51
|
Yuan Z, Zhang D, Yu F, Ma Y, Liu Y, Li X, Wang H. Precise sequencing of single protected-DNA fragment molecules for profiling of protein distribution and assembly on DNA. Chem Sci 2021; 12:2039-2049. [PMID: 34163966 PMCID: PMC8179319 DOI: 10.1039/d0sc01742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Multiple DNA-interacting protein molecules are often dynamically distributed and/or assembled along a DNA molecule to adapt to their intricate functions temporally. However, analytical technology for measuring such binding behaviours is still missing. Here, we demonstrate the unique capacity of a supernuclease for a highly efficient cutting of the unprotected-DNA segments and with complete preservation of the protein-occluded DNA segments at near single-nucleotide resolution. By exploring this high-resolution cutting, an unprecedented assay that allows a precise sequencing of single protected-DNA fragment molecules (SPDFMS) was developed. As relevant applications, relevant information was gained on the respective distribution/assembly patterns and coordinated displacement of single-stranded DNA-binding protein and recombinase RecA, two model proteins, on DNA. Benefiting from this assay, we also for the first time provide direct measurement of the length of single RecA nucleofilaments, showing the predominant stoichiometry of 5-7 RecA monomers per RecA nucleofilament under physiologically relevant conditions. This innovative assay appears as a promising analytical tool for studying diverse protein-DNA interactions implicated in DNA replication, transcription, recombination, repair, and gene editing.
Collapse
Affiliation(s)
- Zheng Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- Institute of Environment and Health, Hangzhou, Institute for Advanced Study, UCAS Hangzhou 310000 P. R. China
| | - Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yangde Ma
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiangjun Li
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Institute of Environment and Health, Jianghan University Wuhan Hubei 430056 P. R. China
- Institute of Environment and Health, Hangzhou, Institute for Advanced Study, UCAS Hangzhou 310000 P. R. China
| |
Collapse
|
52
|
Serrano E, Ramos C, Alonso JC, Ayora S. Recombination proteins differently control the acquisition of homeologous DNA during Bacillus subtilis natural chromosomal transformation. Environ Microbiol 2020; 23:512-524. [PMID: 33264457 DOI: 10.1111/1462-2920.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Natural chromosomal transformation (CT) plays a major role in prokaryote evolution, yet factors that govern the integration of DNA from related species remain poorly understood. We show that in naturally competent Bacillus subtilis cells the acquisition of homeologous sequences is governed by sequence divergence (SD). Integration initiates in a minimal efficient processing segment via homology-directed CT, and its frequency decreases log-linearly with increased SD up to 15%. Beyond this and up to 23% SD the interspecies boundaries prevail, the CT frequency marginally decreases, and short (<10-nucleotides) segments are integrated via homology-facilitated micro-homologous integration. Both mechanisms are RecA dependent. We identify the other recombination proteins required for the acquisition of homeologous DNA. The absence of AddAB, RecF, RecO, RuvAB or RecU, crucial for repair-by-recombination, did not affect CT. However, dprA, radA, recJ, recX or recD2 inactivation strongly decreased intraspecies and interspecies CT. Interspecies CT was not detected beyond ~8% SD in ΔdprA, ~10% in ΔrecJ, ΔradA, ΔrecX and ~14% in ΔrecD2 cells. We propose that DprA, RecX, RadA/Sms, RecJ and RecD2 accessory proteins are important for the generation of genetic diversity. Together with RecA, they facilitate gene acquisition from bacteria of related species.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
53
|
Kobayashi Y, Odahara M, Sekine Y, Hamaji T, Fujiwara S, Nishimura Y, Miyagishima SY. Holliday Junction Resolvase MOC1 Maintains Plastid and Mitochondrial Genome Integrity in Algae and Bryophytes. PLANT PHYSIOLOGY 2020; 184:1870-1883. [PMID: 32978278 PMCID: PMC7723093 DOI: 10.1104/pp.20.00763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
When DNA double-strand breaks occur, four-stranded DNA structures called Holliday junctions (HJs) form during homologous recombination. Because HJs connect homologous DNA by a covalent link, resolution of HJ is crucial to terminate homologous recombination and segregate the pair of DNA molecules faithfully. We recently identified Monokaryotic Chloroplast1 (MOC1) as a plastid DNA HJ resolvase in algae and plants. Although Cruciform cutting endonuclease1 (CCE1) was identified as a mitochondrial DNA HJ resolvase in yeasts, homologs or other mitochondrial HJ resolvases have not been identified in other eukaryotes. Here, we demonstrate that MOC1 depletion in the green alga Chlamydomonas reinhardtii and the moss Physcomitrella patens induced ectopic recombination between short dispersed repeats in ptDNA. In addition, MOC1 depletion disorganized thylakoid membranes in plastids. In some land plant lineages, such as the moss P. patens, a liverwort and a fern, MOC1 dually targeted to plastids and mitochondria. Moreover, mitochondrial targeting of MOC1 was also predicted in charophyte algae and some land plant species. Besides causing instability of plastid DNA, MOC1 depletion in P. patens induced short dispersed repeat-mediated ectopic recombination in mitochondrial DNA and disorganized cristae in mitochondria. Similar phenotypes in plastids and mitochondria were previously observed in mutants of plastid-targeted (RECA2) and mitochondrion-targeted (RECA1) recombinases, respectively. These results suggest that MOC1 functions in the double-strand break repair in which a recombinase generates HJs and MOC1 resolves HJs in mitochondria of some lineages of algae and plants as well as in plastids in algae and plants.
Collapse
Affiliation(s)
- Yusuke Kobayashi
- College of Science, Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito, Ibaraki 310-8512, Japan
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masaki Odahara
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
- Biomacromolecules Research Team, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | - Takashi Hamaji
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Yoshiki Nishimura
- Department of Botany, Laboratory of Plant Molecular Genetics, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
54
|
Shibata T, Iwasaki W, Hirota K. The intrinsic ability of double-stranded DNA to carry out D-loop and R-loop formation. Comput Struct Biotechnol J 2020; 18:3350-3360. [PMID: 33294131 PMCID: PMC7677664 DOI: 10.1016/j.csbj.2020.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 12/03/2022] Open
Abstract
Double-stranded (ds)DNA, not dsRNA, has an ability to form a homologous complex with single-stranded (ss)DNA or ssRNA of homologous sequence. D-loops and homologous triplexes are homologous complexes formed with ssDNA by RecA/Rad51-family homologous-pairing proteins, and are a key intermediate of homologous (genetic/DNA) recombination. R-loop formation independent of transcription (R-loop formation in trans) was recently found to play roles in gene regulation and development of mammals and plants. In addition, the crRNA-Cas effector complex in CRISPR-Cas systems also relies on R-loop formation to recognize specific target. In homologous complex formation, ssDNA/ssRNA finds a homologous sequence in dsDNA by Watson-Crick base-pairing. crRNA-Cas effector complexes appear to actively melt dsDNA to make its bases available for annealing to crRNA. On the other hand, in D-loop formation and homologous-triplex formation, it is likely that dsDNA recognizes the homologous sequence before the melting of its double helix by using its intrinsic molecular function depending on CH2 at the 2'-position of the deoxyribose, and that the major role of RecA is the extension of ssDNA and the holding dsDNA at a position suitable for homology search. This intrinsic dsDNA function would also play a role in R-loop formation. The dependency of homologous-complex formation on 2'-CH2 of the deoxyribose would explain the absence of homologous complex formation by dsRNA, and dsDNA as sole genome molecule in all cellular organisms.
Collapse
Affiliation(s)
- Takehiko Shibata
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi, Yokohama, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| |
Collapse
|
55
|
Woo TT, Chuang CN, Higashide M, Shinohara A, Wang TF. Dual roles of yeast Rad51 N-terminal domain in repairing DNA double-strand breaks. Nucleic Acids Res 2020; 48:8474-8489. [PMID: 32652040 PMCID: PMC7470947 DOI: 10.1093/nar/gkaa587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 01/17/2023] Open
Abstract
Highly toxic DNA double-strand breaks (DSBs) readily trigger the DNA damage response (DDR) in cells, which delays cell cycle progression to ensure proper DSB repair. In Saccharomyces cerevisiae, mitotic S phase (20–30 min) is lengthened upon DNA damage. During meiosis, Spo11-induced DSB onset and repair lasts up to 5 h. We report that the NH2-terminal domain (NTD; residues 1–66) of Rad51 has dual functions for repairing DSBs during vegetative growth and meiosis. Firstly, Rad51-NTD exhibits autonomous expression-enhancing activity for high-level production of native Rad51 and when fused to exogenous β-galactosidase in vivo. Secondly, Rad51-NTD is an S/T-Q cluster domain (SCD) harboring three putative Mec1/Tel1 target sites. Mec1/Tel1-dependent phosphorylation antagonizes the proteasomal degradation pathway, increasing the half-life of Rad51 from ∼30 min to ≥180 min. Our results evidence a direct link between homologous recombination and DDR modulated by Rad51 homeostasis.
Collapse
Affiliation(s)
- Tai-Ting Woo
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Mika Higashide
- Laboratory of Genome-Chromosome Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Japan
| | - Akira Shinohara
- Laboratory of Genome-Chromosome Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Japan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
56
|
Crickard JB, Kwon Y, Sung P, Greene EC. Rad54 and Rdh54 occupy spatially and functionally distinct sites within the Rad51-ssDNA presynaptic complex. EMBO J 2020; 39:e105705. [PMID: 32790929 PMCID: PMC7560196 DOI: 10.15252/embj.2020105705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Rad54 and Rdh54 are closely related ATP-dependent motor proteins that participate in homologous recombination (HR). During HR, these enzymes functionally interact with the Rad51 presynaptic complex (PSC). Despite their importance, we know little about how they are organized within the PSC, or how their organization affects PSC function. Here, we use single-molecule optical microscopy and genetic analysis of chimeric protein constructs to evaluate the binding distributions of Rad54 and Rdh54 within the PSC. We find that Rad54 and Rdh54 have distinct binding sites within the PSC, which allow these proteins to act cooperatively as DNA sequences are aligned during homology search. Our data also reveal that Rad54 must bind to a specific location within the PSC, whereas Rdh54 retains its function in the repair of MMS-induced DNA damage even when recruited to the incorrect location. These findings support a model in which the relative binding sites of Rad54 and Rdh54 help to define their functions during mitotic HR.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| | - Youngho Kwon
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Patrick Sung
- Department of Biochemistry and Structural BiologyUniversity of Texas Health Science Center at San AntonioSan AntonioTXUSA
| | - Eric C Greene
- Department of Biochemistry & Molecular BiophysicsColumbia UniversityNew YorkNYUSA
| |
Collapse
|
57
|
Yang H, Zhou C, Dhar A, Pavletich NP. Mechanism of strand exchange from RecA-DNA synaptic and D-loop structures. Nature 2020; 586:801-806. [PMID: 33057191 PMCID: PMC8366275 DOI: 10.1038/s41586-020-2820-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
The strand exchange reaction is central to homologous recombination. It is catalyzed by the RecA family of ATPases that form a helical filament with single-stranded DNA (ssDNA) and ATP. This filament binds to a donor double-stranded DNA (dsDNA) to form synaptic filaments that search for homology, and then catalyze the exchange of the complementary strand to form a new heteroduplex, or a D-loop if homology is limited1,2. Here we report the Cryo-EM analysis of synaptic mini filaments with both non-complementary and partially-complementary dsDNA, and structures of RecA–D-loop complexes containing a 10 or 12 base pair heteroduplex at 2.8 and 2.9 Å, respectively. The RecA C-terminal domain (CTD) binds to dsDNA and directs it to the L2 loop, which inserts into and opens the duplex. The opening propagates through RecA sequestering the homologous strand at a secondary DNA-binding site, freeing the complementary strand to sample pairing with the ssDNA. Duplex opening has a significant probability of stopping at each RecA step, with the as yet unopened dsDNA portion binding to another CTD. Homology suppresses this process through heteroduplex pairing cooperating with secondary site-ssDNA binding to extend dsDNA opening. This mechanism locally limits the length of ssDNA sampled for pairing if homology is not encountered, and it may provide for the formation of multiple synapses separated substantially on the donor dsDNA, increasing the probability of encountering homology.
Collapse
Affiliation(s)
- Haijuan Yang
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Chun Zhou
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Zhejiang University School of Medicine, Zhejiang, China
| | - Ankita Dhar
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nikola P Pavletich
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. .,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
58
|
Precise Replacement of Saccharomyces cerevisiae Proteasome Genes with Human Orthologs by an Integrative Targeting Method. G3-GENES GENOMES GENETICS 2020; 10:3189-3200. [PMID: 32680853 PMCID: PMC7466971 DOI: 10.1534/g3.120.401526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial induction of a chromosomal double-strand break in Saccharomyces cerevisiae enhances the frequency of integration of homologous DNA fragments into the broken region by up to several orders of magnitude. The process of homologous repair can be exploited to integrate, in principle, any foreign DNA into a target site, provided the introduced DNA is flanked at both the 5′ and 3′ ends by sequences homologous to the region surrounding the double-strand break. I have developed tools to precisely direct double-strand breaks to chromosomal target sites with the meganuclease I-SceI and select integration events at those sites. The method is validated in two different applications. First, the introduction of site-specific single-nucleotide phosphorylation site mutations into the S. cerevisiae gene SPO12. Second, the precise chromosomal replacement of eleven S. cerevisiae proteasome genes with their human orthologs. Placing the human genes under S. cerevisiae transcriptional control allowed us to update our understanding of cross-species functional gene replacement. This experience suggests that using native promoters may be a useful general strategy for the coordinated expression of foreign genes in S. cerevisiae. I provide an integrative targeting tool set that will facilitate a variety of precision genome engineering applications.
Collapse
|
59
|
Mismatch sensing by nucleofilament deciphers mechanism of RecA-mediated homologous recombination. Proc Natl Acad Sci U S A 2020; 117:20549-20554. [PMID: 32788357 DOI: 10.1073/pnas.1920265117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombinases polymerize along single-stranded DNA (ssDNA) at the end of a broken DNA to form a helical nucleofilament with a periodicity of ∼18 bases. The filament catalyzes the search and checking for homologous sequences and promotes strand exchange with a donor duplex during homologous recombination (HR), the mechanism of which has remained mysterious since its discovery. Here, by inserting mismatched segments into donor duplexes and using single-molecule techniques to catch transient intermediates in HR, we found that, even though 3 base pairs (bp) is still the basic unit, both the homology checking and the strand exchange may proceed in multiple steps at a time, resulting in ∼9-bp large steps on average. More interestingly, the strand exchange is blocked remotely by the mismatched segment, terminating at positions ∼9 bp before the match-mismatch joint. The homology checking and the strand exchange are thus separated in space, with the strand exchange lagging behind. Our data suggest that the strand exchange progresses like a traveling wave in which the donor DNA is incorporated successively into the ssDNA-RecA filament to check homology in ∼9-bp steps in the frontier, followed by a hypothetical transitional segment and then the post-strand-exchanged duplex.
Collapse
|
60
|
Mechanism and significance of chromosome damage repair by homologous recombination. Essays Biochem 2020; 64:779-790. [DOI: 10.1042/ebc20190093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Abstract
Homologous recombination (HR) is a major, conserved pathway of chromosome damage repair. It not only fulfills key functions in the removal of deleterious lesions such as DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs), but also in replication fork repair and protection. Several familial and acquired cancer predisposition syndromes stem from defects in HR. In particular, individuals with mutations in HR genes exhibit predisposition to breast, ovarian, pancreatic, and prostate cancers, and they also show signs of accelerated aging. However, aberrant and untimely HR events can lead to the loss of heterozygosity, genomic rearrangements, and cytotoxic nucleoprotein intermediates. Thus, it is critically important that HR be tightly regulated. In addition to DNA repair, HR is also involved in meiotic chromosome segregation and telomere maintenance in cells that lack telomerase. In this review, we focus on the role of HR in DSB repair (DSBR) and summarize the current state of the field.
Collapse
|
61
|
Kenderian SS, Badley AD. CRISPR Taking the Front Seat in Immunotherapy. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:143-148. [PMID: 32776020 PMCID: PMC7406201 DOI: 10.33696/immunology.2.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.,Division of Hematology, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew D Badley
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
62
|
Mäeots ME, Lee B, Nans A, Jeong SG, Esfahani MMN, Ding S, Smith DJ, Lee CS, Lee SS, Peter M, Enchev RI. Modular microfluidics enables kinetic insight from time-resolved cryo-EM. Nat Commun 2020; 11:3465. [PMID: 32651368 PMCID: PMC7351747 DOI: 10.1038/s41467-020-17230-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/18/2020] [Indexed: 11/09/2022] Open
Abstract
Mechanistic understanding of biochemical reactions requires structural and kinetic characterization of the underlying chemical processes. However, no single experimental technique can provide this information in a broadly applicable manner and thus structural studies of static macromolecules are often complemented by biophysical analysis. Moreover, the common strategy of utilizing mutants or crosslinking probes to stabilize intermediates is prone to trapping off-pathway artefacts and precludes determining the order of molecular events. Here we report a time-resolved sample preparation method for cryo-electron microscopy (trEM) using a modular microfluidic device, featuring a 3D-mixing unit and variable delay lines that enables automated, fast, and blot-free sample vitrification. This approach not only preserves high-resolution structural detail but also substantially improves sample integrity and protein distribution across the vitreous ice. We validate the method by visualising reaction intermediates of early RecA filament growth across three orders of magnitude on sub-second timescales. The trEM method reported here is versatile, reproducible, and readily adaptable to a broad spectrum of fundamental questions in biology.
Collapse
Affiliation(s)
- Märt-Erik Mäeots
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Byungjin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Andrea Nans
- Structural Biology Scientific Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Seung-Geun Jeong
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon, 305-764, Republic of Korea
| | - Mohammad M N Esfahani
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Shan Ding
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
| | - Daniel J Smith
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseong-Gu, Daejeon, 305-764, Republic of Korea.
| | - Sung Sik Lee
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
| | - Matthias Peter
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
| | - Radoslav I Enchev
- Institute of Biochemistry, Department of Biology, ETH Zurich, Otto-Stern-Weg 3, 8093, Zurich, Switzerland.
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK.
| |
Collapse
|
63
|
McBeath E, Parker-Thornburg J, Fujii Y, Aryal N, Smith C, Hofmann MC, Abe JI, Fujiwara K. Rapid Evaluation of CRISPR Guides and Donors for Engineering Mice. Genes (Basel) 2020; 11:E628. [PMID: 32521708 PMCID: PMC7349695 DOI: 10.3390/genes11060628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022] Open
Abstract
Although the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/ CRISPR associated protein 9 (Cas9) technique has dramatically lowered the cost and increased the speed of generating genetically engineered mice, success depends on using guide RNAs and donor DNAs which direct efficient knock-out (KO) or knock-in (KI). By Sanger sequencing DNA from blastocysts previously injected with the same CRISPR components intended to produce the engineered mice, one can test the effectiveness of different guide RNAs and donor DNAs. We describe in detail here a simple, rapid (three days), inexpensive protocol, for amplifying DNA from blastocysts to determine the results of CRISPR point mutation KIs. Using it, we show that (1) the rate of KI seen in blastocysts is similar to that seen in mice for a given guide RNA/donor DNA pair, (2) a donor complementary to the variable portion of a guide integrated in a more all-or-none fashion, (3) donor DNAs can be used simultaneously to integrate two different mutations into the same locus, and (4) by placing silent mutations about every 6 to 10 bp between the Cas9 cut site and the desired mutation(s), the desired mutation(s) can be incorporated into genomic DNA over 30 bp away from the cut at the same high efficiency as close to the cut.
Collapse
Affiliation(s)
- Elena McBeath
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jan Parker-Thornburg
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (C.S.)
| | - Yuka Fujii
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.F.); (J.-i.A.); (K.F.)
| | - Neeraj Aryal
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (C.S.)
| | - Chad Smith
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.A.); (C.S.)
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jun-ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.F.); (J.-i.A.); (K.F.)
| | - Keigi Fujiwara
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.F.); (J.-i.A.); (K.F.)
| |
Collapse
|
64
|
Crickard JB, Moevus CJ, Kwon Y, Sung P, Greene EC. Rad54 Drives ATP Hydrolysis-Dependent DNA Sequence Alignment during Homologous Recombination. Cell 2020; 181:1380-1394.e18. [PMID: 32502392 DOI: 10.1016/j.cell.2020.04.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/07/2020] [Accepted: 04/29/2020] [Indexed: 12/30/2022]
Abstract
Homologous recombination (HR) helps maintain genome integrity, and HR defects give rise to disease, especially cancer. During HR, damaged DNA must be aligned with an undamaged template through a process referred to as the homology search. Despite decades of study, key aspects of this search remain undefined. Here, we use single-molecule imaging to demonstrate that Rad54, a conserved Snf2-like protein found in all eukaryotes, switches the search from the diffusion-based pathways characteristic of the basal HR machinery to an active process in which DNA sequences are aligned via an ATP-dependent molecular motor-driven mechanism. We further demonstrate that Rad54 disrupts the donor template strands, enabling the search to take place within a migrating DNA bubble-like structure that is bound by replication protein A (RPA). Our results reveal that Rad54, working together with RPA, fundamentally alters how DNA sequences are aligned during HR.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Corentin J Moevus
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
65
|
Rad51 facilitates filament assembly of meiosis-specific Dmc1 recombinase. Proc Natl Acad Sci U S A 2020; 117:11257-11264. [PMID: 32404423 DOI: 10.1073/pnas.1920368117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dmc1 recombinases are essential to homologous recombination in meiosis. Here, we studied the kinetics of the nucleoprotein filament assembly of Saccharomyces cerevisiae Dmc1 using single-molecule tethered particle motion experiments and in vitro biochemical assay. ScDmc1 nucleoprotein filaments are less stable than the ScRad51 ones because of the kinetically much reduced nucleation step. The lower nucleation rate of ScDmc1 results from its lower single-stranded DNA (ssDNA) affinity, compared to that of ScRad51. Surprisingly, ScDmc1 nucleates mostly on the DNA structure containing the single-stranded and duplex DNA junction with the allowed extension in the 5'-to-3' polarity, while ScRad51 nucleation depends strongly on ssDNA lengths. This nucleation preference is also conserved for mammalian RAD51 and DMC1. In addition, ScDmc1 nucleation can be stimulated by short ScRad51 patches, but not by EcRecA ones. Pull-down experiments also confirm the physical interactions of ScDmc1 with ScRad51 in solution, but not with EcRecA. Our results are consistent with a model that Dmc1 nucleation can be facilitated by a structural component (such as DNA junction and protein-protein interaction) and DNA polarity. They provide direct evidence of how Rad51 is required for meiotic recombination and highlight a regulation strategy in Dmc1 nucleoprotein filament assembly.
Collapse
|
66
|
Tang C, He Z, Liu H, Xu Y, Huang H, Yang G, Xiao Z, Li S, Liu H, Deng Y, Chen Z, Chen H, He N. Application of magnetic nanoparticles in nucleic acid detection. J Nanobiotechnology 2020; 18:62. [PMID: 32316985 PMCID: PMC7171821 DOI: 10.1186/s12951-020-00613-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleic acid is the main material for storing, copying, and transmitting genetic information. Gene sequencing is of great significance in DNA damage research, gene therapy, mutation analysis, bacterial infection, drug development, and clinical diagnosis. Gene detection has a wide range of applications, such as environmental, biomedical, pharmaceutical, agriculture and forensic medicine to name a few. Compared with Sanger sequencing, high-throughput sequencing technology has the advantages of larger output, high resolution, and low cost which greatly promotes the application of sequencing technology in life science research. Magnetic nanoparticles, as an important part of nanomaterials, have been widely used in various applications because of their good dispersion, high surface area, low cost, easy separation in buffer systems and signal detection. Based on the above, the application of magnetic nanoparticles in nucleic acid detection was reviewed.
Collapse
Affiliation(s)
- Congli Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yuyue Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Gaojian Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Ziqi Xiao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hongna Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, 412007 China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
67
|
Atwell SX, Migliozzi D, Dupont A, Viovy JL, Cappello G. Structural transitions and mechanochemical coupling in the nucleoprotein filament explain homology selectivity and Rad51 protein cooperativity in cellular DNA repair. Phys Rev E 2020; 101:032407. [PMID: 32289957 DOI: 10.1103/physreve.101.032407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/17/2020] [Indexed: 11/07/2022]
Abstract
The nucleoprotein filament (NPF) is the fundamental element of homologous recombination (HR), a major mechanism for the repair of double-strand DNA breaks in the cell. The NPF is made of the damaged DNA strand surrounded by recombinase proteins, and its sensitivity to base-pairing mismatches is a crucial feature that guarantees the fidelity of the repair. The concurrent recombinases are also essential for several steps of HR. In this work, we used torque-sensitive magnetic tweezers to probe and apply mechanical constraints to single nucleoprotein filaments (NPFs). We demonstrated that the NPF undergoes structural transitions from a stretched to a compact state, and we measured the corresponding mechanochemical signatures. Using an active two-state model, we proposed a free-energy landscape for the NPF transition. Using this quantitative model, we explained both how the sensitivity of the NPF to the homology length is regulated by its structural transition and how the cooperativity of Rad51 favors selectivity to relatively long homologous sequences.
Collapse
Affiliation(s)
- Scott X Atwell
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Sorbonne Universités, UPMC Univ Paris 06, Unité Mixte de Recherche 168, 75005 Paris, France
| | - Daniel Migliozzi
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Sorbonne Universités, UPMC Univ Paris 06, Unité Mixte de Recherche 168, 75005 Paris, France.,Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Aurélie Dupont
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Sorbonne Universités, UPMC Univ Paris 06, Unité Mixte de Recherche 168, 75005 Paris, France.,Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| | - Jean-Louis Viovy
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Sorbonne Universités, UPMC Univ Paris 06, Unité Mixte de Recherche 168, Institut Pierre Gilles de Gennes, MMBM Group, 75005 Paris, France
| | - Giovanni Cappello
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Sorbonne Universités, UPMC Univ Paris 06, Unité Mixte de Recherche 168, 75005 Paris, France.,Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique, CNRS, F-38000 Grenoble, France
| |
Collapse
|
68
|
Subramanyam S, Spies M. RAD51 discrimination between single- and double-strand DNA: a matter of flexibility and enthalpy. EMBO J 2020; 39:e104547. [PMID: 32090346 PMCID: PMC7110141 DOI: 10.15252/embj.2020104547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
In selecting ssDNA over dsDNA, the RAD51 DNA strand exchange protein has to overcome the entropy associated with straightening of single-strand DNA upon nucleoprotein filament formation. New work in The EMBO Journal (Paoletti et al, 2020), combined biophysical analysis of the RAD51-ssDNA interaction with mathematical modeling to show that the flexibility of DNA positively correlates with nucleation and extension of the RAD51 nucleoprotein filament and that the entropic penalty associated with restricting ssDNA flexibility is offset by a strong RAD51-RAD51 interaction within the nucleoprotein filament.
Collapse
Affiliation(s)
- Shyamal Subramanyam
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Maria Spies
- Department of BiochemistryCarver College of MedicineUniversity of IowaIowa CityIAUSA
| |
Collapse
|
69
|
Hohnholz R, Achstetter T. Recombination in yeast based on six base pairs of homologous sequences: Structural instability in two sets of isomeric model expression plasmids. Yeast 2019; 37:207-216. [DOI: 10.1002/yea.3393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/02/2019] [Accepted: 04/10/2019] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ruben Hohnholz
- Department of Industrial MicrobiologyCity University of Applied Sciences Bremen Bremen Germany
| | - Tilman Achstetter
- Department of Industrial MicrobiologyCity University of Applied Sciences Bremen Bremen Germany
| |
Collapse
|
70
|
Homologous Recombination under the Single-Molecule Fluorescence Microscope. Int J Mol Sci 2019; 20:ijms20236102. [PMID: 31816946 PMCID: PMC6929127 DOI: 10.3390/ijms20236102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination (HR) is a complex biological process and is central to meiosis and for repair of DNA double-strand breaks. Although the HR process has been the subject of intensive study for more than three decades, the complex protein–protein and protein–DNA interactions during HR present a significant challenge for determining the molecular mechanism(s) of the process. This knowledge gap is largely because of the dynamic interactions between HR proteins and DNA which is difficult to capture by routine biochemical or structural biology methods. In recent years, single-molecule fluorescence microscopy has been a popular method in the field of HR to visualize these complex and dynamic interactions at high spatiotemporal resolution, revealing mechanistic insights of the process. In this review, we describe recent efforts that employ single-molecule fluorescence microscopy to investigate protein–protein and protein–DNA interactions operating on three key DNA-substrates: single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and four-way DNA called Holliday junction (HJ). We also outline the technological advances and several key insights revealed by these studies in terms of protein assembly on these DNA substrates and highlight the foreseeable promise of single-molecule fluorescence microscopy in advancing our understanding of homologous recombination.
Collapse
|
71
|
Xue C, Daley JM, Xue X, Steinfeld J, Kwon Y, Sung P, Greene EC. Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res 2019; 47:11225-11237. [PMID: 31544923 PMCID: PMC6868385 DOI: 10.1093/nar/gkz810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/12/2022] Open
Abstract
Bloom helicase (BLM) and its orthologs are essential for the maintenance of genome integrity. BLM defects represent the underlying cause of Bloom Syndrome, a rare genetic disorder that is marked by strong cancer predisposition. BLM deficient cells accumulate extensive chromosomal aberrations stemming from dysfunctions in homologous recombination (HR). BLM participates in several HR stages and helps dismantle potentially harmful HR intermediates. However, much remains to be learned about the molecular mechanisms of these BLM-mediated regulatory effects. Here, we use DNA curtains to directly visualize the activity of BLM helicase on single molecules of DNA. Our data show that BLM is a robust helicase capable of rapidly (∼70-80 base pairs per second) unwinding extensive tracts (∼8-10 kilobases) of double-stranded DNA (dsDNA). Importantly, we find no evidence for BLM activity on single-stranded DNA (ssDNA) that is bound by replication protein A (RPA). Likewise, our results show that BLM can neither associate with nor translocate on ssDNA that is bound by the recombinase protein RAD51. Moreover, our data reveal that the presence of RAD51 also blocks BLM translocation on dsDNA substrates. We discuss our findings within the context of potential regulator roles for BLM helicase during DNA replication and repair.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - James M Daley
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Justin Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
72
|
Lin YH, Chu CC, Fan HF, Wang PY, Cox MM, Li HW. A 5'-to-3' strand exchange polarity is intrinsic to RecA nucleoprotein filaments in the absence of ATP hydrolysis. Nucleic Acids Res 2019; 47:5126-5140. [PMID: 30916331 PMCID: PMC6547424 DOI: 10.1093/nar/gkz189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 01/13/2023] Open
Abstract
RecA is essential to recombinational DNA repair in which RecA filaments mediate the homologous DNA pairing and strand exchange. Both RecA filament assembly and the subsequent DNA strand exchange are directional. Here, we demonstrate that the polarity of DNA strand exchange is embedded within RecA filaments even in the absence of ATP hydrolysis, at least over short DNA segments. Using single-molecule tethered particle motion, we show that successful strand exchange in the presence of ATP proceeds with a 5′-to-3′ polarity, as demonstrated previously. RecA filaments prepared with ATPγS also exhibit a 5′-to-3′ progress of strand exchange, suggesting that the polarity is not determined by RecA disassembly and/or ATP hydrolysis. RecAΔC17 mutants, lacking a C-terminal autoregulatory flap, also promote strand exchange in a 5′-to-3′ polarity in ATPγS, a polarity that is largely lost with this RecA variant when ATP is hydrolyzed. We propose that there is an inherent strand exchange polarity mediated by the structure of the RecA filament groove, associated by conformation changes propagated in a polar manner as DNA is progressively exchanged. ATP hydrolysis is coupled to polar strand exchange over longer distances, and its contribution to the polarity requires an intact RecA C-terminus.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Chia-Chieh Chu
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Hsiu-Fang Fan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, 11221 Taiwan
| | - Pang-Yen Wang
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin, Madison, 53706, USA
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, 10617, Taiwan
| |
Collapse
|
73
|
Foertsch F, Kache T, Drube S, Biskup C, Nasheuer HP, Melle C. Determination of the number of RAD51 molecules in different human cell lines. Cell Cycle 2019; 18:3581-3588. [PMID: 31731884 DOI: 10.1080/15384101.2019.1691802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Knowledge about precise numbers of specific molecules is necessary for understanding and verification of biological pathways. The RAD51 protein is central in the repair of DNA double-strand breaks (DSBs) by homologous recombination repair and understanding its role in cellular pathways is crucial to design mechanistic DNA repair models. Here, we determined the number of RAD51 molecules in several human cell lines including primary fibroblasts. We showed that between 20000 to 100000 of RAD51 molecules are available per human cell that theoretically can be used for simultaneously loading at least 7 DSBs. Interestingly, the amount of RAD51 molecules does not significantly change after the induction of DNA damage using bleomycin or γ-irradiation in cells but an accumulation of RAD51 on the chromatin occurs. Furthermore, we generated an EGFP-RAD51 fusion under the control of HSV thymidine kinase promoter sequences yielding moderate protein expression levels comparable to endogenously expressed RAD51. Initial characterizations suggest that these low levels of ectopically expressed RAD51 are compatible with cell cycle progression of human cells. Hence, we provide parameters for the quantitative understanding and modeling of RAD51-involving processes.
Collapse
Affiliation(s)
| | | | - Sebastian Drube
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | | | - Heinz Peter Nasheuer
- Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
74
|
Smith MJ, Bryant EE, Joseph FJ, Rothstein R. DNA damage triggers increased mobility of chromosomes in G1-phase cells. Mol Biol Cell 2019; 30:2620-2625. [PMID: 31483739 PMCID: PMC6761769 DOI: 10.1091/mbc.e19-08-0469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 01/19/2023] Open
Abstract
During S phase in Saccharomyces cerevisiae, chromosomal loci become mobile in response to DNA double-strand breaks both at the break site (local mobility) and throughout the nucleus (global mobility). Increased nuclear exploration is regulated by the recombination machinery and the DNA damage checkpoint and is likely an important aspect of homology search. While mobility in response to DNA damage has been studied extensively in S phase, the response in interphase has not, and the question of whether homologous recombination proceeds to completion in G1 phase remains controversial. Here, we find that global mobility is triggered in G1 phase. As in S phase, global mobility in G1 phase is controlled by the DNA damage checkpoint and the Rad51 recombinase. Interestingly, despite the restriction of Rad52 mediator foci to S phase, Rad51 foci form at high levels in G1 phase. Together, these observations indicate that the recombination and checkpoint machineries promote global mobility in G1 phase, supporting the notion that recombination can occur in interphase diploids.
Collapse
Affiliation(s)
- Michael J. Smith
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Eric E. Bryant
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Fraulin J. Joseph
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032
| |
Collapse
|
75
|
Tavares EM, Wright WD, Heyer WD, Le Cam E, Dupaigne P. In vitro role of Rad54 in Rad51-ssDNA filament-dependent homology search and synaptic complexes formation. Nat Commun 2019; 10:4058. [PMID: 31492866 PMCID: PMC6731316 DOI: 10.1038/s41467-019-12082-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/12/2019] [Indexed: 11/28/2022] Open
Abstract
Homologous recombination (HR) uses a homologous template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. During homology search, Rad51 nucleoprotein filaments probe and interact with dsDNA, forming the synaptic complex that is stabilized on a homologous sequence. Strand intertwining leads to the formation of a displacement-loop (D-loop). In yeast, Rad54 is essential for HR in vivo and required for D-loop formation in vitro, but its exact role remains to be fully elucidated. Using electron microscopy to visualize the DNA-protein complexes, here we find that Rad54 is crucial for Rad51-mediated synaptic complex formation and homology search. The Rad54−K341R ATPase-deficient mutant protein promotes formation of synaptic complexes but not D-loops and leads to the accumulation of stable heterologous associations, suggesting that the Rad54 ATPase is involved in preventing non-productive intermediates. We propose that Rad51/Rad54 form a functional unit operating in homology search, synaptic complex and D-loop formation. Homologous recombination uses a template to accurately repair DNA double-strand breaks and stalled replication forks to maintain genome stability. Here authors use electron microscopy to investigate the role of Rad54 in homology search and synaptic complex formation.
Collapse
Affiliation(s)
- Eliana Moreira Tavares
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - William Douglass Wright
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, 95616-8665, USA
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France.
| |
Collapse
|
76
|
RecA kinetically selects homologous DNA by testing a five- or six-nucleotide matching sequence and deforming the second DNA. Q Rev Biophys 2019; 51:e11. [PMID: 30912492 DOI: 10.1017/s0033583518000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RecA family proteins pair two DNAs with the same sequence to promote strand exchange during homologous recombination. To understand how RecA proteins search for and recognize homology, we sought to determine the length of homologous sequence that permits RecA to start its reaction. Specifically, we analyzed the effect of sequence heterogeneity on the association rate of homologous DNA with RecA/single-stranded DNA complex. We assumed that the reaction can start with equal likelihood at any point in the DNA, and that sequence heterogeneity abolishes some possible initiation sites. This analysis revealed that the effective recognition size is five or six nucleotides, larger than the three nucleotides recognized by a RecA monomer. Because the first DNA is elongated 1.5-fold by intercalation of amino acid residues of RecA every three bases, the second bound DNA must be elongated to pair with the first. Because this length is similar to estimates based on the strand-exchange reaction or DNA pair formation, the homology test is likely to occur primarily at the association step. The energetic difference due to the absence of hydrogen bonding is too small to discriminate single-nucleotide heterogeneity over a five- or six-nucleotide sequence. The selection is very likely to be made kinetically, and probably involves some structural factor other than Watson-Crick hydrogen bonding. It would be valuable to determine whether this is also the case for other biological reactions involving DNA base complementarity, such as replication, transcription, and translation.
Collapse
|
77
|
Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao W, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev 2019; 33:1191-1207. [PMID: 31371435 PMCID: PMC6719624 DOI: 10.1101/gad.328062.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
The vast majority of eukaryotes possess two DNA recombinases: Rad51, which is ubiquitously expressed, and Dmc1, which is meiosis-specific. The evolutionary origins of this two-recombinase system remain poorly understood. Interestingly, Dmc1 can stabilize mismatch-containing base triplets, whereas Rad51 cannot. Here, we demonstrate that this difference can be attributed to three amino acids conserved only within the Dmc1 lineage of the Rad51/RecA family. Chimeric Rad51 mutants harboring Dmc1-specific amino acids gain the ability to stabilize heteroduplex DNA joints with mismatch-containing base triplets, whereas Dmc1 mutants with Rad51-specific amino acids lose this ability. Remarkably, RAD-51 from Caenorhabditis elegans, an organism without Dmc1, has acquired "Dmc1-like" amino acids. Chimeric C. elegans RAD-51 harboring "canonical" Rad51 amino acids gives rise to toxic recombination intermediates, which must be actively dismantled to permit normal meiotic progression. We propose that Dmc1 lineage-specific amino acids involved in the stabilization of heteroduplex DNA joints with mismatch-containing base triplets may contribute to normal meiotic recombination.
Collapse
Affiliation(s)
- Justin B Steinfeld
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Ondrej Beláň
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Tsuyoshi Terakawa
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Amr Al-Zain
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Michael J Smith
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - J Brooks Crickard
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Zhi Qi
- Center for Quantitative Biology, Peking University-Tsinghua University Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rodney Rothstein
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Lorraine S Symington
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
78
|
Cui TJ, Joo C. Facilitated diffusion of Argonaute-mediated target search. RNA Biol 2019; 16:1093-1107. [PMID: 31068066 PMCID: PMC6693542 DOI: 10.1080/15476286.2019.1616353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022] Open
Abstract
Argonaute (Ago) proteins are of key importance in many cellular processes. In eukaryotes, Ago can induce translational repression followed by deadenylation and degradation of mRNA molecules through base pairing of microRNAs (miRNAs) with a complementary target on a mRNA sequence. In bacteria, Ago eliminates foreign DNA through base pairing of siDNA (small interfering DNA) with a target on a DNA sequence. Effective targeting activities of Ago require fast recognition of the cognate target sequence among numerous off-target sites. Other target search proteins such as transcription factors (TFs) are known to rely on facilitated diffusion for this goal, but it is undetermined to what extent these small nucleic acid-guided proteins utilize this mechanism. Here, we review recent single-molecule studies on Ago target search. We discuss the consequences of the recent findings on the search mechanism. Furthermore, we discuss the open standing research questions that need to be addressed for a complete picture of facilitated target search by small nucleic acids.
Collapse
Affiliation(s)
- Tao Ju Cui
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
79
|
Li C, Danilowicz C, Tashjian TF, Godoy VG, Prévost C, Prentiss M. The positioning of Chi sites allows the RecBCD pathway to suppress some genomic rearrangements. Nucleic Acids Res 2019; 47:1836-1846. [PMID: 30544167 PMCID: PMC6393298 DOI: 10.1093/nar/gky1252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
Bacterial recombinational repair of double-strand breaks often begins with creation of initiating 3′ single-stranded DNA (ssDNA) tails on each side of a double-strand break (DSB). Importantly, if the RecBCD pathway is followed, RecBCD creates a gap between the sequences at 3′ ends of the initiating strands. The gap flanks the DSB and extends at least to the nearest Chi site on each strand. Once the initiating strands form ssDNA–RecA filaments, each ssDNA–RecA filament searches for homologous double-stranded DNA (dsDNA) to use as a template for the DNA synthesis needed to fill the gap created by RecBCD. Our experimental results show that the DNA synthesis requires formation of a heteroduplex dsDNA that pairs >20 contiguous bases in the initiating strand with sequence matched bases in a strand from the original dsDNA. To trigger synthesis, the heteroduplex must be near the 3′ end of the initiating strand. Those experimentally determined requirements for synthesis combined with the Chi site dependence of the function of RecBCD and the distribution of Chi sites in bacterial genomes could allow the RecBCD pathway to avoid some genomic rearrangements arising from directly induced DSBs; however, the same three factors could promote other rearrangements.
Collapse
Affiliation(s)
- Chastity Li
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | - Tommy F Tashjian
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Chantal Prévost
- Laboratoire de BioChimie Théorique, CNRS UMR 9080, IBPC, Paris, France
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
80
|
Špírek M, Mlcoušková J, Belán O, Gyimesi M, Harami GM, Molnár E, Novacek J, Kovács M, Krejci L. Human RAD51 rapidly forms intrinsically dynamic nucleoprotein filaments modulated by nucleotide binding state. Nucleic Acids Res 2019; 46:3967-3980. [PMID: 29481689 PMCID: PMC5934667 DOI: 10.1093/nar/gky111] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an ‘open’ conformation when compared to a ‘closed’ structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.
Collapse
Affiliation(s)
- Mário Špírek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Jarmila Mlcoušková
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Ondrej Belán
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
| | - Máté Gyimesi
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Gábor M Harami
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Eszter Molnár
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Jiri Novacek
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Mihály Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic.,National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
81
|
Kim WJ, Higashi D, Goytia M, Rendón MA, Pilligua-Lucas M, Bronnimann M, McLean JA, Duncan J, Trees D, Jerse AE, So M. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host Microbe 2019; 26:228-239.e8. [PMID: 31378677 DOI: 10.1016/j.chom.2019.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
The mucosa is colonized with commensal Neisseria. Some of these niches are sites of infection for the STD pathogen Neisseria gonorrhoeae (Ngo). Given the antagonistic behavior of commensal bacteria toward their pathogenic relatives, we hypothesized that commensal Neisseria may negatively affect Ngo colonization. Here, we report that commensal species of Neisseria kill Ngo through a mechanism based on genetic competence and DNA methylation state. Specifically, commensal-triggered killing occurs when the pathogen takes up commensal DNA containing a methylation pattern that it does not recognize. Indeed, any DNA will kill Ngo if it can enter the cell, is differentially methylated, and has homology to the pathogen genome. Consistent with these findings, commensal Neisseria elongata accelerates Ngo clearance from the mouse in a DNA-uptake-dependent manner. Collectively, we propose that commensal Neisseria antagonizes Ngo infection through a DNA-mediated mechanism and that DNA is a potential microbicide against this highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Won Jong Kim
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Dustin Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Maira Goytia
- Department of Biology, Spelman College, Atlanta, GA 30314, USA
| | - Maria A Rendón
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Matthew Bronnimann
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Jeanine A McLean
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joseph Duncan
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Trees
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
82
|
Moving forward one step back at a time: reversibility during homologous recombination. Curr Genet 2019; 65:1333-1340. [PMID: 31123771 DOI: 10.1007/s00294-019-00995-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
DNA double-strand breaks are genotoxic lesions whose repair can be templated off an intact DNA duplex through the conserved homologous recombination (HR) pathway. Because it mainly consists of a succession of non-covalent associations of molecules, HR is intrinsically reversible. Reversibility serves as an integral property of HR, exploited and tuned at various stages throughout the pathway with anti- and pro-recombinogenic consequences. Here, we focus on the reversibility of displacement loops (D-loops), a central DNA joint molecule intermediate whose dynamics and regulation have recently been physically probed in somatic S. cerevisiae cells. From homology search to repair completion, we discuss putative roles of D-loop reversibility in repair fidelity and outcome.
Collapse
|
83
|
Crickard J, Xue C, Wang W, Kwon Y, Sung P, Greene E. The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Res 2019; 47:4694-4706. [PMID: 30916344 PMCID: PMC6511845 DOI: 10.1093/nar/gkz186] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
DNA helicases of the RecQ family are conserved among the three domains of life and play essential roles in genome maintenance. Mutations in several human RecQ helicases lead to diseases that are marked by cancer predisposition. The Saccharomyces cerevisiae RecQ helicase Sgs1 is orthologous to human BLM, defects in which cause the cancer-prone Bloom's Syndrome. Here, we use single-molecule imaging to provide a quantitative mechanistic understanding of Sgs1 activities on single stranded DNA (ssDNA), which is a central intermediate in all aspects of DNA metabolism. We show that Sgs1 acts upon ssDNA bound by either replication protein A (RPA) or the recombinase Rad51. Surprisingly, we find that Sgs1 utilizes a novel motor mechanism for disrupting ssDNA intermediates bound by the recombinase protein Rad51. The ability of Sgs1 to disrupt Rad51-ssDNA filaments may explain some of the defects engendered by RECQ helicase deficiencies in human cells.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
84
|
Lu D, Danilowicz C, Tashjian TF, Prévost C, Godoy VG, Prentiss M. Slow extension of the invading DNA strand in a D-loop formed by RecA-mediated homologous recombination may enhance recognition of DNA homology. J Biol Chem 2019; 294:8606-8616. [PMID: 30975899 PMCID: PMC6544866 DOI: 10.1074/jbc.ra119.007554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Indexed: 11/21/2022] Open
Abstract
DNA recombination resulting from RecA-mediated strand exchange aided by RecBCD proteins often enables accurate repair of DNA double-strand breaks. However, the process of recombinational repair between short DNA regions of accidental similarity can lead to fatal genomic rearrangements. Previous studies have probed how effectively RecA discriminates against interactions involving a short similar sequence that is embedded in otherwise dissimilar sequences but have not yielded fully conclusive results. Here, we present results of in vitro experiments with fluorescent probes strategically located on the interacting DNA fragments used for recombination. Our findings suggest that DNA synthesis increases the stability of the recombination products. Fluorescence measurements can also probe the homology dependence of the extension of invading DNA strands in D-loops formed by RecA-mediated strand exchange. We examined the slow extension of the invading strand in a D-loop by DNA polymerase (Pol) IV and the more rapid extension by DNA polymerase LF-Bsu. We found that when DNA Pol IV extends the invading strand in a D-loop formed by RecA-mediated strand exchange, the extension afforded by 82 bp of homology is significantly longer than the extension on 50 bp of homology. In contrast, the extension of the invading strand in D-loops by DNA LF-Bsu Pol is similar for intermediates with ≥50 bp of homology. These results suggest that fatal genomic rearrangements due to the recombination of small regions of accidental homology may be reduced if RecA-mediated strand exchange is immediately followed by DNA synthesis by a slow polymerase.
Collapse
Affiliation(s)
- Daniel Lu
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| | - Claudia Danilowicz
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138
| | - Tommy F Tashjian
- Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Chantal Prévost
- Laboratoire de Biochimie Théorique, CNRS UMR 9080, Institut de Biologie Physico-chimique (IBPC), Paris 75005, France
| | - Veronica G Godoy
- Department of Biology, Northeastern University, Boston, Massachusetts 02115
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138.
| |
Collapse
|
85
|
Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol Oncol 2019; 13:681-700. [PMID: 30714316 PMCID: PMC6441925 DOI: 10.1002/1878-0261.12467] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Therapies that take advantage of defects in DNA repair pathways have been explored in the context of breast, ovarian, and other tumor types, but not yet systematically in CRC. At present, only immune checkpoint blockade therapies have been FDA approved for use in mismatch repair-deficient colorectal tumors. Here, we discuss how systematic identification of alterations in DNA repair genes could provide new therapeutic opportunities for CRCs. Analysis of The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) and Rectal Adenocarcinoma (TCGA-READ) PanCancer Atlas datasets identified 141 (out of 528) cases with putative driver mutations in 29 genes associated with DNA damage response and repair, including the mismatch repair and homologous recombination pathways. Genetic defects in these pathways might confer repair-deficient characteristics, such as genomic instability in the absence of homologous recombination, which can be exploited. For example, inhibitors of poly(ADP)-ribose polymerase are effectively used to treat cancers that carry mutations in BRCA1 and/or BRCA2 and have shown promising results in CRC preclinical studies. HR deficiency can also occur in cells with no detectable BRCA1/BRCA2 mutations but exhibiting BRCA-like phenotypes. DNA repair-targeting therapies, such as ATR and CHK1 inhibitors (which are most effective against cancers carrying ATM mutations), can be used in combination with current genotoxic chemotherapies in CRCs to further improve therapy response. Finally, therapies that target alternative DNA repair mechanisms, such as thiopurines, also have the potential to confer increased sensitivity to current chemotherapy regimens, thus expanding the spectrum of therapy options and potentially improving clinical outcomes for CRC patients.
Collapse
Affiliation(s)
- Nicole M. Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUSCandioloItaly
| | - Luca Novara
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
| | - Federica Di Nicolantonio
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| | - Alberto Bardelli
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| |
Collapse
|
86
|
Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem 2019; 88:221-245. [PMID: 30917004 DOI: 10.1146/annurev-biochem-013118-111058] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in the BRCA1 and BRCA2 genes predispose afflicted individuals to breast, ovarian, and other cancers. The BRCA-encoded products form complexes with other tumor suppressor proteins and with the recombinase enzyme RAD51 to mediate chromosome damage repair by homologous recombination and also to protect stressed DNA replication forks against spurious nucleolytic attrition. Understanding how the BRCA tumor suppressor network executes its biological functions would provide the foundation for developing targeted cancer therapeutics, but progress in this area has been greatly hampered by the challenge of obtaining purified BRCA complexes for mechanistic studies. In this article, we review how recent effort begins to overcome this technical challenge, leading to functional and structural insights into the biochemical attributes of these complexes and the multifaceted roles that they fulfill in genome maintenance. We also highlight the major mechanistic questions that remain.
Collapse
Affiliation(s)
- Weixing Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| | - Robert Hromas
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas 78229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, USA; ,
| |
Collapse
|
87
|
Waterman DP, Zhou F, Li K, Lee CS, Tsabar M, Eapen VV, Mazzella A, Haber JE. Live cell monitoring of double strand breaks in S. cerevisiae. PLoS Genet 2019; 15:e1008001. [PMID: 30822309 PMCID: PMC6415866 DOI: 10.1371/journal.pgen.1008001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/13/2019] [Accepted: 02/01/2019] [Indexed: 11/19/2022] Open
Abstract
We have used two different live-cell fluorescent protein markers to monitor the formation and localization of double-strand breaks (DSBs) in budding yeast. Using GFP derivatives of the Rad51 recombination protein or the Ddc2 checkpoint protein, we find that cells with three site-specific DSBs, on different chromosomes, usually display 2 or 3 foci that may coalesce and dissociate. This motion is independent of Rad52 and microtubules. Rad51-GFP, by itself, is unable to repair DSBs by homologous recombination in mitotic cells, but is able to form foci and allow repair when heterozygous with a wild type Rad51 protein. The kinetics of formation and disappearance of a Rad51-GFP focus parallels the completion of site-specific DSB repair. However, Rad51-GFP is proficient during meiosis when homozygous, similar to rad51 “site II” mutants that can bind single-stranded DNA but not complete strand exchange. Rad52-RFP and Rad51-GFP co-localize to the same DSB, but a significant minority of foci have Rad51-GFP without visible Rad52-RFP. We conclude that co-localization of foci in cells with 3 DSBs does not represent formation of a homologous recombination “repair center,” as the same distribution of Ddc2-GFP foci was found in the absence of the Rad52 protein. Double strand breaks (DSBs) pose the greatest threat to the fidelity of an organism’s genome. While much work has been done on the mechanisms of DSB repair, the arrangement and interaction of multiple DSBs within a single cell remain unclear. Using two live-cell fluorescent DSB markers, we show that cells with 3 site-specific DSBs usually form 2 or 3 foci that can may coalesce into fewer foci but also dissociate. The aggregation and mobility of DSBs into a single focus does not depend on the Rad52 recombination protein that is required for various mechanisms of homologous recombination, suggesting that merging of DSBs does not reflect formation of a homologous recombination repair center.
Collapse
Affiliation(s)
- David P. Waterman
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Felix Zhou
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Kevin Li
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Cheng-Sheng Lee
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Michael Tsabar
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vinay V. Eapen
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - Allison Mazzella
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
| | - James E. Haber
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
88
|
Crickard JB, Kwon Y, Sung P, Greene EC. Dynamic interactions of the homologous pairing 2 (Hop2)-meiotic nuclear divisions 1 (Mnd1) protein complex with meiotic presynaptic filaments in budding yeast. J Biol Chem 2019; 294:490-501. [PMID: 30420424 PMCID: PMC6333877 DOI: 10.1074/jbc.ra118.006146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/02/2018] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is a universally conserved DNA repair pathway that can result in the exchange of genetic material. In eukaryotes, HR has evolved into an essential step in meiosis. During meiosis many eukaryotes utilize a two-recombinase pathway. This system consists of Rad51 and the meiosis-specific recombinase Dmc1. Both recombinases have distinct activities during meiotic HR, despite being highly similar in sequence and having closely related biochemical activities, raising the question of how these two proteins can perform separate functions. A likely explanation for their differential regulation involves the meiosis-specific recombination proteins Hop2 and Mnd1, which are part of a highly conserved eukaryotic protein complex that participates in HR, albeit through poorly understood mechanisms. To better understand how Hop2-Mnd1 functions during HR, here we used DNA curtains in conjunction with single-molecule imaging to measure and quantify the binding of the Hop2-Mnd1 complex from Saccharomyces cerevisiae to recombination intermediates comprising Rad51- and Dmc1-ssDNA in real time. We found that yeast Hop2-Mnd1 bound rapidly to Dmc1-ssDNA filaments with high affinity and remained bound for ∼1.3 min before dissociating. We also observed that this binding interaction was highly specific for Dmc1 and found no evidence for an association of Hop2-Mnd1 with Rad51-ssDNA or RPA-ssDNA. Our findings provide new quantitative insights into the binding dynamics of Hop2-Mnd1 with the meiotic presynaptic complex. On the basis of these findings, we propose a model in which recombinase specificities for meiotic accessory proteins enhance separation of the recombinases' functions during meiotic HR.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032
| | - Youngho Kwon
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, and
- the Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Patrick Sung
- the Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, and
- the Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229
| | - Eric C Greene
- From the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032,
| |
Collapse
|
89
|
Reilly NM, Yard BD, Pittman DL. Homologous Recombination-Mediated DNA Repair and Implications for Clinical Treatment of Repair Defective Cancers. Methods Mol Biol 2019; 1999:3-29. [PMID: 31127567 DOI: 10.1007/978-1-4939-9500-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Double-strand DNA breaks (DSBs) are generated by ionizing radiation and as intermediates during the processing of DNA, such as repair of interstrand cross-links and collapsed replication forks. These potentially deleterious DSBs are repaired primarily by the homologous recombination (HR) and nonhomologous end joining (NHEJ) DNA repair pathways. HR utilizes a homologous template to accurately restore damaged DNA, whereas NHEJ utilizes microhomology to join breaks in close proximity. The pathway available for DSB repair is dependent upon the cell cycle stage; for example, HR primarily functions during the S/G2 stages while NHEJ can repair DSBs at any cell cycle stage. Posttranslational modifications (PTMs) promote activity of specific pathways and subpathways through enzyme activation and precisely timed protein recruitment and degradation. This chapter provides an overview of PTMs occurring during DSB repair. In addition, clinical phenotypes associated with HR-defective cancers, such as mutational signatures used to predict response to poly(ADP-ribose) polymerase inhibitors, are discussed. Understanding these processes will provide insight into mechanisms of genome maintenance and likely identify targets and new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Nicole M Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUS, Candiolo, Italy
| | - Brian D Yard
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Pittman
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
90
|
RAD-ical New Insights into RAD51 Regulation. Genes (Basel) 2018; 9:genes9120629. [PMID: 30551670 PMCID: PMC6316741 DOI: 10.3390/genes9120629] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 01/17/2023] Open
Abstract
The accurate repair of DNA is critical for genome stability and cancer prevention. DNA double-strand breaks are one of the most toxic lesions; however, they can be repaired using homologous recombination. Homologous recombination is a high-fidelity DNA repair pathway that uses a homologous template for repair. One central HR step is RAD51 nucleoprotein filament formation on the single-stranded DNA ends, which is a step required for the homology search and strand invasion steps of HR. RAD51 filament formation is tightly controlled by many positive and negative regulators, which are collectively termed the RAD51 mediators. The RAD51 mediators function to nucleate, elongate, stabilize, and disassemble RAD51 during repair. In model organisms, RAD51 paralogs are RAD51 mediator proteins that structurally resemble RAD51 and promote its HR activity. New functions for the RAD51 paralogs during replication and in RAD51 filament flexibility have recently been uncovered. Mutations in the human RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3, and SWSAP1) are found in a subset of breast and ovarian cancers. Despite their discovery three decades ago, few advances have been made in understanding the function of the human RAD51 paralogs. Here, we discuss the current perspective on the in vivo and in vitro function of the RAD51 paralogs, and their relationship with cancer in vertebrate models.
Collapse
|
91
|
Schaub JM, Zhang H, Soniat MM, Finkelstein IJ. Assessing Protein Dynamics on Low-Complexity Single-Stranded DNA Curtains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14882-14890. [PMID: 30044093 PMCID: PMC6679933 DOI: 10.1021/acs.langmuir.8b01812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-stranded DNA (ssDNA) is a critical intermediate in all DNA transactions. Because ssDNA is more flexible than double-stranded (ds) DNA, interactions with ssDNA-binding proteins (SSBs) may significantly compact or elongate the ssDNA molecule. Here, we develop and characterize low-complexity ssDNA curtains, a high-throughput single-molecule assay to simultaneously monitor protein binding and correlated ssDNA length changes on supported lipid bilayers. Low-complexity ssDNA is generated via rolling circle replication of short synthetic oligonucleotides, permitting control over the sequence composition and secondary structure-forming propensity. One end of the ssDNA is functionalized with a biotin, while the second is fluorescently labeled to track the overall DNA length. Arrays of ssDNA molecules are organized at microfabricated barriers for high-throughput single-molecule imaging. Using this assay, we demonstrate that E. coli SSB drastically and reversibly compacts ssDNA templates upon changes in NaCl concentration. We also examine the interactions between a phosphomimetic RPA and ssDNA. Our results indicate that RPA-ssDNA interactions are not significantly altered by these modifications. We anticipate that low-complexity ssDNA curtains will be broadly useful for single-molecule studies of ssDNA-binding proteins involved in DNA replication, transcription, and repair.
Collapse
Affiliation(s)
- Jeffrey M. Schaub
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Hongshan Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Michael M. Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
92
|
Abstract
Meiosis is the basis for sexual reproduction and is marked by the sequential reduction of chromosome number during successive cell cycles, resulting in four haploid gametes. A central component of the meiotic program is the formation and repair of programmed double strand breaks. Recombination-driven repair of these meiotic breaks differs from recombination during mitosis in that meiotic breaks are preferentially repaired using the homologous chromosomes in a process known as homolog bias. Homolog bias allows for physical interactions between homologous chromosomes that are required for proper chromosome segregation, and the formation of crossover products ensuring genetic diversity in progeny. An important aspect of meiosis in the differential regulation of the two eukaryotic RecA homologs, Rad51 and Dmc1. In this review we will discuss the relationship between biological programs designed to regulate recombinase function.
Collapse
Affiliation(s)
- J Brooks Crickard
- a Department of Biochemistry & Molecular Biophysics , Columbia University , New York , NY , USA
| | - Eric C Greene
- a Department of Biochemistry & Molecular Biophysics , Columbia University , New York , NY , USA
| |
Collapse
|
93
|
Shinohara T, Arai N, Iikura Y, Kasagi M, Masuda-Ozawa T, Yamaguchi Y, Suzuki-Nagata K, Shibata T, Mikawa T. Nonfilament-forming RecA dimer catalyzes homologous joint formation. Nucleic Acids Res 2018; 46:10855-10869. [PMID: 30285153 PMCID: PMC6237804 DOI: 10.1093/nar/gky877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023] Open
Abstract
Homologous recombination is essential to genome maintenance, and also to genome diversification. In virtually all organisms, homologous recombination depends on the RecA/Rad51-family recombinases, which catalyze ATP-dependent formation of homologous joints—critical intermediates in homologous recombination. RecA/Rad51 binds first to single-stranded (ss) DNA at a damaged site to form a spiral nucleoprotein filament, after which double-stranded (ds) DNA interacts with the filament to search for sequence homology and to form consecutive base pairs with ssDNA (‘pairing’). How sequence homology is recognized and what exact role filament formation plays remain unknown. We addressed the question of whether filament formation is a prerequisite for homologous joint formation. To this end we constructed a nonpolymerizing (np) head-to-tail-fused RecA dimer (npRecA dimer) and an npRecA monomer. The npRecA dimer bound to ssDNA, but did not form continuous filaments upon binding to DNA; it formed beads-on-string structures exclusively. Although its efficiency was lower, the npRecA dimer catalyzed the formation of D-loops (a type of homologous joint), whereas the npRecA monomer was completely defective. Thus, filament formation contributes to efficiency, but is not essential to sequence-homology recognition and pairing, for which a head-to-tail dimer form of RecA protomer is required and sufficient.
Collapse
Affiliation(s)
- Takeshi Shinohara
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Naoto Arai
- Department of Applied Biological Science, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa-shi, Kanagawa 252-0880, Japan
| | - Yukari Iikura
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Motochika Kasagi
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tokiha Masuda-Ozawa
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuuki Yamaguchi
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kayo Suzuki-Nagata
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takehiko Shibata
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
- To whom correspondence should be addressed. Takehiko Shibata. Tel: +81 3 3950 2534; . Correspondence may also be addressed to Tsutomu Mikawa. Tel: +81 45 633 8013;
| | - Tsutomu Mikawa
- Cellular & Molecular Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Department of Supramolecular Biology, Graduate School of Nanobiosciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Quantitative Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- To whom correspondence should be addressed. Takehiko Shibata. Tel: +81 3 3950 2534; . Correspondence may also be addressed to Tsutomu Mikawa. Tel: +81 45 633 8013;
| |
Collapse
|
94
|
WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC. Precision gene editing technology and applications in nephrology. Nat Rev Nephrol 2018; 14:663-677. [PMID: 30089813 PMCID: PMC6591726 DOI: 10.1038/s41581-018-0047-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expanding field of precision gene editing is empowering researchers to directly modify DNA. Gene editing is made possible using synonymous technologies: a DNA-binding platform to molecularly locate user-selected genomic sequences and an associated biochemical activity that serves as a functional editor. The advent of accessible DNA-targeting molecular systems, such as zinc-finger nucleases, transcription activator-like effectors (TALEs) and CRISPR-Cas9 gene editing systems, has unlocked the ability to target nearly any DNA sequence with nucleotide-level precision. Progress has also been made in harnessing endogenous DNA repair machineries, such as non-homologous end joining, homology-directed repair and microhomology-mediated end joining, to functionally manipulate genetic sequences. As understanding of how DNA damage results in deletions, insertions and modifications increases, the genome becomes more predictably mutable. DNA-binding platforms such as TALEs and CRISPR can also be used to make locus-specific epigenetic changes and to transcriptionally enhance or suppress genes. Although many challenges remain, the application of precision gene editing technology in the field of nephrology has enabled the generation of new animal models of disease as well as advances in the development of novel therapeutic approaches such as gene therapy and xenotransplantation.
Collapse
Affiliation(s)
- Zachary WareJoncas
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jarryd M Campbell
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - William A C Gendron
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Michael A Barry
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Caroline R Sussman
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
95
|
Crickard JB, Kaniecki K, Kwon Y, Sung P, Greene EC. Meiosis-specific recombinase Dmc1 is a potent inhibitor of the Srs2 antirecombinase. Proc Natl Acad Sci U S A 2018; 115:E10041-E10048. [PMID: 30301803 PMCID: PMC6205449 DOI: 10.1073/pnas.1810457115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cross-over recombination products are a hallmark of meiosis because they are necessary for accurate chromosome segregation and they also allow for increased genetic diversity during sexual reproduction. However, cross-overs can also cause gross chromosomal rearrangements and are therefore normally down-regulated during mitotic growth. The mechanisms that enhance cross-over product formation upon entry into meiosis remain poorly understood. In Saccharomyces cerevisiae, the Superfamily 1 (Sf1) helicase Srs2, which is an ATP hydrolysis-dependent motor protein that actively dismantles recombination intermediates, promotes synthesis-dependent strand annealing, the result of which is a reduction in cross-over recombination products. Here, we show that the meiosis-specific recombinase Dmc1 is a potent inhibitor of Srs2. Biochemical and single-molecule assays demonstrate that Dmc1 acts by inhibiting Srs2 ATP hydrolysis activity, which prevents the motor protein from undergoing ATP hydrolysis-dependent translocation on Dmc1-bound recombination intermediates. We propose a model in which Dmc1 helps contribute to cross-over formation during meiosis by antagonizing the antirecombinase activity of Srs2.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032
| | - Kyle Kaniecki
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032;
| |
Collapse
|
96
|
Ata H, Ekstrom TL, Martínez-Gálvez G, Mann CM, Dvornikov AV, Schaefbauer KJ, Ma AC, Dobbs D, Clark KJ, Ekker SC. Robust activation of microhomology-mediated end joining for precision gene editing applications. PLoS Genet 2018; 14:e1007652. [PMID: 30208061 PMCID: PMC6152997 DOI: 10.1371/journal.pgen.1007652] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/24/2018] [Accepted: 08/22/2018] [Indexed: 11/18/2022] Open
Abstract
One key problem in precision genome editing is the unpredictable plurality of sequence outcomes at the site of targeted DNA double stranded breaks (DSBs). This is due to the typical activation of the versatile Non-homologous End Joining (NHEJ) pathway. Such unpredictability limits the utility of somatic gene editing for applications including gene therapy and functional genomics. For germline editing work, the accurate reproduction of the identical alleles using NHEJ is a labor intensive process. In this study, we propose Microhomology-mediated End Joining (MMEJ) as a viable solution for improving somatic sequence homogeneity in vivo, capable of generating a single predictable allele at high rates (56% ~ 86% of the entire mutant allele pool). Using a combined dataset from zebrafish (Danio rerio) in vivo and human HeLa cell in vitro, we identified specific contextual sequence determinants surrounding genomic DSBs for robust MMEJ pathway activation. We then applied our observation to prospectively design MMEJ-inducing sgRNAs against a variety of proof-of-principle genes and demonstrated high levels of mutant allele homogeneity. MMEJ-based DNA repair at these target loci successfully generated F0 mutant zebrafish embryos and larvae that faithfully recapitulated previously reported, recessive, loss-of-function phenotypes. We also tested the generalizability of our approach in cultured human cells. Finally, we provide a novel algorithm, MENTHU (http://genesculpt.org/menthu/), for improved and facile prediction of candidate MMEJ loci. We believe that this MMEJ-centric approach will have a broader impact on genome engineering and its applications. For example, whereas somatic mosaicism hinders efficient recreation of knockout mutant allele at base pair resolution via the standard NHEJ-based approach, we demonstrate that F0 founders transmitted the identical MMEJ allele of interest at high rates. Most importantly, the ability to directly dictate the reading frame of an endogenous target will have important implications for gene therapy applications in human genetic diseases.
Collapse
Affiliation(s)
- Hirotaka Ata
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States of America
| | - Thomas L. Ekstrom
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
| | - Gabriel Martínez-Gálvez
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Carla M. Mann
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States of America
| | - Alexey V. Dvornikov
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Kyle J. Schaefbauer
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Alvin C. Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Drena Dobbs
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States of America
| | - Karl J. Clark
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Stephen C. Ekker
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States of America
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
97
|
Senavirathne G, Lopez MA, Messer R, Fishel R, Yoder KE. Expression and purification of nuclease-free protocatechuate 3,4-dioxygenase for prolonged single-molecule fluorescence imaging. Anal Biochem 2018; 556:78-84. [PMID: 29932890 PMCID: PMC6076860 DOI: 10.1016/j.ab.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/23/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
Abstract
Single-molecule (SM) microscopy is a powerful tool capable of visualizing individual molecules and events in real time. SM imaging may rely on proteins or nucleic acids labelled with a fluorophore. Unfortunately photobleaching of fluorophores leads to irreversible loss of signal, impacting the collection of data from SM experiments. Trace amounts of dissolved oxygen (O2) are the main cause of photobleaching. Oxygen scavenging systems (OSS) have been developed that decrease dissolved O2. Commercial OSS enzyme preparations are frequently contaminated with nucleases that damage nucleic acid substrates. In this protocol, we purify highly active Pseudomonas putida protocatechuate 3,4-dioxygenase (PCD) without nuclease contaminations. Quantitation of Cy3 photostability revealed that PCD with its substrate protocatechuic acid (PCA) increased the fluorophore half-life 100-fold. This low cost purification method of recombinant PCD yields an enzyme superior to commercially available OSS that is effectively free of nuclease activity.
Collapse
Affiliation(s)
- Gayan Senavirathne
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Miguel A. Lopez
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Ryan Messer
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH, 43210, USA.
| | - Kristine E. Yoder
- Department of Cancer Biology and Genetics, The Ohio State University Medical Center, Columbus, OH 43210, USA,To whom correspondence should be addressed. Tel: (614) 688-2106; , Correspondence may also be addressed to. Tel: (614) 292-2484;
| |
Collapse
|
98
|
Xue H, Zhan Z, Zhang K, Fu YV. Visualizing the Interaction Between the Qdot-labeled Protein and Site-specifically Modified λ DNA at the Single Molecule Level. J Vis Exp 2018:57967. [PMID: 30080193 PMCID: PMC6126486 DOI: 10.3791/57967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The fluorescence microscopy has made great contributions in dissecting the mechanisms of complex biological processes at the single molecule level. In single molecule assays for studying DNA-protein interactions, there are two important factors for consideration: the DNA substrate with enough length for easy observation and labeling a protein with a suitable fluorescent probe. 48.5 kb λ DNA is a good candidate for the DNA substrate. Quantum dots (Qdots), as a class of fluorescent probes, allow long-time observation (minutes to hours) and high-quality image acquisition. In this paper, we present a protocol to study DNA-protein interactions at the single-molecule level, which includes preparing a site-specifically modified λ DNA and labeling a target protein with streptavidin-coated Qdots. For a proof of concept, we choose ORC (origin recognition complex) in budding yeast as a protein of interest and visualize its interaction with an ARS (autonomously replicating sequence) using TIRFM. Compared with other fluorescent probes, Qdots have obvious advantages in single molecule studies due to its high stability against photobleaching, but it should be noted that this property limits its application in quantitative assays.
Collapse
Affiliation(s)
- Huijun Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences; Savaid Medical School, University of Chinese Academy of Sciences
| | - Zhengyan Zhan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences
| | - Kaining Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences; Savaid Medical School, University of Chinese Academy of Sciences
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences; Savaid Medical School, University of Chinese Academy of Sciences;
| |
Collapse
|
99
|
Khowal S, Naqvi SH, Monga S, Jain SK, Wajid S. Assessment of cellular and serum proteome from tongue squamous cell carcinoma patient lacking addictive proclivities for tobacco, betel nut, and alcohol: Case study. J Cell Biochem 2018; 119:5186-5221. [PMID: 29236289 DOI: 10.1002/jcb.26554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
The intriguing molecular pathways involved in oral carcinogenesis are still ambiguous. The oral squamous cell carcinoma (OSCC) ranks as the most common type constituting more than 90% of the globally diagnosed oral cancers cases. The elevation in the OSCC incidence rate during past 10 years has an alarming impression on human healthcare. The major challenges associated with OSCC include delayed diagnosis, high metastatic rates, and low 5-year survival rates. The present work foundations on reverse genetic strategy and involves the identification of genes showing expressional variability in an OSCC case lacking addictive proclivities for tobacco, betel nut, and/or alcohol, major etiologies. The expression modulations in the identified genes were analyzed in 16 patients comprising oral pre-cancer and cancer histo-pathologies. The genes SCCA1 and KRT1 were found to down regulate while DNAJC13, GIPC2, MRPL17, IG-Vreg, SSFA2, and UPF0415 upregulated in the oral pre-cancer and cancer pathologies, implicating the genes as crucial players in oral carcinogenesis.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Samar H Naqvi
- Molecular Diagnostics, Genetix Biotech Asia (P) Ltd., New Delhi, India
| | - Seema Monga
- Department of ENT, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Swatantra K Jain
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
100
|
Yeast Srs2 Helicase Promotes Redistribution of Single-Stranded DNA-Bound RPA and Rad52 in Homologous Recombination Regulation. Cell Rep 2018; 21:570-577. [PMID: 29045827 DOI: 10.1016/j.celrep.2017.09.073] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/06/2017] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Srs2 is a super-family 1 helicase that promotes genome stability by dismantling toxic DNA recombination intermediates. However, the mechanisms by which Srs2 remodels or resolves recombination intermediates remain poorly understood. Here, single-molecule imaging is used to visualize Srs2 in real time as it acts on single-stranded DNA (ssDNA) bound by protein factors that function in recombination. We demonstrate that Srs2 is highly processive and translocates rapidly (∼170 nt per second) in the 3'→5' direction along ssDNA saturated with replication protein A (RPA). We show that RPA is evicted from DNA during the passage of Srs2. Remarkably, Srs2 also readily removes the recombination mediator Rad52 from RPA-ssDNA and, in doing so, promotes rapid redistribution of both Rad52 and RPA. These findings have important mechanistic implications for understanding how Srs2 and related nucleic acid motor proteins resolve potentially pathogenic nucleoprotein intermediates.
Collapse
|