51
|
Tsai YJ, Pan H, Hung CM, Hou PT, Li YC, Lee YJ, Shen YT, Wu TT, Li C. The predominant protein arginine methyltransferase PRMT1 is critical for zebrafish convergence and extension during gastrulation. FEBS J 2011; 278:905-17. [PMID: 21214862 DOI: 10.1111/j.1742-4658.2011.08006.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferase (PRMT)1 is the predominant type I methyltransferase in mammals. In the present study, we used zebrafish (Danio rerio) as the model system to elucidate PRMT1 expression and function during embryogenesis. Zebrafish prmt1 transcripts were detected from the zygote period to the early larva stage. Knockdown of prmt1 by antisense morpholino oligo (AMO) resulted in delayed growth, shortened body-length, curled tails and cardiac edema. PRMT1 protein level, type I protein arginine methyltransferase activity, specific asymmetric protein arginine methylation and histone H4 R3 methylation all decreased in the AMO-injected morphants. The morphants showed defective convergence and extension and the abnormalities were more severe at the posterior than the anterior parts. Cell migration defects suggested by the phenotypes were not only observed in the morphant embryos, but also in a cellular prmt1 small-interfering RNA knockdown model. Rescue of the phenotypes by co-injection of wild-type but not catalytic defective prmt1 mRNA confirmed the specificity of the AMO and the requirement of methyltransferase activity in early development. The results obtained in the present study demonstrate a direct link of early development with protein arginine methylation catalyzed by PRMT1.
Collapse
Affiliation(s)
- Yun-Jung Tsai
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wang G, Cadwallader AB, Jang DS, Tsang M, Yost HJ, Amack JD. The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer's vesicle in zebrafish. Development 2010; 138:45-54. [PMID: 21098560 DOI: 10.1242/dev.052985] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The vertebrate body plan features a consistent left-right (LR) asymmetry of internal organs. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that is necessary for normal LR development. However, the mechanisms involved in orienting LR asymmetric flow with previously established anteroposterior (AP) and dorsoventral (DV) axes remain poorly understood. In zebrafish, asymmetric flow is generated in Kupffer's vesicle (KV). The cellular architecture of KV is asymmetric along the AP axis, with more ciliated cells densely packed into the anterior region. Here, we identify a Rho kinase gene, rock2b, which is required for normal AP patterning of KV and subsequent LR development in the embryo. Antisense depletion of rock2b in the whole embryo or specifically in the KV cell lineage perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ LR asymmetries. Analyses of KV architecture demonstrated that rock2b knockdown altered the AP placement of ciliated cells without affecting cilia number or length. In control embryos, leftward flow across the anterior pole of KV was stronger than rightward flow at the posterior end, correlating with the normal AP asymmetric distribution of ciliated cells. By contrast, rock2b knockdown embryos with AP patterning defects in KV exhibited randomized flow direction and equal flow velocities in the anterior and posterior regions. Live imaging of Tg(dusp6:memGFP)(pt19) transgenic embryos that express GFP in KV cells revealed that rock2b regulates KV cell morphology. Our results suggest a link between AP patterning of the ciliated Kupffer's vesicle and LR patterning of the zebrafish embryo.
Collapse
Affiliation(s)
- Guangliang Wang
- Department of Cell and Developmental Biology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
53
|
Vladar EK, Antic D, Axelrod JD. Planar cell polarity signaling: the developing cell's compass. Cold Spring Harb Perspect Biol 2010; 1:a002964. [PMID: 20066108 DOI: 10.1101/cshperspect.a002964] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.
Collapse
Affiliation(s)
- Eszter K Vladar
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305, USA
| | | | | |
Collapse
|
54
|
Papusheva E, Heisenberg CP. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J 2010; 29:2753-68. [PMID: 20717145 DOI: 10.1038/emboj.2010.182] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/09/2010] [Indexed: 12/17/2022] Open
Abstract
Integrin- and cadherin-mediated adhesion is central for cell and tissue morphogenesis, allowing cells and tissues to change shape without loosing integrity. Studies predominantly in cell culture showed that mechanosensation through adhesion structures is achieved by force-mediated modulation of their molecular composition. The specific molecular composition of adhesion sites in turn determines their signalling activity and dynamic reorganization. Here, we will review how adhesion sites respond to mecanical stimuli, and how spatially and temporally regulated signalling from different adhesion sites controls cell migration and tissue morphogenesis.
Collapse
|
55
|
Miyashita T, Koda M, Kitajo K, Yamazaki M, Takahashi K, Kikuchi A, Yamashita T. Wnt-Ryk signaling mediates axon growth inhibition and limits functional recovery after spinal cord injury. J Neurotrauma 2010; 26:955-64. [PMID: 19473059 DOI: 10.1089/neu.2008.0776] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wnt proteins are a large family of diffusible factors that play important roles in embryonic development, including axis patterning, cell fate specification, proliferation, and axon development. It was recently demonstrated that Ryk (receptor related to tyrosine kinase) is a conserved high-affinity Wnt receptor, and that Ryk-Wnt interactions guide corticospinal axons down the spinal cord during development. Here, we report that the Ryk-Wnt signal mediates the inhibition of corticospinal axon growth in the adult spinal cord. The expression of Wnt-5a is induced in reactive astrocytes around the injury site following a spinal cord injury. In vitro, Wnt-5a inhibits the neurite growth of postnatal cerebellar neurons by activating RhoA/Rho-kinase. In rats with thoracic spinal cord contusion, intrathecal administration of a neutralizing antibody to Ryk resulted in significant axonal growth of the corticospinal tract and enhanced functional recovery. Thus, reexpression of the embryonic repulsive cues in adult tissues contributes to the failure of axon regeneration in the central nervous system.
Collapse
Affiliation(s)
- Tomohiro Miyashita
- Department of Neurobiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Golubkov VS, Chekanov AV, Cieplak P, Aleshin AE, Chernov AV, Zhu W, Radichev IA, Zhang D, Dong PD, Strongin AY. The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer and embryogenesis. J Biol Chem 2010; 285:35740-9. [PMID: 20837484 DOI: 10.1074/jbc.m110.165159] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP(621)↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Goh LL, Manser E. The RhoA GEF Syx is a target of Rnd3 and regulated via a Raf1-like ubiquitin-related domain. PLoS One 2010; 5:e12409. [PMID: 20811643 PMCID: PMC2928299 DOI: 10.1371/journal.pone.0012409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022] Open
Abstract
Background Rnd3 (RhoE) protein belongs to the unique branch of Rho family GTPases that has low intrinsic GTPase activity and consequently remains constitutively active [1], [2]. The current consensus is that Rnd1 and Rnd3 function as important antagonists of RhoA signaling primarily by activating the ubiquitous p190 RhoGAP [3], but not by inhibiting the ROCK family kinases. Methodology/Principal Findings Rnd3 is abundant in mouse embryonic stem (mES) cells and in an unbiased two-step affinity purification screen we identified a new Rnd3 target, termed synectin-binding RhoA exchange factor (Syx), by mass spectrometry. The Syx interaction with Rnd3 does not occur through the Syx DH domain but utilizes a region similar to the classic Raf1 Ras-binding domain (RBD), and most closely related to those in RGS12 and RGS14. We show that Syx behaves as a genuine effector of Rnd3 (and perhaps Rnd1), with binding characteristics similar to p190-RhoGAP. Morpholino-oligonucleotide knockdown of Syx in zebrafish at the one cell stage resulted in embryos with shortened anterior-posterior body axis: this phenotype was effectively rescued by introducing mouse Syx1b mRNA. A Rnd3-binding defective mutant of Syx1b mutated in the RBD (E164A/R165D) was more potent in rescuing the embryonic defects than wild-type Syx1b, showing that Rnd3 negatively regulates Syx activity in vivo. Conclusions/Significance This study uncovers a well defined Rnd3 effector Syx which is widely expressed and directly impacts RhoA activation. Experiments conducted in vivo indicate that Rnd3 negatively regulates Syx, and that as a RhoA-GEF it plays a key role in early embryonic cell shape changes. Thus a connection to signaling via the planar cell polarity pathway is suggested.
Collapse
Affiliation(s)
- Liuh Ling Goh
- Rho GTPases in Stem Cells (RGS) Group, Institute of Medical Biology (IMB), Singapore, Singapore
| | - Ed Manser
- Rho GTPases in Stem Cells (RGS) Group, Institute of Medical Biology (IMB), Singapore, Singapore
- Small G-Protein Signaling and Kinases (sGSK) Group, Institute of Molecular and Cell Biology (IMCB), Neuroscience Research Partnership, Singapore, Singapore
- * E-mail:
| |
Collapse
|
58
|
Abstract
Cardiac development is comprised of a series of morphological events tightly controlled both spatially and temporally. The molecular pathways controlling early cardiac differentiation are poorly understood, but Wnt signaling is emerging as a critical pathway for multiple aspects of early cardiovascular development. The Wnt pathway plays multiple roles in regulating cellular behavior including proliferation, differentiation, cell migration, and cell polarity. Recent data have demonstrated that Wnt activity is important for early precardiac mesoderm differentiation but must be inhibited in subsequent steps for cardiomyocyte differentiation to proceed. Given the important role that Wnt signaling plays in both the differentiation of cardiomyocytes from pluripotential stem cells and tissue regeneration in general, an increased understanding of this pathway is likely to enhance our knowledge about both cardiovascular development and reparative mechanisms.
Collapse
|
59
|
Reed RA, Womble MA, Dush MK, Tull RR, Bloom SK, Morckel AR, Devlin EW, Nascone-Yoder NM. Morphogenesis of the primitive gut tube is generated by Rho/ROCK/myosin II-mediated endoderm rearrangements. Dev Dyn 2010; 238:3111-25. [PMID: 19924810 DOI: 10.1002/dvdy.22157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During digestive organogenesis, the primitive gut tube (PGT) undergoes dramatic elongation and forms a lumen lined by a single-layer of epithelium. In Xenopus, endoderm cells in the core of the PGT rearrange during gut elongation, but the morphogenetic mechanisms controlling their reorganization are undetermined. Here, we define the dynamic changes in endoderm cell shape, polarity, and tissue architecture that underlie Xenopus gut morphogenesis. Gut endoderm cells intercalate radially, between their anterior and posterior neighbors, transforming the nearly solid endoderm core into a single layer of epithelium while concomitantly eliciting "radially convergent" extension within the gut walls. Inhibition of Rho/ROCK/Myosin II activity prevents endoderm rearrangements and consequently perturbs both gut elongation and digestive epithelial morphogenesis. Our results suggest that the cellular and molecular events driving tissue elongation in the PGT are mechanistically analogous to those that function during gastrulation, but occur within a novel cylindrical geometry to generate an epithelial-lined tube.
Collapse
Affiliation(s)
- Rachel A Reed
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Liu R, Linardopoulou EV, Osborn GE, Parkhurst SM. Formins in development: orchestrating body plan origami. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1803:207-25. [PMID: 18996154 PMCID: PMC2838992 DOI: 10.1016/j.bbamcr.2008.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 08/21/2008] [Accepted: 09/26/2008] [Indexed: 01/21/2023]
Abstract
Formins, proteins defined by the presence of an FH2 domain and their ability to nucleate linear F-actin de novo, play a key role in the regulation of the cytoskeleton. Initially thought to primarily regulate actin, recent studies have highlighted a role for formins in the regulation of microtubule dynamics, and most recently have uncovered the ability of some formins to coordinate the organization of both the microtubule and actin cytoskeletons. While biochemical analyses of this family of proteins have yielded many insights into how formins regulate diverse cytoskeletal reorganizations, we are only beginning to appreciate how and when these functional properties are relevant to biological processes in a developmental or organismal context. Developmental genetic studies in fungi, Dictyostelium, vertebrates, plants and other model organisms have revealed conserved roles for formins in cell polarity, actin cable assembly and cytokinesis. However, roles have also been discovered for formins that are specific to particular organisms. Thus, formins perform both global and specific functions, with some of these roles concurring with previous biochemical data and others exposing new properties of formins. While not all family members have been examined across all organisms, the analyses to date highlight the significance of the flexibility within the formin family to regulate a broad spectrum of diverse cytoskeletal processes during development.
Collapse
Affiliation(s)
- Raymond Liu
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Elena V. Linardopoulou
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Gregory E. Osborn
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| | - Susan M. Parkhurst
- Division of Basic Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Avenue North Seattle, WA 98109 USA
| |
Collapse
|
61
|
Flynt AS, Patton JG. Crosstalk between planar cell polarity signaling and miR-8 control of NHERF1-mediated actin reorganization. Cell Cycle 2010; 9:235-7. [PMID: 20023383 DOI: 10.4161/cc.9.2.10434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The response to osmotic stress in developing zebrafish embryos requires proper apical patterning and trafficking of transmembrane ion transporters in ionocytes, specialized cells of the epidermis. The miR-8 family of miRNAs plays a key role in this process by precisely regulating the activity of NHERF1, a regulator of sodium hydrogen exchange that also serves as an adaptor protein linked to the actin cytoskeleton. We have discovered that NHERF1 activity is also coupled to Planar Cell Polarity (PCP) signaling in the zebrafish epidermis. Loss of NHERF1 in wild type fish disrupts actin organization but the observed defects can be largely restored when combined with mutants in the PCP pathway. We propose that proper apical patterning depends on input and coordination between PCP signaling and the response to stress.
Collapse
Affiliation(s)
- Alex S Flynt
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
62
|
Sienknecht UJ, Fekete DM. Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium. J Comp Neurol 2010; 517:751-64. [PMID: 19842206 DOI: 10.1002/cne.22169] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wnt signaling activates at least three different pathways involved in development and disease. Interactions of secreted ligands and inhibitors with cell-surface receptors result in the activation or regulation of particular downstream intracellular cascades. During the developmental stages of otic vesicle closure and beginning morphogenesis, the forming inner ear transcribes a plethora of Wnt-related genes. We report expression of 23 genes out of 25 tested in situ hybridization probes on tissue serial sections. Sensory primordia and Frizzled gene expression share domains, with Fzd1 being a continuous marker. Prospective nonsensory domains express Wnts, whose transcripts mainly flank prosensory regions. Finally, Wnt inhibitor domains are superimposed over both prosensory and nonsensory otic regions. Three Wnt antagonists, Dkk1, SFRP2, and Frzb are prominent. Their gene expression patterns partly overlap and change over time, which adds to the diversity of molecular microenvironments. Strikingly, prosensory domains express Wnts transiently. This includes: 1) the prosensory otic region of high proliferation, neuroblast delamination, and programmed cell death at stage 20/21 (Wnt3, -5b, -7b, -8b, -9a, and -11); and 2) sensory primordia at stage 25 (Wnt7a and Wnt9a). In summary, robust Wnt-related gene expression shows both spatial and temporal tuning during inner ear development as the otic vesicle initiates morphogenesis and prosensory cell fate determination.
Collapse
Affiliation(s)
- Ulrike J Sienknecht
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
63
|
Setdb2 restricts dorsal organizer territory and regulates left-right asymmetry through suppressing fgf8 activity. Proc Natl Acad Sci U S A 2010; 107:2521-6. [PMID: 20133783 DOI: 10.1073/pnas.0914396107] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dorsal organizer formation is one of the most critical steps in early embryonic development. Several genes and signaling pathways that positively regulate the dorsal organizer development have been identified; however, little is known about the factor(s) that negatively regulates the organizer formation. Here, we show that Setdb2, a SET domain-containing protein possessing potential histone H3K9 methyltransferase activity, restricts dorsal organizer development and regulates left-right asymmetry by suppressing fibroblast growth factor 8 (fgf8) expression. Knockdown of Setdb2 results in a massive expansion of dorsal organizer markers floating head (flh), goosecoid (gsc), and chordin (chd), as well as a significant increase of fgf8, but not fgf4 mRNAs. Consequently, disrupted midline patterning and resultant randomization of left-right asymmetry are observed in Setdb2-deficient embryos. These characteristic changes induced by Setdb2 deficiency can be nearly corrected by either overexpression of a dominant-negative fgf receptor or knockdown of fgf8, suggesting an essential role for Setdb2-Fgf8 signaling in restricting dorsal organizer territory and regulating left-right asymmetry. These results provide unique evidence that a SET domain-containing protein potentially involved in the epigenetic control negatively regulates dorsal organizer formation during early embryonic development.
Collapse
|
64
|
Roszko I, Sawada A, Solnica-Krezel L. Regulation of convergence and extension movements during vertebrate gastrulation by the Wnt/PCP pathway. Semin Cell Dev Biol 2009; 20:986-97. [PMID: 19761865 DOI: 10.1016/j.semcdb.2009.09.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 12/18/2022]
Abstract
Vertebrate gastrulation entails massive cell movements that establish and shape the germ layers. During gastrulation, the individual cell behaviors are strictly coordinated in time and space by various signaling pathways. These pathways instruct the cells about proliferation, shape, fate and migration into proper location. Convergence and extension (C&E) movements during vertebrate gastrulation play a major role in the shaping of the embryonic body. In vertebrates, the Wnt/Planar Cell Polarity (Wnt/PCP) pathway is a key regulator of C&E movements, essential for several polarized cell behaviors, including directed cell migration, and mediolateral and radial cell intercalation. However, the molecular mechanisms underlying the acquisition of Planar Cell Polarity by highly dynamic mesenchymal cells engaged in C&E are still not well understood. Here we review new evidence implicating the Wnt/PCP pathway in specific cell behaviors required for C&E during zebrafish gastrulation, in comparison to other vertebrates. We also discuss findings on the molecular regulation and the interaction of the Wnt/PCP pathway with other signaling pathways during gastrulation movements.
Collapse
Affiliation(s)
- Isabelle Roszko
- Vanderbilt University, Department of Biological Sciences, VU Station B #351634, Nashville, TN 37235-1634, USA
| | | | | |
Collapse
|
65
|
Altering PI3K-Akt signalling in zebrafish embryos affects PTEN phosphorylation and gastrulation. Biol Cell 2009; 101:661-78, 4 p following 678. [PMID: 19515017 DOI: 10.1042/bc20090034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND INFORMATION PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a negative regulator of the PI3K (phosphoinositide 3-kinase)-Akt (also called protein kinase B) signalling pathway and is essential for embryogenesis, but its function in early vertebrate embryos is unclear. RESULTS To address how PTEN functions in early embryos, we overexpressed one of the four zebrafish PTEN isoforms at the 1-2-cell stage. Overexpression of Ptena454 alters phospho-Akt levels and impairs cell movements associated with gastrulation. Heat shocking embryos increases phospho-Akt levels and lowers phospho-Ptena454 levels. Inhibiting CK2 (protein kinase CK2) activity reduces phospho-Pten levels and augments the effects due to Ptena454 overexpression. Low phospho-Akt and corresponding low phospho-GSK-3 (glycogen synthase kinase-3) and high phospho-Pten levels accompany wortmannin or LY294002 treatment, which inhibit PI3K activity. CONCLUSIONS These results suggest that Ptena454 regulation is correlated to changes in phospho-Akt levels. We propose a model in which homoeostasis in rapidly dividing and migrating embryonic cells depends on a counterbalance between pro-survival signalling employing CK2 and GSK-3 and the pro-apoptotic activity of Ptena454.
Collapse
|
66
|
Abstract
The best-known attribute of the prion protein (PrP) is its tendency to misfold into a rogue isoform. Much less understood is how this misfolded isoform causes deadly brain illnesses. Neurodegeneration in prion disease is often seen as a consequence of abnormal PrP function yet, amazingly little is known about the normal, physiological role of PrP. In particular, the absence of obvious phenotypes in PrP knockout mice has prevented scientists from answering this important question. Using knockdown approaches, we previously produced clear PrP loss-of-function phenotypes in zebrafish embryos. Analysis of these phenotypes revealed that PrP can modulate E-cadherin-based cell-cell adhesion, thereby controlling essential morphogenetic cell movements in the early gastrula. Our data also showed that PrP itself can elicit homophilic cell-cell adhesion and trigger intracellular signaling via Src-related kinases. Importantly, these molecular functions of PrP are conserved from fish to mammals. Here we discuss the use of the zebrafish in prion biology and how it may advance our understanding of the roles of PrP in health and disease.
Collapse
|
67
|
Lai SL, Chien AJ, Moon RT. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis. Cell Res 2009; 19:532-45. [PMID: 19365405 DOI: 10.1038/cr.2009.41] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Wnt/beta-catenin regulates cellular functions related to tumor initiation and progression, cell proliferation, differentiation, survival, and adhesion. Beta-catenin-independent Wnt pathways have been proposed to regulate cell polarity and migration, including metastasis. In this review, we discuss the possible roles of both beta-catenin-dependent and -independent signaling pathways in tumor progression, with an emphasis on their regulation of Rho-family GTPases, cytoskeletal remodeling, and relationships with cell-cell adhesion and cilia/ciliogenesis.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Howard Hughes Medical Institute, Department of Pharmacology, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
68
|
Weiser DC, Row RH, Kimelman D. Rho-regulated myosin phosphatase establishes the level of protrusive activity required for cell movements during zebrafish gastrulation. Development 2009; 136:2375-84. [PMID: 19515695 DOI: 10.1242/dev.034892] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rho-dependent amoeboid cell movement is a crucial mechanism in both tumor cell invasion and morphogenetic cell movements during fish gastrulation. Amoeboid movement is characterized by relatively non-polarized cells displaying a high level of bleb-like protrusions. During gastrulation, zebrafish mesodermal cells undergo a series of conversions from amoeboid cell behaviors to more mesenchymal and finally highly polarized and intercalative cell behaviors. We demonstrate that Myosin phosphatase, a complex of Protein phosphatase 1 and the scaffolding protein Mypt1, functions to maintain the precise balance between amoeboid and mesenchymal cell behaviors required for cells to undergo convergence and extension. Importantly, Mypt1 has different cell-autonomous and non-cell-autonomous roles. Loss of Mypt1 throughout the embryo causes severe convergence defects, demonstrating that Mypt1 is required for the cell-cell interactions involved in dorsal convergence. By contrast, mesodermal Mypt1 morphant cells transplanted into wild-type hosts undergo dorsally directed cell migration, but they fail to shut down their protrusive behavior and undergo the normal intercalation required for extension. We further show that Mypt1 activity is regulated in embryos by Rho-mediated inhibitory phosphorylation, which is promoted by non-canonical Wnt signaling. We propose that Myosin phosphatase is a crucial and tightly controlled regulator of cell behaviors during gastrulation and that understanding its role in early development also provides insight into the mechanism of cancer cell invasion.
Collapse
Affiliation(s)
- Douglas C Weiser
- Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195-7350, USA
| | | | | |
Collapse
|
69
|
Zhang Y, Li X, Qi J, Wang J, Liu X, Zhang H, Lin SC, Meng A. Rock2 controls TGFbeta signaling and inhibits mesoderm induction in zebrafish embryos. J Cell Sci 2009; 122:2197-207. [PMID: 19509062 DOI: 10.1242/jcs.040659] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Rho-associated serine/threonine kinases Rock1 and Rock2 play important roles in cell contraction, adhesion, migration, proliferation and apoptosis. Here we report that Rock2 acts as a negative regulator of the TGFbeta signaling pathway. Mechanistically, Rock2 binds to and accelerates the lysosomal degradation of TGFbeta type I receptors internalized from the cell surface in mammalian cells. The inhibitory effect of Rock2 on TGFbeta signaling requires its kinase activity. In zebrafish embryos, injection of rock2a mRNA attenuates the expression of mesodermal markers during late blastulation and blocks the induction of mesoderm by ectopic Nodal signals. By contrast, overexpression of a dominant negative form of zebrafish rock2a, dnrock2a, has an opposite effect on mesoderm induction, suggesting that Rock2 proteins are endogenous inhibitors for mesoderm induction. Thus, our data have unraveled previously unidentified functions of Rock2, in controlling TGFbeta signaling as well as in regulating embryonic patterning.
Collapse
Affiliation(s)
- Yu Zhang
- Protein Science Laboratory of Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Li X, He J, Hu W, Yin Z. The essential role of endogenous ghrelin in growth hormone expression during zebrafish adenohypophysis development. Endocrinology 2009; 150:2767-74. [PMID: 19264876 DOI: 10.1210/en.2008-1398] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ghrelin, a multifunctional hormone, including potent GH stimulation activity, has been suggested to be important during embryonic development. Expression of ghrelin has been confirmed in the zebrafish pancreas during embryonic stages. Interfering with ghrelin function using two specific antisense morpholino oligonucleotides causes defects during zebrafish embryonic development. In ghrelin morphants the expression of GH was abolished in zebrafish somatotropes, whereas the expression patterns of the other key molecules involved in hypothalamic-pituitary development and distinct pituitary hormones genes remain largely intact at the appropriate time during zebrafish adenohypophysis development. Effective rescue of the ghrelin morphants with exogenous ghrelin mRNA showed that the correct gene had been targeted. Moreover, by analyzing the efficiencies of the ghrelin morphants rescue experiments with various forms of exogenous mutant ghrelin mRNAs, we also demonstrated the essentiality of the form acyl-ghrelin on GH stimulation during zebrafish adenohypophysis development. Our in vivo experiments, for the first time, also provided evidence of the existence of functional obestatin in the C-terminal part of zebrafish proghrelin peptides. Our research here has demonstrated that zebrafish is a unique model for functional studies of endogenous ghrelin, especially during embryonic development.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
71
|
Non-canonical Wnt signaling and N-cadherin related beta-catenin signaling play a role in mechanically induced osteogenic cell fate. PLoS One 2009; 4:e5388. [PMID: 19401766 PMCID: PMC2670536 DOI: 10.1371/journal.pone.0005388] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 03/11/2009] [Indexed: 11/19/2022] Open
Abstract
Background Understanding how the mechanical microenvironment influences cell fate, and more importantly, by what molecular mechanisms, will enhance not only the knowledge of mesenchymal stem cell biology but also the field of regenerative medicine. Mechanical stimuli, specifically loading induced oscillatory fluid flow, plays a vital role in promoting healthy bone development, homeostasis and morphology. Recent studies suggest that such loading induced fluid flow has the potential to regulate osteogenic differentiation via the upregulation of multiple osteogenic genes; however, the molecular mechanisms involved in the transduction of a physical signal into altered cell fate have yet to be determined. Methods and Principal Findings Using immuno-staining, western blot analysis and luciferase assays, we demonstrate the oscillatory fluid flow regulates β-catenin nuclear translocation and gene transcription. Additionally, real time RT-PCR analysis suggests that flow induces Wnt5a and Ror2 upregulation, both of which are essential for activating the small GTPase, RhoA, upon flow exposure. Furthermore, although β-catenin phosphorylation is not altered by flow, its association with N-cadherin is, indicating that flow-induced β-catenin signaling is initiated by adherens junction signaling. Conclusion We propose that the mechanical microenvironment of bone has the potential to regulate osteogenic differentiation by initiating multiple key molecular pathways that are essential for such lineage commitment. Specifically, non-canonical Wnt5a signaling involving Ror2 and RhoA as well as N-cadherin mediated β-catenin signaling are necessary for mechanically induced osteogenic differentiation.
Collapse
|
72
|
Liu JX, Hu B, Wang Y, Gui JF, Xiao W. Zebrafish eaf1 and eaf2/u19 mediate effective convergence and extension movements through the maintenance of wnt11 and wnt5 expression. J Biol Chem 2009; 284:16679-16692. [PMID: 19380582 DOI: 10.1074/jbc.m109.009654] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Studies have attributed several functions to the Eaf family, including tumor suppression and eye development. Given the potential association between cancer and development, we set forth to explore Eaf1 and Eaf2/U19 activity in vertebrate embryogenesis, using zebrafish. In situ hybridization revealed similar eaf1 and eaf2/u19 expression patterns. Morpholino-mediated knockdown of either eaf1 or eaf2/u19 expression produced similar morphological changes that could be reversed by ectopic expression of target or reciprocal-target mRNA. However, combination of Eaf1 and Eaf2/U19 (Eafs)-morpholinos increased the severity of defects, suggesting that Eaf1 and Eaf2/U19 only share some functional redundancy. The Eafs knockdown phenotype resembled that of embryos with defects in convergence and extension movements. Indeed, knockdown caused expression pattern changes for convergence and extension movement markers, whereas cell tracing experiments using kaeda mRNA showed a correlation between Eafs knockdown and cell migration defects. Cardiac and pancreatic differentiation markers revealed that Eafs knockdown also disrupted midline convergence of heart and pancreatic organ precursors. Noncanonical Wnt signaling plays a key role in both convergence and extension movements and midline convergence of organ precursors. We found that Eaf1 and Eaf2/U19 maintained expression levels of wnt11 and wnt5. Moreover, wnt11 or wnt5 mRNA partially rescued the convergence and extension movement defects occurring in eafs morphants. Wnt11 and Wnt5 converge on rhoA, so not surprisingly, rhoA mRNA more effectively rescued defects than either wnt11 or wnt5 mRNA alone. However, the ectopic expression of wnt11 and wnt5 did not affect eaf1 and eaf2/u19 expression. These data indicate that eaf1 and eaf2/u19 act upstream of noncanonical Wnt signaling to mediate convergence and extension movements.
Collapse
Affiliation(s)
- Jing-Xia Liu
- From the Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Wuhan 430072, China
| | - Bo Hu
- From the Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Wuhan 430072, China
| | - Yang Wang
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wuhan Xiao
- From the Key Laboratory of Biodiversity and Conservation of Aquatic Organisms, Wuhan 430072, China.
| |
Collapse
|
73
|
Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev 2009; 23:265-77. [PMID: 19204114 DOI: 10.1101/gad.1760809] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Wnt ligands and their receptors orchestrate many essential cellular and physiological processes. During development they control differentiation, proliferation, migration, and patterning, while in the adult, they regulate tissue homeostasis, primarily through their effects on stem cell proliferation and differentiation. Underpinning these diverse biological activities is a complex set of intracellular signaling pathways that are still poorly understood. Rho GTPases have emerged as key mediators of Wnt signals, most notably in the noncanonical pathways that involve polarized cell shape changes and migrations, but also more recently in the canonical pathway leading to beta-catenin-dependent transcription. It appears that Rho GTPases integrate Wnt-induced signals spatially and temporally to promote morphological and transcriptional changes affecting cell behavior.
Collapse
Affiliation(s)
- Karni Schlessinger
- Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
74
|
Li Y, Dudley AT. Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development 2009; 136:1083-92. [PMID: 19224985 DOI: 10.1242/dev.023820] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone growth is driven by cell proliferation and the subsequent hypertrophy of chondrocytes arranged in columns of discoid cells that resemble stacks of coins. However, the molecular mechanisms that direct column formation and the importance of columnar organization to bone morphogenesis are not known. Here, we show in chick that discoid proliferative chondrocytes orient the division plane to generate daughter cells that are initially displaced laterally and then intercalate into the column. Downregulation of frizzled (Fzd) signaling alters the dimensions of long bones and produces cell-autonomous changes in proliferative chondrocyte organization characterized by arbitrary division planes and altered cell stacking. These defects are phenocopied by disruption of noncanonical effector pathways but not by inhibitors of canonical Fzd signaling. These findings demonstrate that the regulation of cell polarity and cell arrangement by noncanonical Fzd signaling plays important roles in generating the unique morphological characteristics that shape individual cartilage elements.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Biochemistry, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
75
|
Wnt activity guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and ROCK kinases. Neural Dev 2009; 4:7. [PMID: 19210786 PMCID: PMC2654884 DOI: 10.1186/1749-8104-4-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 02/11/2009] [Indexed: 12/31/2022] Open
Abstract
Background Wnt proteins play roles in many biological processes, including axon guidance and cell migration. In the mammalian hindbrain, facial branchiomotor (FBM) neurons undergo a striking rostral to caudal migration, yet little is known of the underlying molecular mechanisms. In this study, we investigated a possible role of Wnts and the planar cell polarity (PCP) pathway in this process. Results Here we demonstrate a novel role for Wnt proteins in guiding FBM neurons during their rostral to caudal migration in the hindbrain. We found that Wnt5a is expressed in a caudalhigh to rostrallow gradient in the hindbrain. Wnt-coated beads chemoattracted FBM neurons to ectopic positions in an explant migration assay. The rostrocaudal FBM migration was moderately perturbed in Wnt5a mutant embryos and severely disrupted in Frizzled3 mutant mouse embryos, and was aberrant following inhibition of Wnt function by secreted Frizzled-related proteins. We also show the involvement of the Wnt/PCP pathway in mammalian FBM neuron migration. Thus, mutations in two PCP genes, Vangl2 and Scribble, caused severe defects in FBM migration. Inhibition of JNK and ROCK kinases strongly and specifically reduced the FBM migration, as well as blocked the chemoattractant effects of ectopic Wnt proteins. Conclusion These results provide in vivo evidence that Wnts chemoattract mammalian FBM neurons and that Wnt5a is a candidate to mediate this process. Molecules of the PCP pathway and the JNK and ROCK kinases also play a role in the FBM migration and are likely mediators of Wnt signalling.
Collapse
|
76
|
Chien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009; 129:1614-27. [PMID: 19177135 DOI: 10.1038/jid.2008.445] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It has been two decades since investigators discovered the link between the Drosophila wingless (Wg) gene and the vertebrate oncogene int-1, thus establishing the family of signaling proteins known as Wnts. Since the inception of the Wnt signaling field, there have been 19 Wnt isoforms identified in humans. These secreted glycoproteins can activate at least two distinct signaling pathways in vertebrate cells, leading to cellular changes that regulate a vast array of biological processes, including embryonic development, cell fate, cell proliferation, cell migration, stem cell maintenance, tumor suppression, and oncogenesis. In certain contexts, one subset of Wnt isoforms activates the canonical Wnt/beta-catenin pathway that is characterized by the activation of certain beta-catenin-responsive target genes in response to the binding of Wnt ligand to its cognate receptors. Similarly, a second subset of Wnt isoforms activates beta-catenin-independent pathways, including the Wnt/calcium (Wnt/Ca) pathway and the Wnt/planar cell polarity (Wnt/PCP) pathway, in certain cellular contexts. In addition, research has identified several secreted proteins known to regulate Wnt signaling, including the Dickkopf (DKK) family, secreted Frizzled-related proteins (sFRPs), and Wnt inhibitory factor-1 (WIF-1). The advent of technologies that can provide genome-wide expression data continues to implicate Wnts and proteins that regulate Wnt signaling pathways in a growing number of disease processes. The aim of this review is to provide a context on the Wnt field that will facilitate the interpretation and study of Wnt signaling in the context of human disease.
Collapse
Affiliation(s)
- Andy J Chien
- The University of Washington School of Medicine, Department of Medicine and the Institute for Stem Cell and Regenerative Medicine, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
77
|
Shh and ROCK1 modulate the dynamic epithelial morphogenesis in circumvallate papilla development. Dev Biol 2009; 325:273-80. [DOI: 10.1016/j.ydbio.2008.10.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/23/2008] [Accepted: 10/25/2008] [Indexed: 11/23/2022]
|
78
|
Yin C, Ciruna B, Solnica-Krezel L. Chapter 7 Convergence and Extension Movements During Vertebrate Gastrulation. Curr Top Dev Biol 2009; 89:163-92. [DOI: 10.1016/s0070-2153(09)89007-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
79
|
Cervantes S, Yamaguchi TP, Hebrok M. Wnt5a is essential for intestinal elongation in mice. Dev Biol 2008; 326:285-94. [PMID: 19100728 DOI: 10.1016/j.ydbio.2008.11.020] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/15/2008] [Accepted: 11/25/2008] [Indexed: 11/20/2022]
Abstract
Morphogenesis of the mammalian small intestine entails extensive elongation and folding of the primitive gut into a tightly coiled digestive tube. Surprisingly, little is known about the cellular and molecular mechanisms that mediate the morphological aspects of small intestine formation. Here, we demonstrate that Wnt5a, a member of the Wnt family of secreted proteins, is essential for the development and elongation of the small intestine from the midgut region. We found that the small intestine in mice lacking Wnt5a was dramatically shortened and duplicated, forming a bifurcated lumen instead of a single tube. In addition, cell proliferation was reduced and re-intercalation of post-mitotic cells into the elongating gut tube epithelium was disrupted. Thus, our study demonstrates that Wnt5a functions as a critical regulator of midgut formation and morphogenesis in mammals.
Collapse
Affiliation(s)
- Sara Cervantes
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
80
|
Lai SL, Chan TH, Lin MJ, Huang WP, Lou SW, Lee SJ. Diaphanous-related formin 2 and profilin I are required for gastrulation cell movements. PLoS One 2008; 3:e3439. [PMID: 18941507 PMCID: PMC2565064 DOI: 10.1371/journal.pone.0003439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/14/2008] [Indexed: 11/18/2022] Open
Abstract
Intensive cellular movements occur during gastrulation. These cellular movements rely heavily on dynamic actin assembly. Rho with its associated proteins, including the Rho-activated formin, Diaphanous, are key regulators of actin assembly in cellular protrusion and migration. However, the function of Diaphanous in gastrulation cell movements remains unclear. To study the role of Diaphanous in gastrulation, we isolated a partial zebrafish diaphanous-related formin 2 (zdia2) clone with its N-terminal regulatory domains. The GTPase binding domain of zDia2 is highly conserved compared to its mammalian homologues. Using a yeast two-hybrid assay, we showed that zDia2 interacts with constitutively-active RhoA and Cdc42. The zdia2 mRNAs were ubiquitously expressed during early embryonic development in zebrafish as determined by RT-PCR and whole-mount in situ hybridization analyses. Knockdown of zdia2 by antisense morpholino oligonucleotides (MOs) blocked epiboly formation and convergent extension in a dose-dependent manner, whereas ectopic expression of a human mdia gene partially rescued these defects. Time-lapse recording further showed that bleb-like cellular processes of blastoderm marginal deep marginal cells and pseudopod-/filopod-like processes of prechordal plate cells and lateral cells were abolished in the zdia2 morphants. Furthermore, zDia2 acts cell-autonomously since transplanted zdia2-knockdown cells exhibited low protrusive activity with aberrant migration in wild type host embryos. Lastly, co-injection of antisense MOs of zdia2 and zebrafish profilin I (zpfn 1), but not zebrafish profilin II, resulted in a synergistic inhibition of gastrulation cell movements. These results suggest that zDia2 in conjunction with zPfn 1 are required for gastrulation cell movements in zebrafish.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Tun-Hao Chan
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Meng-Ju Lin
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Wei-Pang Huang
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Show-Wan Lou
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Institute of Zoology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
81
|
K-ras/PI3K-Akt signaling is essential for zebrafish hematopoiesis and angiogenesis. PLoS One 2008; 3:e2850. [PMID: 18682746 PMCID: PMC2483249 DOI: 10.1371/journal.pone.0002850] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 06/20/2008] [Indexed: 12/31/2022] Open
Abstract
The RAS small GTPases orchestrate multiple cellular processes. Studies on knock-out mice showed the essential and sufficient role of K-RAS, but not N-RAS and H-RAS in embryonic development. However, many physiological functions of K-RAS in vivo remain unclear. Using wild-type and fli1:GFP transgenic zebrafish, we showed that K-ras-knockdown resulted in specific hematopoietic and angiogenic defects, including the impaired expression of erythroid-specific gene gata1 and ße3-hemoglobin, reduced blood circulation and disorganized blood vessels. Expression of either K-rasC40 that links to phosphoinositide 3-kinase (PI3K) activation, or Akt2 that acts downstream of PI3K, could rescue both hematopoietic and angiogenic defects in the K-ras knockdown. Consistently, the functional rescue by k-ras mRNA was significantly suppressed by wortmannin, a PI3K-specific inhibitor. Our results provide direct evidence that PI3K-Akt plays a crucial role in mediating K-ras signaling during hematopoiesis and angiogenesis in vivo, thus offering new targets and alternative vertebrate model for studying these processes and their related diseases.
Collapse
|
82
|
Vervenne HBVK, Crombez KRMO, Lambaerts K, Carvalho L, Köppen M, Heisenberg CP, Van de Ven WJM, Petit MMR. Lpp is involved in Wnt/PCP signaling and acts together with Scrib to mediate convergence and extension movements during zebrafish gastrulation. Dev Biol 2008; 320:267-77. [PMID: 18582857 DOI: 10.1016/j.ydbio.2008.05.529] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 05/09/2008] [Accepted: 05/09/2008] [Indexed: 01/03/2023]
Abstract
The zyxin-related LPP protein is localized at focal adhesions and cell-cell contacts and is involved in the regulation of smooth muscle cell migration. A known interaction partner of LPP in human is the tumor suppressor protein SCRIB. Knocking down scrib expression during zebrafish embryonic development results in defects of convergence and extension (C&E) movements, which occur during gastrulation and mediate elongation of the anterior-posterior body axis. Mediolateral cell polarization underlying C&E is regulated by a noncanonical Wnt signaling pathway constituting the vertebrate planar cell polarity (PCP) pathway. Here, we investigated the role of Lpp during early zebrafish development. We show that morpholino knockdown of lpp results in defects of C&E, phenocopying noncanonical Wnt signaling mutants. Time-lapse analysis associates the defective dorsal convergence movements with a reduced ability to migrate along straight paths. In addition, expression of Lpp is significantly reduced in Wnt11 morphants and in embryos overexpressing Wnt11 or a dominant-negative form of Rho kinase 2, which is a downstream effector of Wnt11, suggesting that Lpp expression is dependent on noncanonical Wnt signaling. Finally, we demonstrate that Lpp interacts with the PCP protein Scrib in zebrafish, and that Lpp and Scrib cooperate for the mediation of C&E.
Collapse
Affiliation(s)
- Hilke B V K Vervenne
- Laboratory for Molecular Oncology, Department of Human Genetics, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Verkade H, Heath JK. Wnt signaling mediates diverse developmental processes in zebrafish. Methods Mol Biol 2008; 469:225-51. [PMID: 19109714 DOI: 10.1007/978-1-60327-469-2_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A combination of forward and reverse genetic approaches in zebrafish has revealed novel roles for canonical Wnt and Wnt/PCP signaling during vertebrate development. Forward genetics in zebrafish provides an exceptionally powerful tool to assign roles in vertebrate developmental processes to novel genes, as well as elucidating novel roles played by known genes. This has indeed turned out to be the case for components of the canonical Wnt signaling pathway. Non-canonical Wnt signaling in the zebrafish is also currently a topic of great interest, due to the identified roles of this pathway in processes requiring the integration of cell polarity and cell movement, such as the directed migration movements that drive the narrowing and lengthening (convergence and extension) of the embryo during early development.
Collapse
Affiliation(s)
- Heather Verkade
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
84
|
Hogan BM, Verkade H, Lieschke GJ, Heath JK. Manipulation of gene expression during zebrafish embryonic development using transient approaches. Methods Mol Biol 2008; 469:273-300. [PMID: 19109716 DOI: 10.1007/978-1-60327-469-2_19] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid embryonic development and high fecundity of zebrafish contribute to the great advantages of this model for the study of developmental genetics. Transient disruption of the normal function of a gene during development can be achieved by microinjecting mRNA, DNA or short chemically stabilized anti-sense oligomers, called morpholinos (MOs), into early zebrafish embryos. The ensuing develop ment of the microinjected embryos is observed over the following hours and days to analyze the impact of the microinjected products on embryogenesis. Compared to stable reverse genetic approaches (sta ble transgenesis, targeted mutants recovered by TILLING), these transient reverse genetic approaches are vastly quicker, relatively affordable, and require little animal facility space. Common applications of these methodologies allow analysis of gain-of-function (gene overexpression or dominant active), loss-of-function (gene knock down or dominant negative), mosaic analysis, lineage-restricted studies and cell tracing experiments. The use of these transient approaches for the manipulation of gene expression has improved our understanding of many key developmental pathways including both the Wnt/beta-catenin and Wnt/PCP pathways, as covered in some detail in Chapter 17 of this book. This chapter describes the most common and versatile approaches: gain of function and loss of function using DNA and mRNA injections and loss of function using MOs.
Collapse
Affiliation(s)
- Benjamin M Hogan
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584, CT Utrecht, The Netherlands
| | | | | | | |
Collapse
|
85
|
James RG, Conrad WH, Moon RT. Beta-catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods Mol Biol 2008; 468:131-44. [PMID: 19099251 DOI: 10.1007/978-1-59745-249-6_10] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Wnt signaling activates several distinct intracellular pathways, which are important for cell proliferation, differentiation, and polarity. Wnt proteins are secreted molecules that typically signal across the membrane via interaction with the transmembrane receptor Frizzled. Following interaction with Frizzled, the downstream effect of the most widely studied Wnt pathway is stabilization and nuclear translocation of the cytosolic protein, beta-catenin. In this chapter, we discuss two beta-catenin-independent branches of Wnt signaling: 1) Wnt/planar cell polarity (PCP), a Wnt pathway that signals through the small GTPases, Rho and Rac, to promote changes in the actin cytoskeleton, and 2) Wnt/Ca2+, a Wnt pathway that promotes intracellular calcium transients and negatively regulates the Wnt/beta-catenin pathway. Finally, during the course of our discussion, we highlight areas that require future research.
Collapse
Affiliation(s)
- Richard G James
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | |
Collapse
|
86
|
Liu F, Kohlmeier S, Wang CY. Wnt signaling and skeletal development. Cell Signal 2007; 20:999-1009. [PMID: 18164181 DOI: 10.1016/j.cellsig.2007.11.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/07/2007] [Accepted: 11/18/2007] [Indexed: 12/17/2022]
Abstract
Wnt proteins are a family of secreted proteins that regulate many aspects of cellular functions. The discovery that mutations in low-density lipoprotein receptor-related protein 5, a putative Wnt coreceptor, could positively and negatively affect bone mass in humans generated an enormous amount of interest in the possible role of the Wnt signaling pathway in skeletal biology. Over the last decade, considerable progress has been made in determining the role of the canonical Wnt signaling pathway in various aspects of skeletal development. Furthermore, recent evidence indicates the important role of non-canonical Wnt signaling in skeletal development. In this review we discuss the current understanding of the role of Wnt signaling in chondrogenesis, osteoblastogenesis, and osteoclastogenesis.
Collapse
Affiliation(s)
- Fei Liu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
87
|
Zhu S, Korzh V, Gong Z, Low BC. RhoA prevents apoptosis during zebrafish embryogenesis through activation of Mek/Erk pathway. Oncogene 2007; 27:1580-9. [PMID: 17873909 DOI: 10.1038/sj.onc.1210790] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RhoA small GTPase, as a key regulator for actin cytoskeletal rearrangement, plays pivotal roles during morphogenesis, cytokinesis, phagocytosis and cell migration, but little is known about its signaling mechanism that controls cell survival in vivo. Using zebrafish as a model, we show that non-overlapping antisense morpholinos that block either translation or splicing of rhoA lead to extensive apoptosis during embryogenesis, resulting in overall reduction of body size and body length. These defects are associated with reduced activation of growth-promoting Erk and decreased expression of anti-apoptotic bcl-2. Moreover, ectopic expression of rhoA, Mek or BCL-2 mRNA rescues such phenotypes. Consistently, combined suppression of RhoA and Mek/Erk or Bcl-2 pathways by sub-optimal dose of rhoA morpholino and pharmacological inhibitors for either Mek (U0126) or Bcl-2 (HA 14-1) can induce developmental abnormalities and enhanced apoptosis, similar to those caused by effective RhoA knockdown. Furthermore, U0126 abrogates the rescue by RhoA and MEK but not BCL-2. In contrast, HA 14-1 effectively abolishes all functional rescues by RhoA, MEK or BCL-2, supporting that RhoA prevents apoptosis by activation of Mek/Erk pathway and requiring Bcl-2. These findings reveal an important genetic and functional relationship between RhoA with Mek/Erk and Bcl-2 for cell survival control during embryogenesis.
Collapse
Affiliation(s)
- S Zhu
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
88
|
Hayashi K, Burghardt RC, Bazer FW, Spencer TE. WNTs in the ovine uterus: potential regulation of periimplantation ovine conceptus development. Endocrinology 2007; 148:3496-506. [PMID: 17431004 DOI: 10.1210/en.2007-0283] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
WNTs (Wingless-type MMTV integration site family member) are involved in critical developmental and growth processes in animals. These studies investigated WNT pathways in the ovine uterus and conceptus during the periimplantation period of pregnancy. WNT2 and WNT2B mRNAs were detected in endometrial stroma. WNT5A and WNT5B mRNAs were most abundant in the stroma and less so in the luminal epithelium, whereas WNT11 mRNA was detected primarily in the glands. WNT7A mRNA was present in the luminal epithelium on d 10, absent on d 12 and 14, and increased between d 16 and 20. Only WNT2, WNT2B, and WNT4 were detected in conceptus trophectoderm. FZD6/8 (frizzled receptor) and GSK3B (glycogen synthase kinase 3beta) mRNAs were detected primarily in endometrial epithelia and conceptus trophectoderm, whereas the LRP5/6 (low-density lipoprotein receptor-related proteins 5 and 6) coreceptor was present in all endometrial cells and the trophectoderm. DKK1 (Dickkopf), a WNT signaling inhibitor, increased in the endometrium from d 16-20. CTNNB1 [catenin (cadherin associated protein) beta1] and CDH1 (E-cadherin) mRNAs were most abundant in the endometrial epithelia and trophectoderm. LEF1 (lymphoid enhancer-binding factor 1) mRNA was expressed primarily in uterine epithelia, whereas TCF7L2 [(transcription factor 7-like 2 (T-cell specific, HMG-box)] was primarily in the conceptus. CTNNB1 and TCF7L2 proteins were both abundant in the nuclei of trophoblast giant binucleate cells. WNT7A stimulated a TCF/LEF-luciferase reporter activity in ovine trophectoderm cells that was inhibited by dominant-negative TCF and Sfrp2 (secreted FZD-related protein 2). WNT7A increased trophectoderm cell proliferation as well as MSX2 (msh homeobox 2) and MYC (myelocytomatosis oncogene) mRNA levels. Wnt5a increased trophectoderm cell migration in a Rho kinase-dependent manner. These results support the hypotheses that canonical and noncanonical WNT signaling pathways are conserved regulators of conceptus-endometrial interactions in mammals and regulate periimplantation ovine conceptus development.
Collapse
Affiliation(s)
- K Hayashi
- Center for Animal Biotechnology and Genomics, 442 Kleberg Center, 2471 TAMU, Texas A & M University, College Station, Texas 77843-2471, USA
| | | | | | | |
Collapse
|
89
|
Miyasaka KY, Kida YS, Sato T, Minami M, Ogura T. Csrp1 regulates dynamic cell movements of the mesendoderm and cardiac mesoderm through interactions with Dishevelled and Diversin. Proc Natl Acad Sci U S A 2007; 104:11274-9. [PMID: 17592114 PMCID: PMC2040889 DOI: 10.1073/pnas.0702000104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zebrafish Csrp1 is a member of the cysteine- and glycine-rich protein (CSRP) family and is expressed in the mesendoderm and its derivatives. Csrp1 interacts with Dishevelled 2 (Dvl2) and Diversin (Div), which control cell morphology and other dynamic cell behaviors via the noncanonical Wnt and JNK pathways. When csrp1 message is knocked down, abnormal convergent extension cell movement is induced, resulting in severe deformities in midline structures. In addition, cardiac bifida is induced as a consequence of defects in cardiac mesoderm cell migration. Our data highlight Csrp1 as a key molecule of the noncanonical Wnt pathway, which orchestrates cell behaviors during dynamic morphogenetic movements of tissues and organs.
Collapse
Affiliation(s)
- Kota Y. Miyasaka
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Yasuyuki S. Kida
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takayuki Sato
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Mari Minami
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
90
|
Besser J, Leito JTD, van der Meer DLM, Bagowski CP. Tip-1 induces filopodia growth and is important for gastrulation movements during zebrafish development. Dev Growth Differ 2007; 49:205-14. [PMID: 17394599 DOI: 10.1111/j.1440-169x.2007.00921.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Wnt signaling is essential during animal development and also plays important roles in pathological conditions. Two mayor pathways have been described: the beta-catenin-dependent canonical (or classical) pathway and the beta-catenin-independent non-canonical Wnt pathway. Recent binding studies suggest links between the small PDZ protein TIP-1 (Tax-1 interacting protein) to components of both Wnt pathways. We have cloned and characterized the zebrafish tip-1 gene. Whole mount in situ hybridization and semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR) indicated that zebrafish tip-1 is present as a maternal RNA and is ubiquitously expressed during early development. After 24 h of development, tip-1 expression was high in the central nervous system (CNS) whereas only weak expression was detected in the caudal regions of the zebrafish embryo. Tip-1 knockdown using antisense morpholino oligonucleotides, as well as ectopic tip-1 expression, led to elongation defects in zebrafish embryos and larvae. Both knockdown and overexpression of tip-1 resulted in a widened goosecoid (gsc) expression domain in shield stage embryos, led to an abbreviated prechordal plate, and to reduced convergent extension movements during gastrulation. We constructed a green fluorescence protein (GFP)/TIP-1 fusion protein which, when expressed in cultured fibroblasts (ZF4-cells), induced filopodia growth. Our observations indicate a role for TIP-1 in gastrulation movements and in filopodia growth induction.
Collapse
Affiliation(s)
- Jaya Besser
- Department of Moleclar Cellular Biology, University of Leiden, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
91
|
Kawai N, Iida Y, Kumano G, Nishida H. Nuclear accumulation of β-catenin and transcription of downstream genes are regulated by zygotic Wnt5α and maternal Dsh in ascidian embryos. Dev Dyn 2007; 236:1570-82. [PMID: 17474118 DOI: 10.1002/dvdy.21169] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear beta-catenin plays crucial roles in the establishment of the embryonic axis and formation of mesendoderm tissues in ascidians and other animals. However, the cue responsible for nuclear accumulation of beta-catenin in the vegetal hemisphere is still unknown in ascidians. Here, we investigated the roles of Wnt5alpha and Dsh in the nuclear accumulation of beta-catenin and activation of its downstream genes in the ascidian Halocynthia roretzi. Wnt5alpha knockdown embryos lost nuclear accumulation of beta-catenin at the 64-cell stage but not at the 32-cell stage, and expression of Hr-lim, one of the targets of beta-catenin, was impaired in the anterior region of the embryo. Zygotic Wnt5alpha expression in the anterior-vegetal blastomeres was primarily responsible for these defects. Dsh knockdown showed no effect on nuclear localization of beta-catenin, but inhibited Hr-lim expression in the posterior region. These results suggest that maintenance of nuclear Hr-beta-catenin after the 64-cell stage is regulated by zygotic Hr-Wnt5alpha, and that expression of its target genes is modulated by both Hr-Wnt5alpha and Hr-Dsh. Our results also highlight the importance of nuclear accumulation of beta-catenin up to the 32-cell stage through a still unclarified mechanism.
Collapse
Affiliation(s)
- Narudo Kawai
- Department of Biological Sciences, Graduate School of Sciences, Osaka University, Osaka, Japan.
| | | | | | | |
Collapse
|
92
|
Panizzi JR, Jessen JR, Drummond IA, Solnica-Krezel L. New functions for a vertebrate Rho guanine nucleotide exchange factor in ciliated epithelia. Development 2007; 134:921-31. [PMID: 17267448 DOI: 10.1242/dev.02776] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human ARHGEF11, a PDZ-domain-containing Rho guanine nucleotide exchange factor (RhoGEF), has been studied primarily in tissue culture, where it exhibits transforming ability, associates with and modulates the actin cytoskeleton, regulates neurite outgrowth, and mediates activation of Rho in response to stimulation by activated Galpha12/13 or Plexin B1. The fruit fly homolog, RhoGEF2, interacts with heterotrimeric G protein subunits to activate Rho, associates with microtubules, and is required during gastrulation for cell shape changes that mediate epithelial folding. Here, we report functional characterization of a zebrafish homolog of ARHGEF11 that is expressed ubiquitously at blastula and gastrula stages and is enriched in neural tissues and the pronephros during later embryogenesis. Similar to its human homolog, zebrafish Arhgef11 stimulated actin stress fiber formation in cultured cells, whereas overexpression in the embryo of either the zebrafish or human protein impaired gastrulation movements. Loss-of-function experiments utilizing a chromosomal deletion that encompasses the arhgef11 locus, and antisense morpholino oligonucleotides designed to block either translation or splicing, produced embryos with ventrally-curved axes and a number of other phenotypes associated with ciliated epithelia. Arhgef11-deficient embryos often exhibited altered expression of laterality markers, enlarged brain ventricles, kidney cysts, and an excess number of otoliths in the otic vesicles. Although cilia formed and were motile in these embryos, polarized distribution of F-actin and Na(+)/K(+)-ATPase in the pronephric ducts was disturbed. Our studies in zebrafish embryos have identified new, essential roles for this RhoGEF in ciliated epithelia during vertebrate development.
Collapse
Affiliation(s)
- Jennifer R Panizzi
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
93
|
Kim DJ, Park CS, Yoon JK, Song WK. Differential expression of theWnt andFrizzled genes in Flk1+ cells derived from mouse ES cells. Cell Biochem Funct 2007; 26:24-32. [PMID: 17154359 DOI: 10.1002/cbf.1391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Embryonic stem (ES) cells have the potential to develop into various cell lineages including hemangioblasts (Flk1+), a common progenitor for hematopoietic and vascular endothelial cells. Previous studies indicate that Flk1+ cells, a marker for hemangioblast, can be derived from ES cell and that Flk1+ can be differentiated into hematopoietic or endothelial cells depending on culture conditions. We developed an improved in vitro system to generate Flk1+-enriched cultures from mouse ES cells and used this in vitro system to study the role of Wnt signalling in early endothelial progenitor cells. We determined the expression of the Wnt and Frizzled genes in Flk1+ cells derived from mouse ES cells. RT-PCR analyses identified significantly higher expression of non-canonical Wnt5a and Wnt11 genes in Flk1+ cells compared to Flk1- cells. In contrast, expression of canonical Wnt3a gene was reduced in Flk1+ cells. In addition, Frizzled2, Frizzled5 and Frizzled7 genes were also expressed at a higher level in Flk1+ cells. The differential expression of Wnt and Frizzled genes in Flk1+ cells provides a novel insight into the role of non-canonical Wnt signalling in vascular endothelial fate determination.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Life Science and Molecular Disease Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | |
Collapse
|
94
|
Rohde LA, Heisenberg CP. Zebrafish Gastrulation: Cell Movements, Signals, and Mechanisms. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:159-92. [PMID: 17560282 DOI: 10.1016/s0074-7696(07)61004-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastrulation is a morphogenetic process that results in the formation of the embryonic germ layers. Here we detail the major cell movements that occur during zebrafish gastrulation: epiboly, internalization, and convergent extension. Although gastrulation is known to be regulated by signaling pathways such as the Wnt/planar cell polarity pathway, many questions remain about the underlying molecular and cellular mechanisms. Key factors that may play a role in gastrulation cell movements are cell adhesion and cytoskeletal rearrangement. In addition, some of the driving force for gastrulation may derive from tissue interactions such as those described between the enveloping layer and the yolk syncytial layer. Future exploration of gastrulation mechanisms relies on the development of sensitive and quantitative techniques to characterize embryonic germ-layer properties.
Collapse
Affiliation(s)
- Laurel A Rohde
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | |
Collapse
|
95
|
Witzel S, Zimyanin V, Carreira-Barbosa F, Tada M, Heisenberg CP. Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane. ACTA ACUST UNITED AC 2006; 175:791-802. [PMID: 17130287 PMCID: PMC2064678 DOI: 10.1083/jcb.200606017] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wnt11 is a key signal, determining cell polarization and migration during vertebrate gastrulation. It is known that Wnt11 functionally interacts with several signaling components, the homologues of which control planar cell polarity in Drosophila melanogaster. Although in D. melanogaster these components are thought to polarize cells by asymmetrically localizing at the plasma membrane, it is not yet clear whether their subcellular localization plays a similarly important role in vertebrates. We show that in zebrafish embryonic cells, Wnt11 locally functions at the plasma membrane by accumulating its receptor, Frizzled 7, on adjacent sites of cell contacts. Wnt11-induced Frizzled 7 accumulations recruit the intracellular Wnt signaling mediator Dishevelled, as well as Wnt11 itself, and locally increase cell contact persistence. This increase in cell contact persistence is mediated by the local interaction of Wnt11, Frizzled 7, and the atypical cadherin Flamingo at the plasma membrane, and it does not require the activity of further downstream effectors of Wnt11 signaling, such as RhoA and Rok2. We propose that Wnt11, by interacting with Frizzled 7 and Flamingo, modulates local cell contact persistence to coordinate cell movements during gastrulation.
Collapse
Affiliation(s)
- Sabine Witzel
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
96
|
Rao PV, Maddala R. The role of the lens actin cytoskeleton in fiber cell elongation and differentiation. Semin Cell Dev Biol 2006; 17:698-711. [PMID: 17145190 PMCID: PMC1803076 DOI: 10.1016/j.semcdb.2006.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The vertebrate ocular lens is a fascinating and unique transparent tissue that grows continuously throughout life. During the process of differentiation into fiber cells, lens epithelial cells undergo dramatic morphological changes, membrane remodeling, polarization, transcriptional activation and elimination of cellular organelles including nuclei, concomitant with migration towards the lens interior. Most of these events are presumed to be influenced in large part, by dynamic reorganization of the cellular actin cytoskeleton and by intercellular and cell: extracellular matrix interactions. In light of recent and unprecedented advancement in our understanding of the mechanistic bases underlying regulation of actin cytoskeletal dynamics and the role of the actin cytoskeleton in cell function, this review attempts to summarize current knowledge regarding the role of the cellular actin cytoskeleton, in lens fiber cell elongation and differentiation, and regulation of actin cytoskeletal organization in the lens.
Collapse
Affiliation(s)
- P Vasantha Rao
- Departments of Ophthalmology, Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| | | |
Collapse
|
97
|
Beane WS, Gross JM, McClay DR. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Dev Biol 2006; 292:213-25. [PMID: 16458878 DOI: 10.1016/j.ydbio.2005.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/06/2005] [Accepted: 12/14/2005] [Indexed: 10/25/2022]
Abstract
During gastrulation, the archenteron is formed using cell shape changes, cell rearrangements, filopodial extensions, and convergent extension movements to elongate and shape the nascent gut tube. How these events are coordinated remains unknown, although much has been learned from careful morphological examinations and molecular perturbations. This study reports that RhoA is necessary to trigger archenteron invagination in the sea urchin embryo. Inhibition of RhoA results in a failure to initiate invagination movements, while constitutively active RhoA induces precocious invagination of the archenteron, complete with the actin rearrangements and extracellular matrix secretions that normally accompany the onset of invagination. Although RhoA activity has been reported to control convergent extension movements in vertebrate embryos, experiments herein show that RhoA activity does not regulate convergent extension movements during sea urchin gastrulation. Instead, the results support the hypothesis that RhoA serves as a trigger to initiate invagination, and once initiation occurs, RhoA activity is no longer involved in subsequent gastrulation movements.
Collapse
Affiliation(s)
- Wendy S Beane
- Department of Biology, Developmental, Cell and Molecular Group, Duke University, PO Box 91000, Durham, NC 27708, USA.
| | | | | |
Collapse
|