51
|
Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O, Bonet J, Kranas H, Gonzalez-Perez A, Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat Rev Cancer 2020; 20:555-572. [PMID: 32778778 DOI: 10.1038/s41568-020-0290-x] [Citation(s) in RCA: 534] [Impact Index Per Article: 133.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone towards this objective is the identification of all the genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumours in a cohort deviate from those expected from neutral mutagenesis. These deviations, which constitute signals of positive selection, may be detected by carefully designed bioinformatics methods, which have become the state of the art in the identification of driver genes. A systematic approach combining several of these signals could lead to a compendium of mutational cancer genes. In this Review, we present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an approach to obtain the compendium of mutational cancer drivers. Its application to somatic mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumour mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.
Collapse
Affiliation(s)
- Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Sentís
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jordi Deu-Pons
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Iker Reyes-Salazar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Loris Mularoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Oriol Pich
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jose Bonet
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Hanna Kranas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
52
|
Cui JJ, Wang LY, Tan ZR, Zhou HH, Zhan X, Yin JY. MASS SPECTROMETRY-BASED PERSONALIZED DRUG THERAPY. MASS SPECTROMETRY REVIEWS 2020; 39:523-552. [PMID: 31904155 DOI: 10.1002/mas.21620] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Personalized drug therapy aims to provide tailored treatment for individual patient. Mass spectrometry (MS) is revolutionarily involved in this area because MS is a rapid, customizable, cost-effective, and easy to be used high-throughput method with high sensitivity, specificity, and accuracy. It is driving the formation of a new field, MS-based personalized drug therapy, which currently mainly includes five subfields: therapeutic drug monitoring (TDM), pharmacogenomics (PGx), pharmacomicrobiomics, pharmacoepigenomics, and immunopeptidomics. Gas chromatography-MS (GC-MS) and liquid chromatography-MS (LC-MS) are considered as the gold standard for TDM, which can be used to optimize drug dosage. Matrix-assisted laser desorption ionization-time of flight-MS (MALDI-TOF-MS) significantly improves the capability of detecting biomacromolecule, and largely promotes the application of MS in PGx. It is becoming an indispensable tool for genotyping, which is used to discover and validate genetic biomarkers. In addition, MALDI-TOF-MS also plays important roles in identity of human microbiome whose diversity can explain interindividual differences of drug response. Pharmacoepigenetics is to study the role of epigenetic factors in individualized drug treatment. MS can be used to discover and validate pharmacoepigenetic markers (DNA methylation, histone modification, and noncoding RNA). For the emerging cancer immunotherapy, personalized cancer vaccine has effective immunotherapeutic activity in the clinic. MS-based immunopeptidomics can effectively discover and screen neoantigens. This article systematically reviewed MS-based personalized drug therapy in the above mentioned five subfields. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
| | - Xianquan Zhan
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P. R. China
- Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, Hunan, 410078, P. R. China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, 410078, P. R. China
| |
Collapse
|
53
|
Perner J, Abbas S, Nowicki-Osuch K, Devonshire G, Eldridge MD, Tavaré S, Fitzgerald RC. The mutREAD method detects mutational signatures from low quantities of cancer DNA. Nat Commun 2020; 11:3166. [PMID: 32576827 PMCID: PMC7311535 DOI: 10.1038/s41467-020-16974-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022] Open
Abstract
Mutational processes acting on cancer genomes can be traced by investigating mutational signatures. Because high sequencing costs limit current studies to small numbers of good-quality samples, we propose a robust, cost- and time-effective method, called mutREAD, to detect mutational signatures from small quantities of DNA, including degraded samples. We show that mutREAD recapitulates mutational signatures identified by whole genome sequencing, and will ultimately allow the study of mutational signatures in larger cohorts and, by compatibility with formalin-fixed paraffin-embedded samples, in clinical settings.
Collapse
Affiliation(s)
- Juliane Perner
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Sujath Abbas
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Karol Nowicki-Osuch
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Matthew D Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Simon Tavaré
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Rebecca C Fitzgerald
- Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
54
|
Gorelick AN, Sánchez-Rivera FJ, Cai Y, Bielski CM, Biederstedt E, Jonsson P, Richards AL, Vasan N, Penson AV, Friedman ND, Ho YJ, Baslan T, Bandlamudi C, Scaltriti M, Schultz N, Lowe SW, Reznik E, Taylor BS. Phase and context shape the function of composite oncogenic mutations. Nature 2020; 582:100-103. [PMID: 32461694 PMCID: PMC7294994 DOI: 10.1038/s41586-020-2315-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Cancers develop as a result of driver mutations1,2 that lead to clonal outgrowth and the evolution of disease3,4. The discovery and functional characterization of individual driver mutations are central aims of cancer research, and have elucidated myriad phenotypes5 and therapeutic vulnerabilities6. However, the serial genetic evolution of mutant cancer genes7,8 and the allelic context in which they arise is poorly understood in both common and rare cancer genes and tumour types. Here we find that nearly one in four human tumours contains a composite mutation of a cancer-associated gene, defined as two or more nonsynonymous somatic mutations in the same gene and tumour. Composite mutations are enriched in specific genes, have an elevated rate of use of less-common hotspot mutations acquired in a chronology driven in part by oncogenic fitness, and arise in an allelic configuration that reflects context-specific selective pressures. cis-acting composite mutations are hypermorphic in some genes in which dosage effects predominate (such as TERT), whereas they lead to selection of function in other genes (such as TP53). Collectively, composite mutations are driver alterations that arise from context- and allele-specific selective pressures that are dependent in part on gene and mutation function, and which lead to complex-often neomorphic-functions of biological and therapeutic importance.
Collapse
Affiliation(s)
- Alexander N Gorelick
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Yanyan Cai
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig M Bielski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Evan Biederstedt
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip Jonsson
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Allison L Richards
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neil Vasan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander V Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Noah D Friedman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chaitanya Bandlamudi
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maurizio Scaltriti
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
55
|
Caffrey PJ, Kher R, Bian K, Li D, Delaney S. Comparison of the Base Excision and Direct Reversal Repair Pathways for Correcting 1, N6-Ethenoadenine in Strongly Positioned Nucleosome Core Particles. Chem Res Toxicol 2020; 33:1888-1896. [PMID: 32293880 PMCID: PMC7374743 DOI: 10.1021/acs.chemrestox.0c00089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
1,N6-ethenoadenine (εA) is a
mutagenic lesion and biomarker observed in numerous cancerous tissues.
Two pathways are responsible for its repair: base excision repair
(BER) and direct reversal repair (DRR). Alkyladenine DNA glycosylase
(AAG) is the primary enzyme that excises εA in BER, generating
stable intermediates that are processed by downstream enzymes. For
DRR, the Fe(II)/α-ketoglutarate-dependent ALKBH2 enzyme repairs
εA by direct conversion of εA to A. While the molecular
mechanism of each enzyme is well understood on unpackaged duplex DNA,
less is known about their actions on packaged DNA. The nucleosome
core particle (NCP) forms the minimal packaging unit of DNA in eukaryotic
organisms and is composed of 145–147 base pairs wrapped around
a core of eight histone proteins. In this work, we investigated the
activity of AAG and ALKBH2 on εA lesions globally distributed
at positions throughout a strongly positioned NCP. Overall, we examined
the repair of εA at 23 unique locations in packaged DNA. We
observed a strong correlation between rotational positioning of εA
and AAG activity but not ALKBH2 activity. ALKBH2 was more effective
than AAG at repairing occluded εA lesions, but only AAG was
capable of full repair of any εA in the NCP. However, notable
exceptions to these trends were observed, highlighting the complexity
of the NCP as a substrate for DNA repair. Modeling of binding of the
repair enzymes to NCPs revealed that some of these observations can
be explained by steric interference caused by DNA packaging. Specifically,
interactions between ALKBH2 and the histone proteins obstruct binding
to DNA, which leads to diminished activity. Taken together, these
results support in vivo observations of alkylation
damage profiles and contribute to our understanding of mutational
hotspots.
Collapse
Affiliation(s)
- Paul J Caffrey
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Raadhika Kher
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Ke Bian
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Deyu Li
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
56
|
Abstract
Ultraviolet (UV) irradiation causes various types of DNA damage, which leads to specific mutations and the emergence of skin cancer in humans, often decades after initial exposure. Different UV wavelengths cause the formation of prominent UV-induced DNA lesions. Most of these lesions are removed by the nucleotide excision repair pathway, which is defective in rare genetic skin disorders referred to as xeroderma pigmentosum. A major role in inducing sunlight-dependent skin cancer mutations is assigned to the cyclobutane pyrimidine dimers (CPDs). In this review, we discuss the mechanisms of UV damage induction, the genomic distribution of this damage, relevant DNA repair mechanisms, the proposed mechanisms of how UV-induced CPDs bring about DNA replication-dependent mutagenicity in mammalian cells, and the strong signature of UV damage and mutagenesis found in skin cancer genomes.
Collapse
|
57
|
Li C, Luscombe NM. Nucleosome positioning stability is a modulator of germline mutation rate variation across the human genome. Nat Commun 2020; 11:1363. [PMID: 32170069 PMCID: PMC7070026 DOI: 10.1038/s41467-020-15185-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/23/2020] [Indexed: 02/08/2023] Open
Abstract
Nucleosome organization has been suggested to affect local mutation rates in the genome. However, the lack of de novo mutation and high-resolution nucleosome data has limited the investigation of this hypothesis. Additionally, analyses using indirect mutation rate measurements have yielded contradictory and potentially confounding results. Here, we combine data on >300,000 human de novo mutations with high-resolution nucleosome maps and find substantially elevated mutation rates around translationally stable (‘strong’) nucleosomes. We show that the mutational mechanisms affected by strong nucleosomes are low-fidelity replication, insufficient mismatch repair and increased double-strand breaks. Strong nucleosomes preferentially locate within young SINE/LINE transposons, suggesting that when subject to increased mutation rates, transposons are then more rapidly inactivated. Depletion of strong nucleosomes in older transposons suggests frequent positioning changes during evolution. The findings have important implications for human genetics and genome evolution. Nucleosome organization has been suggested to affect local mutation rates in the genome. Here, the authors analyse data on >300,000 human de novo mutations and high-resolution nucleosome maps and provide evidence that nucleosome positioning stability modulates germline mutation rate variation across the human genome.
Collapse
Affiliation(s)
- Cai Li
- The Francis Crick Institute, London, NW1 1AT, UK. .,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Nicholas M Luscombe
- The Francis Crick Institute, London, NW1 1AT, UK.,Okinawa Institute of Science & Technology Graduate University, Okinawa, 904-0495, Japan.,UCL Genetics Institute, University College London, London, WC1E 6BT, UK
| |
Collapse
|
58
|
Gonzalez-Perez A, Sabarinathan R, Lopez-Bigas N. Local Determinants of the Mutational Landscape of the Human Genome. Cell 2020; 177:101-114. [PMID: 30901533 DOI: 10.1016/j.cell.2019.02.051] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
Abstract
Large-scale chromatin features, such as replication time and accessibility influence the rate of somatic and germline mutations at the megabase scale. This article reviews how local chromatin structures -e.g., DNA wrapped around nucleosomes, transcription factors bound to DNA- affect the mutation rate at a local scale. It dissects how the interaction of some mutagenic agents and/or DNA repair systems with these local structures influence the generation of mutations. We discuss how this local mutation rate variability affects our understanding of the evolution of the genomic sequence, and the study of the evolution of organisms and tumors.
Collapse
Affiliation(s)
- Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
| | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
59
|
Fang H, Barbour JA, Poulos RC, Katainen R, Aaltonen LA, Wong JWH. Mutational processes of distinct POLE exonuclease domain mutants drive an enrichment of a specific TP53 mutation in colorectal cancer. PLoS Genet 2020; 16:e1008572. [PMID: 32012149 PMCID: PMC7018097 DOI: 10.1371/journal.pgen.1008572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/13/2020] [Accepted: 12/17/2019] [Indexed: 01/16/2023] Open
Abstract
Cancer genomes with mutations in the exonuclease domain of Polymerase Epsilon (POLE) present with an extraordinarily high somatic mutation burden. In vitro studies have shown that distinct POLE mutants exhibit different polymerase activity. Yet, genome-wide mutation patterns and driver mutation formation arising from different POLE mutants remains unclear. Here, we curated somatic mutation calls from 7,345 colorectal cancer samples from published studies and publicly available databases. These include 44 POLE mutant samples including 9 with whole genome sequencing data available. The POLE mutant samples were categorized based on the specific POLE mutation present. Mutation spectrum, associations of somatic mutations with epigenomics features and co-occurrence with specific driver mutations were examined across different POLE mutants. We found that different POLE mutants exhibit distinct mutation spectrum with significantly higher relative frequency of C>T mutations in POLE V411L mutants. Our analysis showed that this increase frequency in C>T mutations is not dependent on DNA methylation and not associated with other genomic features and is thus specifically due to DNA sequence context alone. Notably, we found strong association of the TP53 R213* mutation specifically with POLE P286R mutants. This truncation mutation occurs within the TT[C>T]GA context. For C>T mutations, this sequence context is significantly more likely to be mutated in POLE P286R mutants compared with other POLE exonuclease domain mutants. This study refines our understanding of DNA polymerase fidelity and underscores genome-wide mutation spectrum and specific cancer driver mutation formation observed in POLE mutant cancers. Cancer arises through the accumulation of somatic mutations. The way that these somatic mutations form can vary greatly in different cancers. One of the most mutagenic processes that have been identified is caused by mutations within a replicative DNA polymerase known as Polymerase Epsilon (POLE). Cancers with such mutations present with hundreds of thousands of somatic mutations in their genome. Previous cancer genomics studies have identified a number of mutation hotspots in POLE, however how these different POLE mutants behave in affecting mutation distribution has not been studied. Here, we describe the genome-wide mutation profiles of distinct POLE mutant cancers. We find that different mutants indeed result in different mutation profiles and that this can be explained by the different fidelities of these mutants in replicating specific DNA sequences. Significantly, these differences have important implications in cancer formation as we found that a POLE mutation is strongly associated with a specific truncation of the TP53 cancer driver gene. This study furthers our understanding of the POLE mutagenic process in cancer and provide important insights into carcinogenesis in cancers with such mutations.
Collapse
Affiliation(s)
- Hu Fang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jayne A. Barbour
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Prince of Wales Clinical School, UNSW Medicine, UNSW Sydney, New South Wales, Australia
| | - Rebecca C. Poulos
- Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
| | - Riku Katainen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Lauri A. Aaltonen
- Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Jason W. H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
- Prince of Wales Clinical School, UNSW Medicine, UNSW Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
60
|
Poetsch AR. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J 2020; 18:207-219. [PMID: 31993111 PMCID: PMC6974700 DOI: 10.1016/j.csbj.2019.12.013] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species are a constant threat to DNA as they modify bases with the risk of disrupting genome function, inducing genome instability and mutation. Such risks are due to primary oxidative DNA damage and also mediated by the repair process. This leads to a delicate decision process for the cell as to whether to repair a damaged base at a specific genomic location or better leave it unrepaired. Persistent DNA damage can disrupt genome function, but on the other hand it can also contribute to gene regulation by serving as an epigenetic mark. When such processes are out of balance, pathophysiological conditions could get accelerated, because oxidative DNA damage and resulting mutagenic processes are tightly linked to ageing, inflammation, and the development of multiple age-related diseases, such as cancer and neurodegenerative disorders. Recent technological advancements and novel data analysis strategies have revealed that oxidative DNA damage, its repair, and related mutations distribute heterogeneously over the genome at multiple levels of resolution. The involved mechanisms act in the context of genome sequence, in interaction with genome function and chromatin. This review addresses what we currently know about the genome distribution of oxidative DNA damage, repair intermediates, and mutations. It will specifically focus on the various methodologies to measure oxidative DNA damage distribution and discuss the mechanistic conclusions derived from the different approaches. It will also address the consequences of oxidative DNA damage, specifically how it gives rise to mutations, genome instability, and how it can act as an epigenetic mark.
Collapse
|
61
|
Abstract
Exposure to ultraviolet (UV) radiation is the major risk factor for skin cancers. UV induces helix-distorting DNA damage such as cyclobutane pyrimidine dimers (CPDs). If not repaired, CPDs can strongly block DNA and RNA polymerases and cause mutagenesis or cell death. Nucleotide excision repair (NER) is critical for the removal of UV-induced photolesions including CPDs in the cell. Investigating CPD formation and repair across the genome is important for understanding the mechanisms by which these lesions promote somatic mutations in skin cancers. Here we describe a high-throughput, single nucleotide-resolution damage mapping method named CPD sequencing (CPD-seq) for genome-wide analysis of UV-induced CPDs. Protocols for CPD-seq library preparation in yeast and human cells, as well as bioinformatics identification of the CPD damage site, are detailed below.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA.
- Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
62
|
Mao P, Smerdon MJ, Roberts SA, Wyrick JJ. Asymmetric repair of UV damage in nucleosomes imposes a DNA strand polarity on somatic mutations in skin cancer. Genome Res 2019; 30:12-21. [PMID: 31871068 PMCID: PMC6961582 DOI: 10.1101/gr.253146.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Nucleosomes inhibit excision repair of DNA damage caused by ultraviolet (UV) light, and it has been generally assumed that repair inhibition is equivalent on both sides of the nucleosome dyad. Here, we use genome-wide repair data to show that repair of UV damage in nucleosomes is asymmetric. In yeast, nucleosomes inhibit nucleotide excision repair (NER) of the nontranscribed strand (NTS) of genes in an asymmetric manner, with faster repair of UV damage occurring on the 5′ side of the nucleosomal DNA. Analysis of genomic repair data from UV-irradiated human cells indicates that NER activity along the NTS is also elevated on the 5′ side of nucleosomes, consistent with the repair asymmetry observed in yeast nucleosomes. Among intergenic nucleosomes, repair activity is elevated on the 5′ side of both DNA strands. The distribution of somatic mutations in nucleosomes shows the opposite asymmetry in NER-proficient skin cancers, but not in NER-deficient cancers, indicating that asymmetric repair of nucleosomal DNA imposes a strand polarity on UV mutagenesis. Somatic mutations are enriched on the relatively slow-repairing 3′ side of the nucleosomal DNA, particularly at positions where the DNA minor groove faces away from the histone octamer. Asymmetric repair and mutagenesis are likely caused by differential accessibility of the nucleosomal DNA, a consequence of its left-handed wrapping around the histone octamer.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
63
|
Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, Lopez-Bigas N. The mutational footprints of cancer therapies. Nat Genet 2019; 51:1732-1740. [PMID: 31740835 PMCID: PMC6887544 DOI: 10.1038/s41588-019-0525-5] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/02/2022]
Abstract
Some cancer therapies damage DNA and cause mutations in both cancerous and healthy cells. Therapy-induced mutations may underlie some of the long-term and late side effects of treatments, such as mental disabilities, organ toxicity and secondary neoplasms. Nevertheless, the burden of mutation contributed by different chemotherapies has not been explored. Here we identify the mutational signatures or footprints of six widely used anticancer therapies across more than 3,500 metastatic tumors originating from different organs. These include previously known and new mutational signatures generated by platinum-based drugs as well as a previously unknown signature of nucleoside metabolic inhibitors. Exploiting these mutational footprints, we estimate the contribution of different treatments to the mutation burden of tumors and their risk of contributing coding and potential driver mutations in the genome. The mutational footprints identified here allow for precise assessment of the mutational risk of different cancer therapies to understand their long-term side effects.
Collapse
Affiliation(s)
- Oriol Pich
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ferran Muiños
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Martijn Paul Lolkema
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Neeltje Steeghs
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Research Program on Biomedical Informatics, Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
64
|
Stobbe MD, Thun GA, Diéguez-Docampo A, Oliva M, Whalley JP, Raineri E, Gut IG. Recurrent somatic mutations reveal new insights into consequences of mutagenic processes in cancer. PLoS Comput Biol 2019; 15:e1007496. [PMID: 31765368 PMCID: PMC6901237 DOI: 10.1371/journal.pcbi.1007496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/09/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
The sheer size of the human genome makes it improbable that identical somatic mutations at the exact same position are observed in multiple tumours solely by chance. The scarcity of cancer driver mutations also precludes positive selection as the sole explanation. Therefore, recurrent mutations may be highly informative of characteristics of mutational processes. To explore the potential, we use recurrence as a starting point to cluster >2,500 whole genomes of a pan-cancer cohort. We describe each genome with 13 recurrence-based and 29 general mutational features. Using principal component analysis we reduce the dimensionality and create independent features. We apply hierarchical clustering to the first 18 principal components followed by k-means clustering. We show that the resulting 16 clusters capture clinically relevant cancer phenotypes. High levels of recurrent substitutions separate the clusters that we link to UV-light exposure and deregulated activity of POLE from the one representing defective mismatch repair, which shows high levels of recurrent insertions/deletions. Recurrence of both mutation types characterizes cancer genomes with somatic hypermutation of immunoglobulin genes and the cluster of genomes exposed to gastric acid. Low levels of recurrence are observed for the cluster where tobacco-smoke exposure induces mutagenesis and the one linked to increased activity of cytidine deaminases. Notably, the majority of substitutions are recurrent in a single tumour type, while recurrent insertions/deletions point to shared processes between tumour types. Recurrence also reveals susceptible sequence motifs, including TT[C>A]TTT and AAC[T>G]T for the POLE and 'gastric-acid exposure' clusters, respectively. Moreover, we refine knowledge of mutagenesis, including increased C/G deletion levels in general for lung tumours and specifically in midsize homopolymer sequence contexts for microsatellite instable tumours. Our findings are an important step towards the development of a generic cancer diagnostic test for clinical practice based on whole-genome sequencing that could replace multiple diagnostics currently in use.
Collapse
Affiliation(s)
- Miranda D. Stobbe
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gian A. Thun
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Andrea Diéguez-Docampo
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Meritxell Oliva
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Justin P. Whalley
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Emanuele Raineri
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ivo G. Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
65
|
Christensen S, Van der Roest B, Besselink N, Janssen R, Boymans S, Martens JWM, Yaspo ML, Priestley P, Kuijk E, Cuppen E, Van Hoeck A. 5-Fluorouracil treatment induces characteristic T>G mutations in human cancer. Nat Commun 2019; 10:4571. [PMID: 31594944 PMCID: PMC6783534 DOI: 10.1038/s41467-019-12594-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic drug commonly used for the treatment of solid cancers. It is proposed that 5-FU interferes with nucleotide synthesis and incorporates into DNA, which may have a mutational impact on both surviving tumor and healthy cells. Here, we treat intestinal organoids with 5-FU and find a highly characteristic mutational pattern that is dominated by T>G substitutions in a CTT context. Tumor whole genome sequencing data confirms that this signature is also identified in vivo in colorectal and breast cancer patients who have received 5-FU treatment. Taken together, our results demonstrate that 5-FU is mutagenic and may drive tumor evolution and increase the risk of secondary malignancies. Furthermore, the identified signature shows a strong resemblance to COSMIC signature 17, the hallmark signature of treatment-naive esophageal and gastric tumors, which indicates that distinct endogenous and exogenous triggers can converge onto highly similar mutational signatures.
Collapse
Affiliation(s)
- Sharon Christensen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Bastiaan Van der Roest
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Nicolle Besselink
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Roel Janssen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Sander Boymans
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195, Berlin, Germany
| | | | - Ewart Kuijk
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Center for Personalized Cancer Treatment, Rotterdam, The Netherlands.
- Hartwig Medical Foundation, Science Park 408, 1098 XH, Amsterdam, The Netherlands.
| | - Arne Van Hoeck
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
66
|
Kennedy EE, Li C, Delaney S. Global Repair Profile of Human Alkyladenine DNA Glycosylase on Nucleosomes Reveals DNA Packaging Effects. ACS Chem Biol 2019; 14:1687-1692. [PMID: 31310499 DOI: 10.1021/acschembio.9b00263] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alkyladenine DNA glycosylase (AAG) is the only known human glycosylase capable of excising alkylated purines from DNA, including the highly mutagenic 1,N6-ethenoadenine (εA) lesion. Here, we examine the ability of AAG to excise εA from a nucleosome core particle (NCP), which is the primary repeating unit of DNA packaging in eukaryotes. Using chemical synthesis techniques, we assembled a global population of NCPs in which A is replaced with εA. While each NCP contains no more than one εA lesion, the total population contains εA in 49 distinct geometric positions. Using this global εA-containing NCP system, we obtained kinetic parameters of AAG throughout the NCP architecture. We observed monophasic reaction kinetics across the NCP, but varying amounts of AAG excision. AAG activity is correlated with solution accessibility and local histone architecture. Notably, we identified some highly solution-accessible lesions that are not repaired well, and an increase in repair within the region of asymmetric unwrapping of the nucleosomal DNA end. These observations support in vivo work and provide molecular-level insight into the relationship between repair and NCP architecture.
Collapse
Affiliation(s)
- Erin E. Kennedy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chuxuan Li
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
67
|
Advances in epigenetics link genetics to the environment and disease. Nature 2019; 571:489-499. [DOI: 10.1038/s41586-019-1411-0] [Citation(s) in RCA: 566] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
|
68
|
Mao P, Wyrick JJ. Organization of DNA damage, excision repair, and mutagenesis in chromatin: A genomic perspective. DNA Repair (Amst) 2019; 81:102645. [PMID: 31307926 DOI: 10.1016/j.dnarep.2019.102645] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genomic DNA is constantly assaulted by both endogenous and exogenous damaging agents. The resulting DNA damage, if left unrepaired, can interfere with DNA replication and be converted into mutations. Genomic DNA is packaged into a highly compact yet dynamic chromatin structure, in order to fit into the limited space available in the nucleus of eukaryotic cells. This hierarchical chromatin organization serves as both the target of DNA damaging agents and the context for DNA repair enzymes. Biochemical studies have suggested that both the formation and repair of DNA damage are significantly modulated by chromatin. Our understanding of the impact of chromatin on damage and repair has been significantly enhanced by recent studies. We focus on the nucleosome, the primary building block of chromatin, and discuss how the intrinsic structural properties of nucleosomes, and their associated epigenetic modifications, affect damage formation and DNA repair, as well as subsequent mutagenesis in cancer.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
69
|
Supek F, Lehner B. Scales and mechanisms of somatic mutation rate variation across the human genome. DNA Repair (Amst) 2019; 81:102647. [PMID: 31307927 DOI: 10.1016/j.dnarep.2019.102647] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer genome sequencing has revealed that somatic mutation rates vary substantially across the human genome and at scales from megabase-sized domains to individual nucleotides. Here we review recent work that has both revealed the major mutation biases that operate across the genome and the molecular mechanisms that cause them. The default mutation rate landscape in mammalian genomes results in active genes having low mutation rates because of a combination of factors that increase DNA repair: early DNA replication, transcription, active chromatin modifications and accessible chromatin. Therefore, either an increase in the global mutation rate or a redistribution of mutations from inactive to active DNA can increase the rate at which consequential mutations are acquired in active genes. Several environmental carcinogens and intrinsic mechanisms operating in tumor cells likely cause cancer by this second mechanism: by specifically increasing the mutation rate in active regions of the genome.
Collapse
Affiliation(s)
- Fran Supek
- Genome Data Science, Institut de Recerca Biomedica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Ben Lehner
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain; Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
70
|
Buisson R, Langenbucher A, Bowen D, Kwan EE, Benes CH, Zou L, Lawrence MS. Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science 2019; 364:eaaw2872. [PMID: 31249028 PMCID: PMC6731024 DOI: 10.1126/science.aaw2872] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/23/2019] [Indexed: 12/12/2022]
Abstract
Cancer drivers require statistical modeling to distinguish them from passenger events, which accumulate during tumorigenesis but provide no fitness advantage to cancer cells. The discovery of driver genes and mutations relies on the assumption that exact positional recurrence is unlikely by chance; thus, the precise sharing of mutations across patients identifies drivers. Examining the mutation landscape in cancer genomes, we found that many recurrent cancer mutations previously designated as drivers are likely passengers. Our integrated bioinformatic and biochemical analyses revealed that these passenger hotspot mutations arise from the preference of APOBEC3A, a cytidine deaminase, for DNA stem-loops. Conversely, recurrent APOBEC-signature mutations not in stem-loops are enriched in well-characterized driver genes and may predict new drivers. This demonstrates that mesoscale genomic features need to be integrated into computational models aimed at identifying mutations linked to diseases.
Collapse
Affiliation(s)
- Rémi Buisson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Danae Bowen
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Eugene E Kwan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
71
|
DNA damage detection in nucleosomes involves DNA register shifting. Nature 2019; 571:79-84. [PMID: 31142837 PMCID: PMC6611726 DOI: 10.1038/s41586-019-1259-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Access to DNA packaged in nucleosomes is critical for gene regulation, DNA replication and repair. In humans, the UV-DDB complex detects ultraviolet light induced pyrimidine dimers throughout the genome, yet it remains unknown how these lesions are recognised in chromatin, where nucleosomes restrict DNA access. Here we report cryo-electron microscopy structures for UV-DDB bound to nucleosomes bearing a 6-4 pyrimidine-pyrimidone dimer, and a DNA damage mimic at a variety of positions. We find that UV-DDB binds UV damaged nucleosomes at lesions located in the solvent-facing minor groove without affecting the overall nucleosome architecture. For buried lesions facing the histone core, UV-DDB changes the predominant translational register of the nucleosome, and selectively binds the lesion in an accessible, exposed, position. These findings explain how UV-DDB detects occluded lesions in strongly positioned nucleosomes. We identify slide-assisted site-exposure (SAsSE) as a mechanism for high-affinity DNA-binding proteins to access otherwise occluded sites in nucleosomal DNA.
Collapse
|
72
|
Roberts SA, Brown AJ, Wyrick JJ. Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? Bioessays 2019; 41:e1800152. [PMID: 30801747 PMCID: PMC6571124 DOI: 10.1002/bies.201800152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Somatic mutations arising in human skin cancers are heterogeneously distributed across the genome, meaning that certain genomic regions (e.g., heterochromatin or transcription factor binding sites) have much higher mutation densities than others. Regional variations in mutation rates are typically not a consequence of selection, as the vast majority of somatic mutations in skin cancers are passenger mutations that do not promote cell growth or transformation. Instead, variations in DNA repair activity, due to chromatin organization and transcription factor binding, have been proposed to be a primary driver of mutational heterogeneity in melanoma. However, as discussed in this review here, recent studies indicate that chromatin organization and transcription factor binding also significantly modulate the rate at which UV lesions form in DNA. The authors propose that local variations in lesion susceptibility may be an important driver of mutational hotspots in melanoma and other skin cancers, particularly at binding sites for ETS transcription factors.
Collapse
Affiliation(s)
- Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| | - John J. Wyrick
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164
| |
Collapse
|
73
|
Kotler E, Segal E. The Helix Twist: Damage and Repair Follows the DNA Minor Groove. Cell 2018; 175:902-904. [PMID: 30388449 DOI: 10.1016/j.cell.2018.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Mutation frequencies vary along the genome, but the factors determining this variability are only partially understood. Pich et al. unravel a ∼10 bp periodicity in mutation rates at nucleosome-proximal regions that follows minor groove orientation. Opposing differential DNA damage and repair processes could shape genetic divergence irrespective of selection.
Collapse
Affiliation(s)
- Eran Kotler
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|