, recent studies point to an even more direct function of DNA repair complexes as coactivators of transcription and the unexpected role of "scheduled" DNA damage/repair at gene promoters. Paradoxically, spontaneous DNA double-strand breaks also induce ectopic transcription that is essential for repair. Thus, transcription, DNA damage, and repair may be more physically and functionally intertwined than previously appreciated.
Collapse
Affiliation(s)
- Yick W. Fong
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert Tjian
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
98
|
Tan X, Xu X, Elkenani M, Smorag L, Zechner U, Nolte J, Engel W, Pantakani DK. Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells. Stem Cell Res 2013; 11:1045-59. [DOI: 10.1016/j.scr.2013.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 07/09/2013] [Accepted: 07/22/2013] [Indexed: 01/12/2023] Open
|
99
|
Tantin D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140:2857-66. [PMID: 23821033 DOI: 10.1242/dev.095927] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The POU domain family of transcription factors regulates developmental processes ranging from specification of the early embryo to terminal differentiation. About half of these factors display substantial affinity for an 8 bp DNA site termed the octamer motif, and are hence known as Oct proteins. Oct4 (Pou5f1) is a well-known Oct factor, but there are other Oct proteins with varied and essential roles in development. This Primer outlines our current understanding of Oct proteins and the regulatory mechanisms that govern their role in developmental processes and concludes with the assertion that more investigation into their developmental functions is needed.
Collapse
Affiliation(s)
- Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
100
|
Erythropoietic defect associated with reduced cell proliferation in mice lacking the 26S proteasome shuttling factor Rad23b. Mol Cell Biol 2013; 33:3879-92. [PMID: 23897431 DOI: 10.1128/mcb.05772-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rad23a and Rad23b proteins are linked to nucleotide excision DNA repair (NER) via association with the DNA damage recognition protein xeroderma pigmentosum group C (XPC) are and known to be implicated in protein turnover by the 26S proteasome. Rad23b-null mice are NER proficient, likely due to the redundant function of the Rad23b paralogue, Rad23a. However, Rad23b-null midgestation embryos are anemic, and most embryos die before birth. Using an unbiased proteomics approach, we found that the majority of Rad23b-interacting partners are associated with the ubiquitin-proteasome system (UPS). We tested the requirement for Rad23b-dependent UPS activity in cellular proliferation and more specifically in the process of erythropoiesis. In cultured fibroblasts derived from embryos lacking Rad23b, proliferation rates were reduced. In fetal livers of Rad23b-null embryos, we observed reduced proliferation, accumulation of early erythroid progenitors, and a block during erythroid maturation. In primary wild-type (WT) erythroid cells, knockdown of Rad23b or chemical inhibition of the proteasome reduced survival and differentiation capability. Finally, the defects linked to Rad23b loss specifically affected fetal definitive erythropoiesis and stress erythropoiesis in adult mice. Together, these data indicate a previously unappreciated requirement for Rad23b and the UPS in regulation of proliferation in different cell types.
Collapse
|