51
|
Li P, Ying J, Chang Q, Zhu W, Yang G, Xu T, Yi H, Pan R, Zhang E, Zeng X, Yan C, Bao Q, Li S. Effects of phycoerythrin from Gracilaria lemaneiformis in proliferation and apoptosis of SW480 cells. Oncol Rep 2016; 36:3536-3544. [PMID: 27748904 DOI: 10.3892/or.2016.5162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/29/2016] [Indexed: 11/06/2022] Open
Abstract
We studied phycoerythrin (PE) in human SW480 tumor cells and the underlying molecular mechanisms of action. PE inhibited cell proliferation as evidenced by CCK-8 assay. The IC50 values of phycoerythrin were 48.2 and 27.4 µg/ml for 24 and 48 h of exposure, respectively. PE induced apoptosis and cell cycle arrest in SW480 cells as observed under electron microscopy and with flow cytometry. Apoptosis increased from 5.1 (controls) to 39.0% in 80.0 µg/ml PE-treated cells. Differences in protein expression were identified using proteomic techniques. Protein spots (1018±60 and 1010±60) were resolved in PE-treated and untreated group. Forty differential protein spots were analyzed with MALDI-TOF-MS, including GRP78 and NPM1. The expression as measured by qPCR and western blotting agreed with data from two-dimensional electrophoresis. GRP78, NPM1, MTHSP75, Ezrin and Annexin A2 were decreased and HSP60 was increased after PE treatment, indicating that PE may target multiple proteins to induce apoptosis.
Collapse
Affiliation(s)
- Peizhen Li
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Jun Ying
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Qingli Chang
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wen Zhu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guangjian Yang
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Teng Xu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Huiguang Yi
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Ruowang Pan
- 118 Hospital of PLA, Wenzhou, Zhejiang 325000, P.R. China
| | - Enyong Zhang
- 118 Hospital of PLA, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Chunxia Yan
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shengbin Li
- School of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
52
|
Wang Y, Deng J, Guo G, Tong A, Peng X, Chen H, Xu J, Liu Y, You C, Zhou L. Clinical and prognostic role of annexin A2 in adamantinomatous craniopharyngioma. J Neurooncol 2016; 131:21-29. [DOI: 10.1007/s11060-016-2273-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
|
53
|
Wang T, Yuan J, Zhang J, Tian R, Ji W, Zhou Y, Yang Y, Song W, Zhang F, Niu R. Anxa2 binds to STAT3 and promotes epithelial to mesenchymal transition in breast cancer cells. Oncotarget 2016; 6:30975-92. [PMID: 26307676 PMCID: PMC4741582 DOI: 10.18632/oncotarget.5199] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 08/09/2015] [Indexed: 12/31/2022] Open
Abstract
Overexpression of annexin A2 (Anxa2) is correlated with invasion and metastasis in breast cancer cells. In this study, breast cancer patients with upregulated Anxa2 exhibited poor overall and disease-free survival rates. Anxa2 expression was also positively correlated with the expression of epidermal growth factor receptor (EGFR) and epithelial–mesenchymal transition (EMT) markers in breast cancer tissues and cell lines. Moreover, knockdown of Anxa2 impaired EGF-induced EMT, as well as the migration and invasion of breast cancer cells in vitro. Meanwhile, Anxa2 depletion significantly ablated pulmonary metastasis in a severe combined immunodeficiency mouse model of breast cancer. Importantly, Anxa2 reduction inhibited EGF-induced activation of STAT3, which is required for EGF-induced EMT. Anxa2 directly bound to STAT3 and enhanced its transcriptional activity, thereby indicating that Anxa2 promotes EGF-induced EMT in a STAT3-dependent manner. Our findings provide clinical evidence that Anxa2 is a poor prognostic factor for breast cancer and reveal a novel mechanism through which Anxa2 promotes breast cancer metastasis.
Collapse
Affiliation(s)
- Tong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Jie Yuan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Jie Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Ran Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Wei Ji
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Yan Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Yi Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Weijie Song
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Fei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Ruifang Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| |
Collapse
|
54
|
Meier EM, Rein-Fischboeck L, Pohl R, Wanninger J, Hoy AJ, Grewal T, Eisinger K, Krautbauer S, Liebisch G, Weiss TS, Buechler C. Annexin A6 protein is downregulated in human hepatocellular carcinoma. Mol Cell Biochem 2016; 418:81-90. [PMID: 27334756 DOI: 10.1007/s11010-016-2735-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
Abstract
Annexin A6 (AnxA6) is a lipid-binding protein highly expressed in the liver, regulating cholesterol homeostasis and signaling pathways with a role in liver physiology. Here, we analyzed whether hepatic AnxA6 levels are affected by pathological conditions that are associated with liver dysfunction and liver injury. AnxA6 levels in the fatty liver of mice fed a high-fat diet, in ob/ob and db/db animals and in human fatty liver are comparable to controls. Similarly, AnxA6 levels appear unaffected in murine nonalcoholic steatohepatitis and human liver fibrosis. Accordingly, adiponectin, lysophosphatidylcholine, palmitate, and TGFbeta, all of which have a role in liver injury, do not affect AnxA6 expression in human hepatocytes. Likewise, adiponectin and IL8 do not alter AnxA6 levels in primary human hepatic stellate cells. However, in hepatic tumors of 18 patients, AnxA6 protein levels are substantially reduced compared to nontumorous tissues. AnxA6 mRNA is even increased in the tumors suggesting that posttranscriptional mechanisms are involved herein. Lipidomic analysis shows trends toward elevated cholesteryl ester and sphingomyelin in the tumor samples, yet the ratio of tumor to nontumorous AnxA6 does not correlate with these lipids. The current study shows that AnxA6 is specifically reduced in human hepatocellular carcinoma suggesting a role of this protein in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Elisabeth M Meier
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Andrew J Hoy
- Department of Physiology, School of Medical Sciences and Bosch Institute, Sydney Medical School, Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Thomas S Weiss
- Regensburg University Hospital, University Children Hospital (KUNO), Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, 93042, Germany.
| |
Collapse
|
55
|
Corrado C, Saieva L, Raimondo S, Santoro A, De Leo G, Alessandro R. Chronic myelogenous leukaemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor. J Cell Mol Med 2016; 20:1829-39. [PMID: 27196940 PMCID: PMC4876029 DOI: 10.1111/jcmm.12873] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
Chronic myelogenous leukaemia (CML) is a clonal myeloproliferative disorder. Recent evidence indicates that altered crosstalk between CML and mesenchymal stromal cells may affect leukaemia survival; moreover, vesicles released by both tumour and non‐tumour cells into the microenvironment provide a suitable niche for cancer cell growth and survival. We previously demonstrated that leukaemic and stromal cells establish an exosome‐mediated bidirectional crosstalk leading to the production of IL8 in stromal cells, thus sustaining the survival of CML cells. Human cell lines used are LAMA84 (CML cells), HS5 (stromal cells) and bone marrow primary stromal cells; gene expression and protein analysis were performed by real‐time PCR and Western blot. IL8 and MMP9 secretions were evaluated by ELISA. Exosomes were isolated from CML cells and blood samples of CML patients. Here, we show that LAMA84 and CML patients’ exosomes contain amphiregulin (AREG), thus activating epidermal growth factor receptor (EGFR) signalling in stromal cells. EGFR signalling increases the expression of SNAIL and its targets, MMP9 and IL8. We also demonstrated that pre‐treatment of HS5 with LAMA84 exosomes increases the expression of annexin A2 that promotes the adhesion of leukaemic cells to the stromal monolayer, finally supporting the growth and invasiveness of leukaemic cells. Leukaemic and stromal cells establish a bidirectional crosstalk: exosomes promote proliferation and survival of leukaemic cells, both in vitro and in vivo, by inducing IL8 secretion from stromal cells. We propose that this mechanism is activated by a ligand–receptor interaction between AREG, found in CML exosomes, and EGFR in bone marrow stromal cells.
Collapse
Affiliation(s)
- Chiara Corrado
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli studi di Palermo, sezione di Biologia e Genetica, Palermo, Italy
| | - Laura Saieva
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli studi di Palermo, sezione di Biologia e Genetica, Palermo, Italy
| | - Stefania Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli studi di Palermo, sezione di Biologia e Genetica, Palermo, Italy
| | - Alessandra Santoro
- Divisione di Ematologia, A.O. Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Giacomo De Leo
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli studi di Palermo, sezione di Biologia e Genetica, Palermo, Italy
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche, Università degli studi di Palermo, sezione di Biologia e Genetica, Palermo, Italy.
| |
Collapse
|
56
|
Annexin A2 Coordinates STAT3 to Regulate the Invasion and Migration of Colorectal Cancer Cells In Vitro. Gastroenterol Res Pract 2016; 2016:3521453. [PMID: 27274723 PMCID: PMC4870365 DOI: 10.1155/2016/3521453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/11/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to reveal the expression of STAT3 and Anxa 2 in CRC specimens and to investigate the effects of STAT3 and Anxa 2 signaling on the proliferation, invasion, and migration in CRC Caco-2 cells. Results demonstrated that both Anxa 2 and STAT3 were highly expressed in CRC specimens in both mRNA and protein levels, with or without phosphorylation (Tyrosine 23 in Anxa 2 and Tyrosine 705 in STAT3). And the upregulated Anxa 2 promoted the phosphorylation of STAT3 (Tyrosine 705) in CRC Caco-2 cells. The upregulated Anxa 2 promoted the proliferation, migration, and invasion of Caco-2 cells in vitro. Moreover, the STAT3 knockdown also repressed the proliferation, migration, and invasion of Caco-2 cells. In conclusion, the overexpressed Annexin A2 regulated the proliferation, invasion, and migration in CRC cells in an association with STAT3.
Collapse
|
57
|
Annexin A6 regulates interleukin-2-mediated T-cell proliferation. Immunol Cell Biol 2016; 94:543-53. [PMID: 26853809 DOI: 10.1038/icb.2016.15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/10/2015] [Accepted: 01/10/2016] [Indexed: 02/06/2023]
Abstract
Annexin A6 (AnxA6) has been implicated in cell signalling by contributing to the organisation of the plasma membrane. Here we examined whether AnxA6 regulates signalling and proliferation in T cells. We used a contact hypersensitivity model to immune challenge wild-type (WT) and AnxA6(-/-) mice and found that the in vivo proliferation of CD4(+) T cells, but not CD8(+) T cells, was impaired in AnxA6(-/-) relative to WT mice. However, T-cell migration and signalling through the T-cell receptor ex vivo was similar between T cells isolated from AnxA6(-/-) and WT mice. In contrast, interleukin-2 (IL-2) signalling was reduced in AnxA6(-/-) compared with WT T cells. Further, AnxA6-deficient T cells had reduced membrane order and cholesterol levels. Taken together, our data suggest that AnxA6 regulates IL-2 homeostasis and sensitivity in T cells by sustaining a lipid raft-like membrane environment.
Collapse
|
58
|
Annexin A2 inhibits the migration of PASMCs stimulated with HPS rat serum by down-regulating the expression of paxillin. Biochem Biophys Res Commun 2016; 469:70-75. [PMID: 26616057 DOI: 10.1016/j.bbrc.2015.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Hepatopulmonary syndrome (HPS) has been classically associated with intrapulmonary vasodilatation (IPVD) and pulmonary vascular remodelling (PVR), which are the key pathophysiological components of HPS and concerned frequently in the studies of HPS. Little is known about the relevance of pulmonary artery smooth muscle cells (PASMCs) migration or the molecular mechanisms of PVR in HPS. Annexin A2 (ANXA2) plays crucial role in HPS-associated PVR and might activate the activity of paxillin which as a regulatory protein participates in the regulation of PASMCs function in PVR. In addition, it has been identified that ANXA2 could influence the cells migration by some important signaling pathways in many diseases, including lung cancer, pulmonary hypertensionand and liver cancer. In this study, we performed scratch wound motility assay, modified boyden chamber, reverse transcription PCR, western blot and co-immunoprecipitation to determine the role of ANXA2 on HPS-associated PVR. We found that HPS rat serum from a common bile duct ligation (CBDL) rat model enhanced the migration of PASMCs and increased the expression of ANXA2 in PASMCs. We reported that ANXA2 and paxillin could form a co-immunoprecipitation. After silencing ANXA2 with siRNA, we found that the up-regulation of paxillin expression, induced by the HPS rat serum, was reversed. Additionally, we found that down-regulation of ANXA2 could significantly inhibit the migration of PASMCs. These findings indicated that down-regulation of ANXA2 by siRNA results in the inhibition of the aberrant dysregulation of paxillin and migration of PASMCs, which suggesting a potential therapeutic effect on HPS-associated PVR.
Collapse
|
59
|
Shetty P, Bargale A, Patil BR, Mohan R, Dinesh US, Vishwanatha JK, Gai PB, Patil VS, Amsavardani TS. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells. Mol Cell Biochem 2015; 411:221-33. [PMID: 26438086 DOI: 10.1007/s11010-015-2584-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Overexpression and activation of tyrosine kinase receptors like EGFR and Src regulate the progression and metastasis of Her-2 negative breast cancer. Recently we have reported the role of cell membrane interaction of phospholipid-binding protein annexin A2 (AnxA2) and EGFR in regulating cellular signaling in the activation of angiogenesis, matrix degradation, invasion, and cancer metastasis. Beta-galactoside-specific animal lectin galectin-3 is an apoptosis inhibitor, and cell surface-associated extracellular galectin-3 also has a role in cell migration, cancer progression, and metastasis. Similar expression pattern and membrane co-localization of these two proteins made us to hypothesize in the current study that galectin-3 and AnxA2 interaction is critical for Her-2 negative breast cancer progression. By various experimental analyses, we confirm that glycosylated AnxA2 at the membrane surface interacts with galectin-3. N-linked glycosylation inhibitor tunicamycin treatment convincingly blocked AnxA2 membrane translocation and its association with galectin-3. To analyze whether this interaction has any functional relevance, we tried to dissociate this interaction with purified plant lectin from chickpea (Cicer arietinum agglutinin). This highly specific 30 kDa plant lectin could dissociate AnxA2 from endogenous lectin galectin-3 interaction at the cell surface. This dissociation could down-regulate Bcl-2 family proteins, cell proliferation, and migration simultaneously triggering cell apoptosis. Targeting this interaction of membrane surface glycoprotein and its animal lectin in Her-2 negative breast cancer may be of therapeutic value.
Collapse
Affiliation(s)
- Praveenkumar Shetty
- Central Research Laboratory, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India. .,Department of Biochemistry, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India.
| | - Anil Bargale
- Central Research Laboratory, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India.,Department of Biochemistry, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India
| | | | - Rajashekar Mohan
- Department of Surgery, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - U S Dinesh
- Department of Pathology, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Jamboor K Vishwanatha
- Department of Molecular Medicine, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX, USA
| | - Pramod B Gai
- Karnataka Institute of DNA Research, Dharwad, India
| | - Vidya S Patil
- Central Research Laboratory, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India.,Department of Biochemistry, SDM College of Medical Sciences & Hospital, Manjushree Nagar, Sattur, Dharwad, 580 009, India
| | - T S Amsavardani
- Department of Oral Pathology, Indira Gandhi Institute of Dental Sciences, Pondicherry, India
| |
Collapse
|
60
|
Leśniak W, Graczyk-Jarzynka A. The S100 proteins in epidermis: Topology and function. Biochim Biophys Acta Gen Subj 2015; 1850:2563-72. [PMID: 26409143 DOI: 10.1016/j.bbagen.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/20/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND S100 proteins are small calcium binding proteins encoded by genes located in the epidermal differentiation complex (EDC). Differently to other proteins encoded by EDC genes, which are indispensable for normal epidermal differentiation, the role of S100 proteins in the epidermis remains largely unknown. SCOPE OF REVIEW Particular S100 proteins differ in their distribution in epidermal layers, skin appendages, melanocytes and Langerhans cells. Taking into account that each epidermal component consists of specialized cells with well-defined functions, such differential distribution may be indicative of the function of a given S100 protein. We used this criterion together with the survey of the current experimental data pertinent to epidermis to provide a fairly comprehensive view on the possible function of individual S100 proteins in this tissue. MAJOR CONCLUSIONS S100 proteins are differently expressed and, despite extensive structural homology, perform diverse functions in the epidermis. Certain S100 proteins probably ensure constant epidermal renewal and support wound healing while others act in epidermal differentiation or have a protective role. As their expression is differently affected in various skin pathologies, particular S100 proteins could be valuable diagnostic markers. GENERAL SIGNIFICANCE S100 proteins seem to be important although not yet fully recognized epidermal constituents. Better understanding of their role in the epidermis might be helpful in designing therapies to various skin diseases.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Agnieszka Graczyk-Jarzynka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
61
|
Yan Q, Tang S, Tan Z, Han X, Zhou C, Kang J, Wang M. Proteomic Analysis of Isolated Plasma Membrane Fractions from the Mammary Gland in Lactating Cows. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7388-7398. [PMID: 26237224 DOI: 10.1021/acs.jafc.5b02231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The mammary gland of dairy cows is a formidable lipid-synthesizing machine for lactation. This unique function depends on the activities of plasma membrane (PM) proteins in mammary cells. Little information is known about the expression profiles of PM proteins and their functions during the lactating process. This study investigated the proteome map of PM fractions of mammary gland in lactating cows using 1D-Gel-LC-MS/MS and identified 872 nonredundant proteins with 141 unknown proteins, wherein 215 were PM-associated proteins. Most of the PM-associated proteins were binding, transport, and catalytic proteins such as annexin proteins, heat shock proteins, integrins, RAS oncogene family members, and S100 calcium binding proteins. The PM-associated pathways such as caveolae-mediated endocytosis, leukocyte extravasation, aldosterone signaling in epithelial cells, and remodeling of epithelial adherens junctions were also significantly over-represented. Proteomic analysis revealed the characteristics and predicted functions of PM proteins isolated from the lactating bovine mammary gland. These results further provide experimental evidence for the presence of many proteins predicted in the annotated bovine genome. The data generated here also provide a reference for the PM-related functional research in the mammary gland of lactating cows.
Collapse
Affiliation(s)
- Qiongxian Yan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Shaoxun Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Zhiliang Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Xuefeng Han
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Chuanshe Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Jinhe Kang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| | - Min Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Research Center of Livestock & Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, The Chinese Academy of Sciences , Changsha, Hunan 410125, People's Republic of China
| |
Collapse
|
62
|
Kpetemey M, Dasgupta S, Rajendiran S, Das S, Gibbs LD, Shetty P, Gryczynski Z, Vishwanatha JK. MIEN1, a novel interactor of Annexin A2, promotes tumor cell migration by enhancing AnxA2 cell surface expression. Mol Cancer 2015; 14:156. [PMID: 26272794 PMCID: PMC4536591 DOI: 10.1186/s12943-015-0428-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022] Open
Abstract
Background Migration and invasion enhancer 1 (MIEN1) is a novel gene found to be abundantly expressed in breast tumor tissues and functions as a critical regulator of tumor cell migration and invasion to promote systemic metastases. Previous studies have identified post-translational modifications by isoprenylation at the C-terminal tail of MIEN1 to favor its translocation to the inner leaflet of plasma membrane and its function as a membrane-bound adapter molecule. However, the exact molecular events at the membrane interface activating the MIEN1-driven tumor cell motility are vaguely understood. Methods MIEN1 was first studied using in-silico analysis on available RNA sequencing data of human breast tissues and its expression was ascertained in breast cells. We performed several assays including co-immunoprecipitation, wound healing, western blotting and immunofluorescence to decipher the molecular events involved in MIEN1-mediated tumor cell migration. Results Clinically, MIEN1 is predominantly overexpressed in Her-2 and luminal B subtypes of breast tumors, and its increased expression correlates with poor disease free survival. Molecular studies identified a phosphorylation-dependent activation signal in the immunoreceptor tyrosine based activation motif (ITAM) of MIEN1 and the phosphorylation-deficient MIEN1-mutants (Y39F/50 F) to regulate filopodia generation, migration and invasion. We found that ITAM-phosphorylation of MIEN1 is significantly impaired in isoprenylation-deficient MIEN1 mutants indicating that prenylation of MIEN1 and membrane association is required for cross-phosphorylation of tyrosine residues. Furthermore, we identified MIEN1 as a novel interactor of Annexin A2 (AnxA2), a Ca2+ -dependent phospholipid binding protein, which serves as an extracellular proteolytic center regulating plasmin generation. Fluorescence resonance energy transfer (FRET) confirmed that MIEN1 physically interacts with AnxA2 and functional studies revealed that they mutually cooperate to accentuate tumor cell motility. Interestingly, our study identified that ectopic overexpression of MIEN1 significantly enhances Tyr23-phosphorylation on AnxA2, thereby stimulating cell surface translocation of AnxA2 and catalyzing the activation of its proteolytic activity. Conclusion Our data show that the presence and interaction of both MIEN1 and AnxA2 in breast tumors are crucial drivers of cell motility. Our study has now deciphered a novel regulatory network governing the vicious process of breast tumor cell invasion-metastasis, and findings suggest MIEN1-AnxA2 as prospective targets to counter the deadly disease. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0428-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marilyne Kpetemey
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Subhamoy Dasgupta
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Smrithi Rajendiran
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Susobhan Das
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Lee D Gibbs
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Praveenkumar Shetty
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Zygmunt Gryczynski
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| | - Jamboor K Vishwanatha
- Department of Molecular and Medical Genetics and Institute for Cancer Research, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA. .,Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA. .,Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA.
| |
Collapse
|
63
|
Tsai JH, Lin YL, Cheng YC, Chen CC, Lin LI, Tseng LH, Cheng ML, Liau JY, Jeng YM. Aberrant expression of annexin A10 is closely related to gastric phenotype in serrated pathway to colorectal carcinoma. Mod Pathol 2015; 28:268-78. [PMID: 25081749 DOI: 10.1038/modpathol.2014.96] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
Abstract
Annexin A10 (ANXA10) is a member of the ANX family that is normally expressed in gastric mucosa. ANXA10 was recently observed to be upregulated in sessile serrated adenoma, a precursor to microsatellite-unstable colorectal cancer. We investigated the use of ANXA10 in diagnosing colorectal carcinoma. In an immunohistochemical analysis, the intensity and quantity of ANXA10, MUC5AC, MUC6 and CDX2 in 123 colorectal carcinomas were graded. We determined the molecular status of BRAF and KRAS mutations, as well as the microsatellite instability status and the CpG island methylator phenotype in all colorectal carcinomas, and subcategorized into four molecular subgroups according to the molecular derangements. Nuclear ANXA10 staining was present in 36 colorectal carcinomas, exhibiting a strong significant association with the BRAF mutation status (P<0.0001) and positive CpG island methylator phenotype (P<0.0001), and a borderline significant association with high levels of microsatellite instability (P=0.072). The ANXA10-positive colorectal carcinomas were frequently positive for MUC5AC and MUC6, and were associated with absent or reduced CDX2 expression (all P<0.0001). According to a classification and regression tree analysis, ANXA10 is a superior marker for the molecular subtyping of colorectal carcinomas and represents a specific marker for colorectal cancers of the serrated pathway. Our results indicated that ANXA10 expression is implicated in gastric programming in serrated-pathway-associated colorectal carcinoma. ANXA10-positive colorectal carcinoma is highly associated with the molecular features of the serrated neoplasia pathway.
Collapse
Affiliation(s)
- Jia-Huei Tsai
- 1] Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan [2] Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Lin Lin
- 1] Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan [2] Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Cheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chuan Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Liang-In Lin
- 1] Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan [2] Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Hui Tseng
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Ling Cheng
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jau-Yu Liau
- 1] Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan [2] Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Jeng
- 1] Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan [2] Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
64
|
Inhibition of triple-negative and Herceptin-resistant breast cancer cell proliferation and migration by Annexin A2 antibodies. Br J Cancer 2014; 111:2328-41. [PMID: 25321192 PMCID: PMC4264449 DOI: 10.1038/bjc.2014.542] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/13/2014] [Accepted: 09/17/2014] [Indexed: 12/19/2022] Open
Abstract
Background: Annexin A2 (AnxA2), a calcium-dependent phospholipid binding protein, is abundantly present at the surface of triple-negative and Herceptin-resistant breast cancer cells. Interactions between cell-surface AnxA2 and tyrosine kinase receptors have an important role in the tumour microenvironment and act together to enhance tumour growth. The mechanism supporting this role is still unknown. Methods: The membrane function of AnxA2 was blocked by incubating cells with anti-AnxA2 antibodies. Western blotting, immunoprecipitation, immunofluorescence, 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), flow cytometry, Clonogenic, and wound-healing assays were performed in this study. Results: We demonstrate that AnxA2 interacts with epidermal growth factor receptor (EGFR) at the cell surface and has an important role in cancer cell proliferation and migration by modulating EGFR functions. Blocking AnxA2 function at the cell surface by anti-AnxA2 antibody suppressed the EGF-induced EGFR tyrosine phosphorylation and internalisation by blocking its homodimerisation. Furthermore, addition of AnxA2 antibody significantly inhibited the EGFR-dependent PI3K-AKT and Raf-MEK-ERK downstream pathways under both EGF-induced and basal growth conditions, resulting in lower cell proliferation and migration. Conclusions: These findings suggest that cell-surface AnxA2 has an important regulatory role in EGFR-mediated oncogenic processes by keeping EGFR signalling events in an activated state. Therefore, AnxA2 could potentially be used as a therapeutic target in triple-negative and Herceptin-resistant breast cancers.
Collapse
|
65
|
Draeger A, Schoenauer R, Atanassoff AP, Wolfmeier H, Babiychuk EB. Dealing with damage: plasma membrane repair mechanisms. Biochimie 2014; 107 Pt A:66-72. [PMID: 25183513 DOI: 10.1016/j.biochi.2014.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/15/2014] [Indexed: 12/22/2022]
Abstract
Eukaryotic cells have developed repair mechanisms, which allow them to reseal their membrane in order to prevent the efflux of cytoplasmic constituents and the uncontrolled influx of calcium. After injury, the Ca(2+)-concentration gradient fulfils a dual function: it provides guidance cues for the repair machinery and directly activates the molecules, which have a repair function. Depending on the nature of injury, the morphology of the cell and the severity of injury, the membrane resealing can be effected by lysosomal exocytosis, microvesicle shedding or a combination of both. Likewise, exocytosis is often followed by the endocytic uptake of lesions. Additionally, since plasmalemmal resealing must be attempted, even after extensive injury in order to prevent cell lysis, the restoration of membrane integrity can be achieved by ceramide-driven invagination of the lipid bilayer, during which the cell is prepared for apoptotic disposal. Plasmalemmal injury can be contained by a surfeit of plasma membrane, which serves as a trap for toxic substances: either passively by an abundance of cellular protrusions, or actively by membrane blebbing.
Collapse
Affiliation(s)
- Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland.
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Alexander P Atanassoff
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Eduard B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| |
Collapse
|
66
|
Hoque M, Rentero C, Cairns R, Tebar F, Enrich C, Grewal T. Annexins — Scaffolds modulating PKC localization and signaling. Cell Signal 2014; 26:1213-25. [DOI: 10.1016/j.cellsig.2014.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
|
67
|
Quantification and kinetic analysis of Grb2-EGFR interaction on micro-patterned surfaces for the characterization of EGFR-modulating substances. PLoS One 2014; 9:e92151. [PMID: 24658383 PMCID: PMC3962377 DOI: 10.1371/journal.pone.0092151] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022] Open
Abstract
The identification of the epidermal growth factor receptor (EGFR) as an oncogene has led to the development of several anticancer therapeutics directed against this receptor tyrosine kinase. However, drug resistance and low efficacy remain a severe challenge, and have led to a demand for novel systems for an efficient identification and characterization of new substances. Here we report on a technique which combines micro-patterned surfaces and total internal reflection fluorescence (TIRF) microscopy (μ-patterning assay) for the quantitative analysis of EGFR activity. It does not simply measure the phosphorylation of the receptor, but instead quantifies the interaction of the key signal transmitting protein Grb2 (growth factor receptor-bound protein 2) with the EGFR in a live cell context. It was possible to demonstrate an EGF dependent recruitment of Grb2 to the EGFR, which was significantly inhibited in the presence of clinically tested EGFR inhibitors, including small tyrosine kinase inhibitors and monoclonal antibodies targeting the EGF binding site. Importantly, in addition to its potential use as a screening tool, our experimental setup offers the possibility to provide insight into the molecular mechanisms of bait-prey interaction. Recruitment of the EGFR together with Grb2 to clathrin coated pits (CCPs) was found to be a key feature in our assay. Application of bleaching experiments enabled calculation of the Grb2 exchange rate, which significantly changed upon stimulation or the presence of EGFR activity inhibiting drugs.
Collapse
|
68
|
Dathe C, Daigeler AL, Seifert W, Jankowski V, Mrowka R, Kalis R, Wanker E, Mutig K, Bachmann S, Paliege A. Annexin A2 mediates apical trafficking of renal Na⁺-K⁺-2Cl⁻ cotransporter. J Biol Chem 2014; 289:9983-97. [PMID: 24526686 DOI: 10.1074/jbc.m113.540948] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The furosemide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) is responsible for urine concentration and helps maintain systemic salt homeostasis. Its activity depends on trafficking to, and insertion into, the apical membrane, as well as on phosphorylation of conserved N-terminal serine and threonine residues. Vasopressin (AVP) signaling via PKA and other kinases activates NKCC2. Association of NKCC2 with lipid rafts facilitates its AVP-induced apical translocation and activation at the surface. Lipid raft microdomains typically serve as platforms for membrane proteins to facilitate their interactions with other proteins, but little is known about partners that interact with NKCC2. Yeast two-hybrid screening identified an interaction between NKCC2 and the cytosolic protein, annexin A2 (AnxA2). Annexins mediate lipid raft-dependent trafficking of transmembrane proteins, including the AVP-regulated water channel, aquaporin 2. Here, we demonstrate that AnxA2, which binds to phospholipids in a Ca(2+)-dependent manner and may organize microdomains, is codistributed with NKCC2 to promote its apical translocation in response to AVP stimulation and low chloride hypotonic stress. NKCC2 and AnxA2 interact in a phosphorylation-dependent manner. Phosphomimetic AnxA2 carrying a mutant phosphoacceptor (AnxA2-Y24D-GFP) enhanced surface expression and raft association of NKCC2 by 5-fold upon low chloride hypotonic stimulation, whereas AnxA2-Y24A-GFP and PKC-dependent AnxA2-S26D-GFP did not. As the AnxA2 effect involved only nonphosphorylated NKCC2, it appears to affect NKCC2 trafficking. Overexpression or knockdown experiments further supported the role of AnxA2 in the apical translocation and surface expression of NKCC2. In summary, this study identifies AnxA2 as a lipid raft-associated trafficking factor for NKCC2 and provides mechanistic insight into the regulation of this essential cotransporter.
Collapse
Affiliation(s)
- Christin Dathe
- From the Department of Anatomy, Charité-Universitätsmedizin Berlin, 10115 Berlin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Campbell KA, Minashima T, Zhang Y, Hadley S, Lee YJ, Giovinazzo J, Quirno M, Kirsch T. Annexin A6 interacts with p65 and stimulates NF-κB activity and catabolic events in articular chondrocytes. ACTA ACUST UNITED AC 2014; 65:3120-9. [PMID: 24022118 DOI: 10.1002/art.38182] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 08/27/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVE ANXA6, the gene for annexin A6, is highly expressed in osteoarthritic (OA) articular chondrocytes but not in healthy articular chondrocytes. This study was undertaken to determine whether annexin A6 affects catabolic events in these cells. METHODS Articular chondrocytes were isolated from Anxa6-knockout mice, wild-type (WT) mice, and human articular cartilage in which ANXA6 was overexpressed. Cells were treated with interleukin-1β (IL-1β) or tumor necrosis factor α (TNFα), and expression of catabolic genes and activation of NF-κB were determined by real-time polymerase chain reaction and luciferase reporter assay. Anxa6(-/-) and WT mouse knee joints were injected with IL-1β or the medial collateral ligament was transected and partial resection of the medial meniscus was performed to determine the role of Anxa6 in IL-1β-mediated cartilage destruction and OA progression. The mechanism by which Anxa6 stimulates NF-κB activity was determined by coimmunoprecipitation and immunoblot analysis of nuclear and cytoplasmic fractions of IL-1β-treated Anxa6(-/-) and WT mouse chondrocytes for p65 and Anxa6. RESULTS Loss of Anxa6 resulted in decreased NF-κB activation and catabolic marker messenger RNA (mRNA) levels in IL-1β- or TNFα-treated articular chondrocytes, whereas overexpression of ANXA6 resulted in increased NF-κB activity and catabolic marker mRNA levels. Annexin A6 interacted with p65, and loss of Anxa6 caused decreased nuclear translocation and retention of the active p50/p65 NF-κB complex. Cartilage destruction in Anxa6(-/-) mouse knee joints after IL-1β injection or partial medial meniscectomy was reduced as compared to that in WT mouse joints. CONCLUSION Our data define a role of annexin A6 in the modulation of NF-κB activity and in the stimulation of catabolic events in articular chondrocytes.
Collapse
Affiliation(s)
- Kirk A Campbell
- New York University School of Medicine and Hospital for Joint Diseases, New York, New York
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Hou Y, Hou Y, He S, Ma C, Sun M, He H, Gao N. The merged basins of signal transduction pathways in spatiotemporal cell biology. J Cell Physiol 2014; 229:287-91. [PMID: 23939989 DOI: 10.1002/jcp.24449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/07/2013] [Indexed: 12/12/2022]
Abstract
Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science.
Collapse
Affiliation(s)
- Yingchun Hou
- Department of Cell Biology, School of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | |
Collapse
|
71
|
Leow CY, Willis C, Osman A, Mason L, Simon A, Smith BJ, Gasser RB, Jones MK, Hofmann A. Crystal structure and immunological properties of the first annexin from Schistosoma mansoni: insights into the structural integrity of the schistosomal tegument. FEBS J 2014; 281:1209-25. [PMID: 24428567 DOI: 10.1111/febs.12700] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/28/2022]
Abstract
Schistosomiasis is a major parasitic disease of humans, second only to malaria in its global impact. The disease is caused by digenean trematodes that infest the vasculature of their human hosts. These flukes are limited externally by a body wall composed of a syncytial epithelium, the apical surface membrane of which is a parasitism-adapted dual membrane complex. Annexins are thought to be of integral importance for the stability of this apical membrane system. Here, we present the first structural and immunobiochemical characterization of an annexin from Schistosoma mansoni. The crystal structure of annexin B22 confirms the presence of the previously predicted α-helical segment in the II/III linker and reveals a covalently linked head-to-head dimer. From the calcium-bound crystal structure of this protein, canonical type II, type III and B site positions are occupied, and a novel binding site has been identified. The dimer arrangement observed in the crystal structure suggests the presence of two prominent features, a potential non-canonical membrane binding site and a potential binding groove opposite to the former. Results from transcriptional profiling during development show that annexin B22 expression is correlated with life stages of the parasite that possess the syncytial tegument layer, and ultrastructural localization by immuno-electron microscopy confirms the occurrence of annexins in the tegument of S. mansoni. Data from membrane binding and aggregation assays indicate the presence of differential molecular mechanisms and support the hypothesis of annexin B22 providing structural integrity in the tegument.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- School of Veterinary Science, University of Queensland, Gatton, Australia; Queensland Institute of Medical Research, Herston, Australia; Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Tebar F, Gelabert-Baldrich M, Hoque M, Cairns R, Rentero C, Pol A, Grewal T, Enrich C. Annexins and Endosomal Signaling. Methods Enzymol 2014; 535:55-74. [DOI: 10.1016/b978-0-12-397925-4.00004-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
73
|
Mulas MF, Maxia A, Dessì S, Mandas A. Cholesterol esterification as a mediator of proliferation of vascular smooth muscle cells and peripheral blood mononuclear cells during atherogenesis. J Vasc Res 2013; 51:14-26. [PMID: 24280911 DOI: 10.1159/000355218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/19/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND/AIMS We determined growth rates, cholesterol esterification and mRNA levels for caveolin-1 (Cav-1), neutral cholesterol esters hydrolase (n-CEH) and ATP-binding cassette transporter (ABCA-1), in quiescent and growth-stimulated peripheral blood mononuclear cells (PBMCs) and intimal vascular smooth muscle cells (VSMCs) from blood and primary atherosclerotic plaques, respectively. These cells were cultured in the presence or absence of the mTOR inhibitor 40-O-(2-hydroxyethyl) rapamycin (RAD). METHODS The rate of cell proliferation was determined by 3H-thymidine incorporation into DNA and that of lipid metabolism by utilizing 14C-acetate and 14C-oleate as precursors. Lipid deposit in the vascular cells was evaluated by Oil Red O staining and lipid mass by thin layer chromatography-linked enzymatic assay. RESULTS Growth stimulation of PBMCs and VSMCs caused a rapid increase in intracellular cholesterol esterification and an accumulation of cholesterol esters (CEs) accompanied by a reduction of free cholesterol (FC) and Cav-1, ABCA-1 and n-CEH mRNAs. RAD reduced intracellular lipid accumulation in growth-stimulated cells and also increased expression of Cav-1, n-CEH and ABCA-1 genes. CONCLUSION Collectively, these data provide evidence that the determination of CEs in PBMCs may be an easy prescreening test to identify subjects at risk for vascular proliferative disease and that FC, CE, Cav-1, n-CEH and ABCA-1 may be suitable targets for antiproliferative therapies.
Collapse
Affiliation(s)
- Maria Franca Mulas
- Dipartimento di Scienze Mediche, University of Cagliari, Monserrato, Italy
| | | | | | | |
Collapse
|
74
|
Dong Z, Yao M, Zhang H, Wang L, Huang H, Yan M, Wu W, Yao D. Inhibition of Annexin A2 gene transcription is a promising molecular target for hepatoma cell proliferation and metastasis. Oncol Lett 2013; 7:28-34. [PMID: 24348815 PMCID: PMC3861549 DOI: 10.3892/ol.2013.1663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 10/29/2013] [Indexed: 01/07/2023] Open
Abstract
Hepatocyte Annexin A2 (ANXA2) expression is associated with the progression and metastasis of hepatocellular carcinoma (HCC). Circulating ANXA2 levels in HCC patients are significantly higher compared with that of patients with benign liver disease. ANXA2 levels have been found to correlate with hepatitis B virus infection, extrahepatic metastasis and portal vein thrombus. By contrast, ANXA2 levels do not correlate with tumour size and AFP levels. However, the underlying mechanisms of ANXA2 remain obscure. The results of the current study identified that abnormalities in hepatic ANXA2 expression were localised to the cell membrane and cytoplasm of HCC tissues and mainly in the cytoplasm of para-cancerous tissues. ANXA2 was overexpressed in MHCC97-H cells which have high metastatic potential. Following specific ANXA2-small hairpin RNA (shRNA) transfection in vitro, ANXA-2 was effectively inhibited and the S phase ratio of cells was 27.76%, compared with 36.14% in mock-treated cells. In addition, the invading cell ratio was reduced in the shRNA-treated group (52.16%) compared with the mock-treated group (86.14%). The growth and volume of xenograft tumours in vivo was significantly suppressed (P<0.05) in the shRNA group compared with that of the mock group, indicating that ANXA2 may be a novel and useful target for elucidating molecular mechanisms involving the proliferation and metastasis of HCC.
Collapse
Affiliation(s)
- Zhizhen Dong
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Min Yao
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China ; Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Haijian Zhang
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Wang
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Meijuan Yan
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wu
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dengfu Yao
- Research Centre of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
75
|
Janjanam J, Jamwal M, Singh S, Kumar S, Panigrahi AK, Hariprasad G, Jena MK, Anand V, Kumar S, Kaushik JK, Dang AK, Mukesh M, Mishra BP, Srinivasan A, Reddy VS, Mohanty AK. Proteome analysis of functionally differentiated bovine (Bos indicus
) mammary epithelial cells isolated from milk. Proteomics 2013; 13:3189-204. [DOI: 10.1002/pmic.201300031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Jagadeesh Janjanam
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Manu Jamwal
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Surender Singh
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Saravanan Kumar
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi India
| | - Aswini K. Panigrahi
- Biosciences Core Laboratory, King Abdullah University of Science and Technology (KAUST); Jeddah Saudi Arabia
| | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS); New Delhi India
| | - Manoj K. Jena
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Vijay Anand
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Sudarshan Kumar
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Jai K. Kaushik
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Ajay K. Dang
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| | - Manishi Mukesh
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources (NBAGR); Karnal India
| | - Bishnu P. Mishra
- DNA Fingerprinting Unit, National Bureau of Animal Genetic Resources (NBAGR); Karnal India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS); New Delhi India
| | - Vanga S. Reddy
- Plant Transformation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB); New Delhi India
| | - Ashok K. Mohanty
- Animal Biotechnology Center, National Dairy Research Institute (NDRI); Karnal India
| |
Collapse
|
76
|
Poeter M, Radke S, Koese M, Hessner F, Hegemann A, Musiol A, Gerke V, Grewal T, Rescher U. Disruption of the annexin A1/S100A11 complex increases the migration and clonogenic growth by dysregulating epithelial growth factor (EGF) signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:1700-11. [PMID: 23246849 DOI: 10.1016/j.bbamcr.2012.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 11/19/2022]
Abstract
Endocytosis of activated growth factor receptors regulates spatio-temporal cellular signaling. In the case of the EGF receptor, sorting into multivesicular bodies (MVBs) controls signal termination and subsequently leads to receptor degradation in lysosomes. Annexin A1, a Ca(2+)-regulated membrane binding protein often deregulated in human cancers, interacts with the EGF receptor and is phosphorylated by internalized EGF receptor on endosomes. Most relevant for EGF receptor signal termination, annexin A1 is required for the formation of internal vesicles in MVBs that sequester ligand-bound EGF receptor away from the limiting membrane. To elucidate the mechanism underlying annexin A1-dependent EGF receptor trafficking we employed an N-terminally truncated annexin A1 mutant that lacks the EGF receptor phosphorylation site and the site for interaction with its protein ligand S100A11. Overexpression of this dominant-negative mutant induces a delay in EGF-induced EGF receptor transport to the LAMP1-positive late endosomal/lysosomal compartment and impairs ligand-induced EGF receptor degradation. Consistent with these findings, EGF-stimulated EGF receptor and MAP kinase pathway signaling is prolonged. Importantly, depletion of S100A11 also results in a delayed EGF receptor transport and prolonged MAP kinase signaling comparable to the trafficking defect observed in cells expressing the N-terminally truncated annexin A1 mutant. These results strongly suggest that the function of annexin A1 as a regulator of EGF receptor trafficking, degradation and signaling is critically mediated through an N-terminal interaction with S100A11 in the endosomal compartment. This interaction appears to be essential for lysosomal targeting of the EGF receptor, possibly by providing a physical scaffold supporting inward vesiculation in MVBs. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
77
|
Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol 2013; 87:7502-15. [PMID: 23637395 DOI: 10.1128/jvi.00519-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human papillomaviruses (HPVs) cause benign and malignant tumors of the mucosal and cutaneous epithelium. The initial events regulating HPV infection impact the establishment of viral persistence, which is requisite for malignant progression of HPV-infected lesions. However, the precise mechanisms involved in HPV entry into host cells, including the cellular factors regulating virus uptake, are not clearly defined. We show that HPV16 exposure to human keratinocytes initiates epidermal growth factor receptor (EGFR)-dependent Src protein kinase activation that results in phosphorylation and extracellular translocation of annexin A2 (AnxA2). HPV16 particles interact with AnxA2 in association with S100A10 as a heterotetramer at the cell surface in a Ca(2+)-dependent manner, and the interaction appears to involve heparan-sulfonated proteoglycans. We show multiple lines of evidence that this interaction promotes virus uptake into host cells. An antibody to AnxA2 prevents HPV16 internalization, whereas an antibody to S100A10 blocks infection at a late endosomal/lysosomal site. These results suggest that AnxA2 and S100A10 have separate roles during HPV16 binding, entry, and trafficking. Our data additionally imply that AnxA2 and S100A10 may be involved in regulating the intracellular trafficking of virus particles prior to nuclear delivery of the viral genome.
Collapse
|
78
|
Annexin-phospholipid interactions. Functional implications. Int J Mol Sci 2013; 14:2652-83. [PMID: 23358253 PMCID: PMC3588008 DOI: 10.3390/ijms14022652] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 02/03/2023] Open
Abstract
Annexins constitute an evolutionary conserved multigene protein superfamily characterized by their ability to interact with biological membranes in a calcium dependent manner. They are expressed by all living organisms with the exception of certain unicellular organisms. The vertebrate annexin core is composed of four (eight in annexin A6) homologous domains of around 70 amino acids, with the overall shape of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and phospholipid-binding sites are located on the convex side while the N-terminus links domains I and IV on the concave side. The N-terminus region shows great variability in length and amino acid sequence and it greatly influences protein stability and specific functions of annexins. These proteins interact mainly with acidic phospholipids, such as phosphatidylserine, but differences are found regarding their affinity for lipids and calcium requirements for the interaction. Annexins are involved in a wide range of intra- and extracellular biological processes in vitro, most of them directly related with the conserved ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton anchorage, ion channel activity and regulation, as well as antiinflammatory and anticoagulant activities. However, the in vivo physiological functions of annexins are just beginning to be established.
Collapse
|
79
|
Zeng J, Yi B, Wang Z, Ning J, Wang X, Lu K. Effect of annexin A2 on hepatopulmonary syndrome rat serum-induced proliferation of pulmonary arterial smooth muscle cells. Respir Physiol Neurobiol 2013; 185:332-8. [DOI: 10.1016/j.resp.2012.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 09/16/2012] [Accepted: 09/18/2012] [Indexed: 01/14/2023]
|
80
|
Xiao D, Ohlendorf J, Chen Y, Taylor DD, Rai SN, Waigel S, Zacharias W, Hao H, McMasters KM. Identifying mRNA, microRNA and protein profiles of melanoma exosomes. PLoS One 2012; 7:e46874. [PMID: 23056502 PMCID: PMC3467276 DOI: 10.1371/journal.pone.0046874] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Exosomes are small membranous vesicles secreted into body fluids by multiple cell types, including tumor cells, and in various disease conditions. Tumor exosomes contain intact and functional mRNAs, small RNAs (including miRNAs), and proteins that can alter the cellular environment to favor tumor growth. Molecular profiling may increase our understanding of the role of exosomes in melanoma progression and may lead to discovery of useful biomarkers. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we used mRNA array profiling to identify thousands of exosomal mRNAs associated with melanoma progression and metastasis. Similarly, miRNA array profiling identified specific miRNAs, such as hsa-miR-31, -185, and -34b, involved in melanoma invasion. We also used proteomic analysis and discovered differentially expressed melanoma exosomal proteins, including HAPLN1, GRP78, syntenin-1, annexin A1, and annexin A2. Importantly, normal melanocytes acquired invasion ability through molecules transported in melanoma cell-derived exosomes. CONCLUSIONS/SIGNIFICANCE Our results indicate that melanoma-derived exosomes have unique gene expression signatures, miRNA and proteomics profiles compared to exosomes from normal melanocytes. To the best of our knowledge, this is the first in-depth screening of the whole transcriptome/miRNome/proteome expression in melanoma exosomes. These results provide a starting point for future more in-depth studies of tumor-derived melanoma exosomes, which will aid our understanding of melanoma biogenesis and new drug-targets that may be translated into clinical applications, or as non-invasive biomarkers for melanoma.
Collapse
Affiliation(s)
- Deyi Xiao
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Joanna Ohlendorf
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Yinlu Chen
- Microarray facility, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Douglas D. Taylor
- Department of Obstetrics, Gynecology, and Women’s Health, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Shesh N. Rai
- Department of Bioinformatics and Biostatistics, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Sabine Waigel
- Microarray facility, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Wolfgang Zacharias
- Microarray facility, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Department of Medicine and Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Hongying Hao
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail: (HH); (KMM)
| | - Kelly M. McMasters
- Department of Surgery, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- * E-mail: (HH); (KMM)
| |
Collapse
|
81
|
van Dam S, Cordeiro R, Craig T, van Dam J, Wood SH, de Magalhães JP. GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases. BMC Genomics 2012; 13:535. [PMID: 23039964 PMCID: PMC3495651 DOI: 10.1186/1471-2164-13-535] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/22/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although many diseases have been well characterized at the molecular level, the underlying mechanisms are often unknown. Nearly half of all human genes remain poorly studied, yet these genes may contribute to a number of disease processes. Genes involved in common biological processes and diseases are often co-expressed. Using known disease-associated genes in a co-expression analysis may help identify and prioritize novel candidate genes for further study. RESULTS We have created an online tool, called GeneFriends, which identifies co-expressed genes in over 1,000 mouse microarray datasets. GeneFriends can be used to assign putative functions to poorly studied genes. Using a seed list of disease-associated genes and a guilt-by-association method, GeneFriends allows users to quickly identify novel genes and transcription factors associated with a disease or process. We tested GeneFriends using seed lists for aging, cancer, and mitochondrial complex I disease. We identified several candidate genes that have previously been predicted as relevant targets. Some of the genes identified are already being tested in clinical trials, indicating the effectiveness of this approach. Co-expressed transcription factors were investigated, identifying C/ebp genes as candidate regulators of aging. Furthermore, several novel candidate genes, that may be suitable for experimental or clinical follow-up, were identified. Two of the novel candidates of unknown function that were co-expressed with cancer-associated genes were selected for experimental validation. Knock-down of their human homologs (C1ORF112 and C12ORF48) in HeLa cells slowed growth, indicating that these genes of unknown function, identified by GeneFriends, may be involved in cancer. CONCLUSIONS GeneFriends is a resource for biologists to identify and prioritize novel candidate genes involved in biological processes and complex diseases. It is an intuitive online resource that will help drive experimentation. GeneFriends is available online at: http://genefriends.org/.
Collapse
Affiliation(s)
- Sipko van Dam
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | | | | | | | | |
Collapse
|
82
|
Hata H, Tatemichi M, Nakadate T. Involvement of annexin A8 in the properties of pancreatic cancer. Mol Carcinog 2012; 53:181-91. [PMID: 23001853 DOI: 10.1002/mc.21961] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 11/10/2022]
Abstract
Although Annexin A8 (ANXA8), a member of a superfamily of calcium and phospholipid binding proteins, is physiologically expressed in a tissue-specific manner, recent microarray studies reported that ANXA8 was also ectopically expressed in pancreatic cancers. We investigated the molecular mechanism of expression of ANXA8 in cancer cells and its functional role in pancreatic cancer cells. ANXA8 was diversely expressed in human cancer cell lines. Expression was enhanced by treatment with 5-aza-dC and butyrate, and correlated with methylation status at CpG in the promoter-exon 1 region. Inhibition of ANXA8 using siRNA in BxPC-3 cells which express ANXA8 at a high level elevated caspase-3 and -7 activities. In in vitro invasion assay, inhibition of ANXA8 using siRNA in BxPC-3 reduced the numbers of migrating cells, and down-regulated HIF-1α mRNA transcription. Overexpression of ANXA8 increased the number of viable cells and BrdU incorporation in PANC-1 cells, which express ANXA8 at a low level. Expression of ANXA8 was induced under conditions of nutrient deprivation, and overexpression of ANXA8 showed resistance against serum starvation in PANC-1 cells. In a promoter assay, co-transfection with the expression vector of ANXA8 and the vector of a reporter gene containing the promoter of HIF-1α enhanced HIF-1α promoter activity. In contrast, this effect of ANXA8 was inhibited by administration of BAPTA-AM, an intracellular Ca²⁺ chelator. These results suggest that ectopic ANXA8 expression in cancer cells might involve an epigenetic mechanism. ANXA8 might play an important role in calcium fluctuation-mediated HIF-1α transcriptional activation and cell viability.
Collapse
Affiliation(s)
- Harumi Hata
- Department of Hygiene and Preventive Medicine, Showa University, School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
83
|
Wu CY, Taneyhill LA. Annexin a6 modulates chick cranial neural crest cell emigration. PLoS One 2012; 7:e44903. [PMID: 22984583 PMCID: PMC3439457 DOI: 10.1371/journal.pone.0044903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022] Open
Abstract
The vertebrate neural crest is a population of migratory cells that originates in the dorsal aspect of the embryonic neural tube. These cells undergo an epithelial-to-mesencyhmal transition (EMT), delaminate from the neural tube and migrate extensively to generate an array of differentiated cell types. Elucidating the gene regulatory networks involved in neural crest cell induction, migration and differentiation are thus crucial to understanding vertebrate development. To this end, we have identified Annexin A6 as an important regulator of chick midbrain neural crest cell emigration. Annexin proteins comprise a family of calcium-dependent, membrane-binding molecules that mediate a variety of cellular and physiological processes including cell adhesion, migration and invasion. Our data indicate that Annexin A6 is expressed in the proper spatio-temporal pattern in the chick midbrain to play a potential role in neural crest cell ontogeny. To investigate Annexin A6 function, we have depleted or overexpressed Annexin A6 in the developing midbrain neural crest cell population. Our results show that knock-down or overexpression of Annexin A6 reduces or expands the migratory neural crest cell domain, respectively. Importantly, this phenotype is not due to any change in cell proliferation or cell death but can be correlated with changes in the size of the premigratory neural crest cell population and with markers associated with EMT. Taken together, our data indicate that Annexin A6 plays a pivotal role in modulating the formation of cranial migratory neural crest cells during vertebrate development.
Collapse
Affiliation(s)
- Chyong-Yi Wu
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Lisa A. Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
84
|
Shetty PK, Thamake SI, Biswas S, Johansson SL, Vishwanatha JK. Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer. PLoS One 2012; 7:e44299. [PMID: 22957061 PMCID: PMC3434131 DOI: 10.1371/journal.pone.0044299] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/01/2012] [Indexed: 12/31/2022] Open
Abstract
Alternative survival pathways are commonly seen to be upregulated upon inhibition of receptor tyrosine kinases (RTK), including Her-2. It is established that treatment with Herceptin leads to selective overexpression and activation of epidermal growth factor receptor (EGFR) and Src which further contributes to oncogenesis in Herceptin resistant and triple negative breast cancer (TNBC) patients. Here, we show a co-regulated upregulation in the expression of Annexin A2 (AnxA2), a known substrate of Src and one of the regulators of EGFR receptor endocytosis, in Herceptin resistant and Her-2 negative breast cancer. Immunohistochemical expression analysis revealed a reciprocal regulation between Her-2 and AnxA2 in breast cancer clinical samples as well as in cell lines as confirmed by protein and RNA analysis. The siRNA and Herceptin mediated downregulation/inhibition of Her-2 in Her-2 amplified cells induced AnxA2 expression and membrane translocation. In this study we report a possible involvement of AnxA2 in maintaining constitutively activated EGFR downstream signaling intermediates and hence in cell proliferation, migration and viability. This effect was consistent in Herceptin resistant JIMT-1 cells as well as in Her-2 negative breast cancer. The siRNA mediated AnxA2 downregulation leads to increased apoptosis, decreased cell viability and migration. Our studies further indicate the role of AnxA2 in EGFR-Src membrane bound signaling complex and ligand induced activation of downstream signaling pathways. Targeting this AnxA2 dependent positive regulation of EGFR signaling cascade may be of therapeutic value in Her-2 negative breast cancer.
Collapse
Affiliation(s)
| | - Sanjay I. Thamake
- Department of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Swati Biswas
- Department of Mathematical Sciences, The University of Texas at Dallas, Dallas, Texas, United States of America
| | - Sonny L. Johansson
- Department of Pathology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jamboor K. Vishwanatha
- Department of Biochemistry, SDM College of Medical Sciences & Hospital, Dharwad, India
- Department of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
85
|
Koese M, Rentero C, Kota BP, Hoque M, Cairns R, Wood P, Vilà de Muga S, Reverter M, Alvarez-Guaita A, Monastyrskaya K, Hughes WE, Swarbrick A, Tebar F, Daly RJ, Enrich C, Grewal T. Annexin A6 is a scaffold for PKCα to promote EGFR inactivation. Oncogene 2012; 32:2858-72. [PMID: 22797061 DOI: 10.1038/onc.2012.303] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase Cα (PKCα) can phosphorylate the epidermal growth factor receptor (EGFR) at threonine 654 (T654) to inhibit EGFR tyrosine phosphorylation (pY-EGFR) and the associated activation of downstream effectors. However, upregulation of PKCα in a large variety of cancers is not associated with EGFR inactivation, and factors determining the potential of PKCα to downregulate EGFR are yet unknown. Here, we show that ectopic expression of annexin A6 (AnxA6), a member of the Ca(2+) and phospholipid-binding annexins, strongly reduces pY-EGFR levels while augmenting EGFR T654 phosphorylation in EGFR overexpressing A431, head and neck and breast cancer cell lines. Reduced EGFR activation in AnxA6 expressing A431 cells is associated with reduced EGFR internalization and degradation. RNA interference (RNAi)-mediated PKCα knockdown in AnxA6 expressing A431 cells reduces T654-EGFR phosphorylation, but restores EGFR tyrosine phosphorylation, clonogenic growth and EGFR degradation. These findings correlate with AnxA6 interacting with EGFR, and elevated AnxA6 levels promoting PKCα membrane association and interaction with EGFR. Stable expression of the cytosolic N-terminal mutant AnxA6(1-175), which cannot promote PKCα membrane recruitment, does not increase T654-EGFR phosphorylation or the association of PKCα with EGFR. AnxA6 overexpression does not inhibit tyrosine phosphorylation of the T654A EGFR mutant, which cannot be phosphorylated by PKCα. Most strikingly, stable plasma membrane anchoring of AnxA6 is sufficient to recruit PKCα even in the absence of EGF or Ca(2+). In summary, AnxA6 is a new PKCα scaffold to promote PKCα-mediated EGFR inactivation through increased membrane targeting of PKCα and EGFR/PKCα complex formation.
Collapse
Affiliation(s)
- M Koese
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin. PLoS One 2012; 7:e40429. [PMID: 22792315 PMCID: PMC3391278 DOI: 10.1371/journal.pone.0040429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/06/2012] [Indexed: 01/05/2023] Open
Abstract
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA2), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA2.
Collapse
|
87
|
Bandorowicz-Pikula J, Wos M, Pikula S. Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited. Mol Membr Biol 2012; 29:229-42. [PMID: 22694075 DOI: 10.3109/09687688.2012.693210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Annexins are physiologically important proteins that play a role in calcium buffering but also influence membrane structure, participate in Ca²⁺-dependent membrane repair events and in remodelling of the cytoskeleton. Thirty years ago several peptides isolated from lung perfusates, peritoneal leukocytes, neutrophiles and renal cells were proven inhibitory to the activity of phospholipase A₂. Those peptides were found to derive from structurally related proteins: annexins AnxA1 and AnxA2. These findings raised the question whether annexins may participate in regulation of the production of lipid second messengers and, therefore, modulate numerous lipid mediated signaling pathways in the cell. Recent advances in the field of annexins made also with the use of knock-out animal models revealed that these proteins are indeed important constituents of specific signaling pathways. In this review we provide evidence supporting the hypothesis that annexins, as membrane-binding proteins and organizers of the membrane lateral heterogeneity, may participate in lipid mediated signaling pathways by affecting the distribution and activity of lipid metabolizing enzymes (most of the reports point to phospholipase A₂) and of protein kinases regulating activity of these enzymes. Moreover, some experimental data suggest that annexins may directly interact with lipid metabolizing enzymes and, in a calcium-dependent or independent manner, with some of their substrates and products. On the basis of these observations, many investigators suggest that annexins are capable of linking Ca²⁺, redox and lipid signaling to coordinate vital cellular responses to the environmental stimuli.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology, PL 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
88
|
Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 2012; 69:1773-85. [PMID: 22159585 PMCID: PMC11114673 DOI: 10.1007/s00018-011-0894-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/22/2023]
Abstract
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.
Collapse
Affiliation(s)
- Magdalena Domon
- Laboratory of Lipid Biochemistry, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
89
|
Gaspar JA, Doss MX, Winkler J, Wagh V, Hescheler J, Kolde R, Vilo J, Schulz H, Sachinidis A. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells. Stem Cells Dev 2012; 21:2471-84. [PMID: 22420508 DOI: 10.1089/scd.2011.0637] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Investigating the molecular mechanisms controlling the in vivo developmental program postembryogenesis is challenging and time consuming. However, the developmental program can be partly recapitulated in vitro by the use of cultured embryonic stem cells (ESCs). Similar to the totipotent cells of the inner cell mass, gene expression and morphological changes in cultured ESCs occur hierarchically during their differentiation, with epiblast cells developing first, followed by germ layers and finally somatic cells. Combination of high throughput -omics technologies with murine ESCs offers an alternative approach for studying developmental processes toward organ-specific cell phenotypes. We have made an attempt to understand differentiation networks controlling embryogenesis in vivo using a time kinetic, by identifying molecules defining fundamental biological processes in the pluripotent state as well as in early and the late differentiation stages of ESCs. Our microarray data of the differentiation of the ESCs clearly demonstrate that the most critical early differentiation processes occur at days 2 and 3 of differentiation. Besides monitoring well-annotated markers pertinent to both self-renewal and potency (capacity to differentiate to different cell lineage), we have identified candidate molecules for relevant signaling pathways. These molecules can be further investigated in gain and loss-of-function studies to elucidate their role for pluripotency and differentiation. As an example, siRNA knockdown of MageB16, a gene highly expressed in the pluripotent state, has proven its influence in inducing differentiation when its function is repressed.
Collapse
Affiliation(s)
- John Antonydas Gaspar
- Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Nakayama H, Fukuda S, Inoue H, Nishida-Fukuda H, Shirakata Y, Hashimoto K, Higashiyama S. Cell surface annexins regulate ADAM-mediated ectodomain shedding of proamphiregulin. Mol Biol Cell 2012; 23:1964-75. [PMID: 22438584 PMCID: PMC3350559 DOI: 10.1091/mbc.e11-08-0683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ectodomain shedding of EGFR ligands by ADAM17 is a key step of transactivation of epidermal growth factor receptor (EGFR) and the downstream signaling network. In this study, we identified cell surface annexins as regulators of ectodomain shedding of amphiregulin precursor. We propose that cell surface annexins act as a shedding platform to determine the substrate selectivity of ADAM17. A disintegrin and metalloproteinase (ADAM) is a family of enzymes involved in ectodomain shedding of various membrane proteins. However, the molecular mechanism underlying substrate recognition by ADAMs remains unknown. In this study, we successfully captured and analyzed cell surface transient assemblies between the transmembrane amphiregulin precursor (proAREG) and ADAM17 during an early shedding phase, which enabled the identification of cell surface annexins as components of their shedding complex. Annexin family members annexin A2 (ANXA2), A8, and A9 interacted with proAREG and ADAM17 on the cell surface. Shedding of proAREG was increased when ANXA2 was knocked down but decreased with ANXA8 and A9 knockdown, because of enhanced and impaired association with ADAM17, respectively. Knockdown of ANXA2 and A8 in primary keratinocytes altered wound-induced cell migration and ultraviolet B–induced phosphorylation of epidermal growth factor receptor (EGFR), suggesting that annexins play an essential role in the ADAM-mediated ectodomain shedding of EGFR ligands. On the basis of these data, we propose that annexins on the cell surface function as “shedding platform” proteins to determine the substrate selectivity of ADAM17, with possible therapeutic potential in ADAM-related diseases.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | | | | | | | | | | | | |
Collapse
|
91
|
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. Annexin B9 binds to β(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 2012; 124:2914-26. [PMID: 21878499 DOI: 10.1242/jcs.078667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical β(Heavy)-spectrin (β(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of β(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral β(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when β(H)-positive endosomes are generated either by upregulation of β(H) in pak mutants or through the expression of the dominant-negative version of β(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or β(H). Loss of AnxB9 or β(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes β(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to β(H). These results indicate that AnxB9 and β(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.
Collapse
Affiliation(s)
- Monika Tjota
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
92
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2012; 22:4108-23. [PMID: 22039070 PMCID: PMC3204072 DOI: 10.1091/mbc.e11-04-0332] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that impaired cholesterol egress from late endosomes in cells with high annexin A6 levels is associated with altered soluble N-ethylmaleimide–sensitive fusion protein 23 (SNAP23) and syntaxin-4 cellular distribution and assembly and accumulation in Golgi membranes. This correlates with reduced secretion of cargo along the constitutive and SNAP23/syntaxin-4–dependent secretory pathway. Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Yi B, Cui J, Ning J, Gu J, Wang G, Bai L, Qian G, Lu K. cGMP-dependent protein kinase Iα transfection inhibits hypoxia-induced migration, phenotype modulation and annexins A1 expression in human pulmonary artery smooth muscle cells. Biochem Biophys Res Commun 2012; 418:598-602. [PMID: 22293199 DOI: 10.1016/j.bbrc.2012.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/08/2012] [Indexed: 01/06/2023]
Abstract
Our previous work has demonstrated that the cellular phenotype changes of human pulmonary artery smooth muscle cells (PASMCs) play an important role during pulmonary vascular remodelling. However, little is known about the role of PASMCs phenotype modulation in the course of hypoxia-induced migration and its behind molecular mechanisms. In this study, we have shown that cGMP-dependent protein kinase (PKG) Iα transfection significantly attenuated the hypoxia-induced down-regulation of the expressions of SM-α-actin, MHC and calponin. Hypoxia-induced PASMC migration was also suppressed by PKGIα overexpression. Furthermore, this overexpression attenuated ANX A1 upregulation under hypoxic conditions. All those effects were reversed by a PKG inhibitor KT5823. Our data indicate that manipulating upstream entity e.g., PKGIa, may have a potential therapeutic value to prevent hypoxia-associated pulmonary arterial remodeling for pulmonary hypertension development.
Collapse
Affiliation(s)
- Bin Yi
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Grieve AG, Moss SE, Hayes MJ. Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization. Int J Cell Biol 2012; 2012:852430. [PMID: 22505935 PMCID: PMC3296266 DOI: 10.1155/2012/852430] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/16/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022] Open
Abstract
Annexins are a family of calcium- and phospholipid-binding proteins found in nearly all eukaryotes. They are structurally highly conserved and have been implicated in a wide range of cellular activities. In this paper, we focus on Annexin A2 (AnxA2). Altered expression of this protein has been identified in a wide variety of cancers, has also been found on the HIV particle, and has been implicated in the maturation of the virus. Recently, it has also been shown to have an important role in the establishment of normal apical polarity in epithelial cells. We synthesize here the known biochemical properties of this protein and the extensive literature concerning its involvement in the endocytic pathway. We stress the importance of AnxA2 as a platform for actin remodeling in the vicinity of dynamic cellular membranes, in the hope that this may shed light on the normal functions of the protein and its contribution to disease.
Collapse
Affiliation(s)
- Adam G. Grieve
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Stephen E. Moss
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| | - Matthew J. Hayes
- Division of Cell Biology, UCL Institute of Ophthalmology, 11-43 Bath Street, EC1V 9EL London, UK
| |
Collapse
|
95
|
Annexin A2 is involved in the formation of hepatitis C virus replication complex on the lipid raft. J Virol 2012; 86:4139-50. [PMID: 22301157 DOI: 10.1128/jvi.06327-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) RNA replicates in hepatic cells by forming a replication complex on the lipid raft (detergent-resistant membrane [DRM]). Replication complex formation requires various viral nonstructural (NS) proteins as well as host cellular proteins. In our previous study (C. K. Lai, K. S. Jeng, K. Machida, and M. M. Lai, J. Virol. 82:8838-8848, 2008), we found that a cellular protein, annexin A2 (Anxa2), interacts with NS3/NS4A. Since NS3/NS4A is a membranous protein and Anxa2 is known as a lipid raft-associated scaffold protein, we postulate that Anxa2 helps in the formation of the HCV replication complex on the lipid raft. Further studies showed that Anxa2 was localized at the HCV-induced membranous web and interacted with NS4B, NS5A, and NS5B and colocalized with them in the perinuclear region. The silencing of Anxa2 decreased the formation of membranous web-like structures and viral RNA replication. Subcellular fractionation and bimolecular fluorescence complementation analysis revealed that Anxa2 was partially associated with HCV at the lipid raft enriched with phosphatidylinositol-4-phosphate (PI4P) and caveolin-2. Further, the overexpression of Anxa2 in HCV-nonsusceptible HEK293 cells caused the enrichment of HCV NS proteins in the DRM fraction and increased the colony-forming ability of the HCV replicon. Since Anxa2 is known to induce the formation of the lipid raft microdomain, we propose that Anxa2 recruits HCV NS proteins and enriches them on the lipid raft to form the HCV replication complex.
Collapse
|
96
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
97
|
Reverter M, Rentero C, de Muga SV, Alvarez-Guaita A, Mulay V, Cairns R, Wood P, Monastyrskaya K, Pol A, Tebar F, Blasi J, Grewal T, Enrich C. Cholesterol transport from late endosomes to the Golgi regulates t-SNARE trafficking, assembly, and function. Mol Biol Cell 2011. [DOI: 10.1091/mbc.e11-04-0332r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2(cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4–dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.
Collapse
Affiliation(s)
- Meritxell Reverter
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carles Rentero
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Vilà de Muga
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Anna Alvarez-Guaita
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Vishwaroop Mulay
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Rose Cairns
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Peta Wood
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Katia Monastyrskaya
- Urology Research Laboratory, Department of Clinical Research, University of Bern, 3000 Bern 9, Switzerland
| | - Albert Pol
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Francesc Tebar
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Joan Blasi
- Department of Pathology and Experimental Therapeutics, IDIBELL–University of Barcelona, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
| | - Carlos Enrich
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
98
|
Cornely R, Rentero C, Enrich C, Grewal T, Gaus K. Annexin A6 is an organizer of membrane microdomains to regulate receptor localization and signalling. IUBMB Life 2011; 63:1009-17. [PMID: 21990038 DOI: 10.1002/iub.540] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 06/16/2011] [Indexed: 12/13/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.
Collapse
Affiliation(s)
- Rhea Cornely
- Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | | | | | | | | |
Collapse
|
99
|
Mulas MF, Abete C, Pulisci D, Pani A, Massidda B, Dessì S, Mandas A. Cholesterol esters as growth regulators of lymphocytic leukaemia cells. Cell Prolif 2011; 44:360-71. [PMID: 21645151 DOI: 10.1111/j.1365-2184.2011.00758.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Alterations in plasma lipid profile and in intracellular cholesterol homoeostasis have been described in various malignancies; however, significance of these alterations, if any, in cancer biology is not clear. The aim of the present study was to investigate a possible correlation between alterations in cholesterol metabolism and expansion of leukaemia cell numbers. MATERIALS AND METHODS Lipid profiles in plasma and in primary leukaemia cells isolated from patients with acute or chronic lymphocytic leukaemia (ALL and CLL) were studied. RESULTS AND CONCLUSIONS Decreased levels of HDL-C were observed in plasma of leukaemic patients, levels of total cholesterol, LDL-C, triglycerides and phospholipids were unchanged or only slightly increased. As compared to normal lymphocytes, freshly isolated leukaemic cells showed increased levels of cholesterol esters and reduction in free cholesterol. Growth stimulation of ALL and CLL cells with phytohemagglutinin led to further increase in levels of cholesterol esters. Conversely, treatment with an inhibitor of cell proliferation such as the mTOR inhibitor, RAD, caused decline in population growth rate of leukaemia cells, which was preceded by sharp reduction in rate of cholesterol esterification. On the other hand, exposure of leukaemic cells to two inhibitors of cholesterol esterification, progesterone and SaH 58-035, caused 60% reduction in their proliferation rate. In addition to demonstrating tight correlation between cell number expansion and cholesterol esterification in leukaemic cells, these results suggest that pathways that control cholesterol esterification might represent a promising targets for novel anticancer strategies.
Collapse
Affiliation(s)
- M F Mulas
- Department of Internal Medicine, University of Cagliari, Italy
| | | | | | | | | | | | | |
Collapse
|
100
|
Gmeiner WH, Reinhold WC, Pommier Y. Genome-wide mRNA and microRNA profiling of the NCI 60 cell-line screen and comparison of FdUMP[10] with fluorouracil, floxuridine, and topoisomerase 1 poisons. Mol Cancer Ther 2011; 9:3105-14. [PMID: 21159603 DOI: 10.1158/1535-7163.mct-10-0674] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A profile of microRNA (miRNA) and mRNA expression patterns across the NCI-60 cell-line screen was analyzed to identify expression signatures that correlate with sensitivity to FdUMP[10], fluorouracil (5FU), floxuridine (FdU), topotecan, and irinotecan. Genome-wide profile analyses revealed FdUMP[10] resembles FdU most closely and shows dissimilarities with 5FU. FdUMP[10] had the largest dynamic range of any of these drugs across the NCI-60 indicative of cancer cell-specific activity. Genes involved in endocytosis, such as clathrin (CLTC), SNF8, annexin A6 (ANXA6), and amyloid protein-binding 2 (APPBP2) uniquely correlated with sensitivity to FdUMP[10], consistent with a protein-mediated cellular uptake of FdUMP[10]. Genes involved in nucleotide metabolism were enriched for the three fluoropyrimidine drugs, with the expression profile for 5FU correlated to an RNA-mediated cytotoxic mechanism, whereas expression of glycosyltransferases (XYLT2) that use UDP sugars as substrates and the nucleoside diphosphatase and metastasis suppressor NM23 (NME1) were associated with FdUMP[10] sensitivity. Topotecan and irinotecan had significant negative correlations with miR-24, a miRNA with a high aggregate P(CT) score for topoisomerase 1 (Top1). Our results reveal significant new correlations between FdUMP[10] and Top1 poisons, as well as new information on the unique cytotoxic mechanism and genomic signature of FdUMP[10].
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|