51
|
Zhang J, Meng L, Jiang W, Zhang H, Zhou A, Zeng N. Identification of clinical molecular targets for childhood Burkitt lymphoma. Transl Oncol 2020; 13:100855. [PMID: 32947237 PMCID: PMC7502376 DOI: 10.1016/j.tranon.2020.100855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Burkitt lymphoma (BL) is a malignant tumor in children. Although BL is generally curable, early relapse and refractoriness may occur. Some molecular indicators have been recently suggested for BL diagnosis, but large heterogeneity still exists. This study aimed at providing clinical molecular targets and methods that may help improve diagnosis and treatment of childhood BL. Only children patients were included in the study, and targeted gene sequencing was conducted to identify tumor specific mutations. The mRNA and protein level expression of potential target genes were measured by real-time PCR and immunohistochemistry. The relationship between BL specific gene mutation and differential expression with clinical features was analyzed. The results showed that i) detailed analysis of c-MYC/BCL2/BCL6 gene loci alteration and gene expression would help in accurate diagnosis and treatment determination of childhood BL; ii) loss-of-function mutations in SOCS1 or CIITA gene might be used as malignant markers for BL diagnosis and prognosis; iii) specific mutations of CD79A, MYD88, KLF2, DNMT3A and NFKBIE genes often concurrently existed in BL and showed association with benign clinical outcomes; iv) the high expression of MYC, TCF3 and loss-of-function ID3 genes in tumor may be potential therapeutic targets and could be used for treatment monitoring; and v) four MYC-translocation negative cases were re-defined as high-grade B-cell lymphoma-not otherwise specified (HGBL-NOS) but showed similar clinical outcomes and molecular features to other BL cases in the study, suggesting more studies needed to explore the molecular mechanisms and clinical significance of this provisional tumor entity. Detailed analysis of c-MYC/BCL2/BCL6 gene alteration and expression may help in accurate diagnosis and treatment; The MYC-translocation negative cases (HGBL-NOS) showed similar clinical outcomes and molecular features to other cases; Loss-of-function mutations of SOCS1 or CIITA gene could be used as malignant markers for diagnosis and prognosis; Concurrent mutations in CD79A, MYD88, KLF2, DNMT3A and NFKBIE genes associated with benign clinical outcomes; High expression of MYC, TCF3 and loss-of-function ID3 gene in tumor may be potential therapeutic targets.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Leijun Meng
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai 200040, China
| | - Weiyun Jiang
- Yu Kang Biotechnology Co., Ltd, Jiaxing 314100, Zhejiang, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai 200040, China
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Naiyan Zeng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
52
|
Wang Z, Chen K, Jia Y, Chuang JC, Sun X, Lin YH, Celen C, Li L, Huang F, Liu X, Castrillon DH, Wang T, Zhu H. Dual ARID1A/ARID1B loss leads to rapid carcinogenesis and disruptive redistribution of BAF complexes. ACTA ACUST UNITED AC 2020; 1:909-922. [PMID: 34386776 DOI: 10.1038/s43018-020-00109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SWI/SNF chromatin remodelers play critical roles in development and cancer. The causal links between SWI/SNF complex disassembly and carcinogenesis are obscured by redundancy between paralogous components. Canonical cBAF-specific paralogs ARID1A and ARID1B are synthetic lethal in some contexts, but simultaneous mutations in both ARID1s are prevalent in cancer. To understand if and how cBAF abrogation causes cancer, we examined the physiologic and biochemical consequences of ARID1A/ARID1B loss. In double knockout liver and skin, aggressive carcinogenesis followed de-differentiation and hyperproliferation. In double mutant endometrial cancer, add-back of either induced senescence. Biochemically, residual cBAF subcomplexes resulting from loss of ARID1 scaffolding were unexpectedly found to disrupt polybromo containing pBAF function. 37 of 69 mutations in the conserved scaffolding domains of ARID1 proteins observed in human cancer caused complex disassembly, partially explaining their mutation spectra. ARID1-less, cBAF-less states promote carcinogenesis across tissues, and suggest caution against paralog-directed therapies for ARID1-mutant cancer.
Collapse
Affiliation(s)
- Zixi Wang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390
| | - Yuemeng Jia
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jen-Chieh Chuang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuxu Sun
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-Hsuan Lin
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cemre Celen
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fang Huang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Liu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA, 75390
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
53
|
Ottens K, Schneider J, Kane LP, Satterthwaite AB. PIK3IP1 Promotes Extrafollicular Class Switching in T-Dependent Immune Responses. THE JOURNAL OF IMMUNOLOGY 2020; 205:2100-2108. [PMID: 32887751 DOI: 10.4049/jimmunol.2000584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/10/2020] [Indexed: 01/13/2023]
Abstract
PI3K plays multiple roles throughout the life of a B cell. As such, its signaling is tightly regulated. The importance of this is illustrated by the fact that both loss- and gain-of-function mutations in PI3K can cause immunodeficiency in humans. PIK3IP1, also known as TrIP, is a transmembrane protein that has been shown to inhibit PI3K in T cells. Results from the ImmGen Consortium indicate that PIK3IP1 expression fluctuates throughout B cell development in a manner inversely correlated with PI3K activity; however, its role in B cells is poorly understood. In this study, we define the consequences of B cell-specific deletion of PIK3IP1. B cell development, basal Ig levels, and T-independent responses were unaffected by loss of PIK3IP1. However, there was a significant delay in the production of IgG during T-dependent responses, and secondary responses were impaired. This is likely due to a role for PIK3IP1 in the extrafollicular response because germinal center formation and affinity maturation were normal, and PIK3IP1 is not appreciably expressed in germinal center B cells. Consistent with a role early in the response, PIK3IP1 was downregulated at late time points after B cell activation, in a manner dependent on PI3K. Increased activation of the PI3K pathway was observed in PIK3IP1-deficient B cells in response to engagement of both the BCR and CD40 or strong cross-linking of CD40 alone. Taken together, these observations suggest that PIK3IP1 promotes extrafollicular responses by limiting PI3K signaling during initial interactions between B and T cells.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jalyn Schneider
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
54
|
Abstract
The never-ending explosion in the cost of new oncology drugs is reducing in many countries the access to the most recent, effective anticancer therapies and represents a significant obstacle to the design and realization of combinatorial trials. Already approved, anticancer and nonanticancer drugs can be considered for in silico, preclinical, and clinical repurposing approaches and offer the significant advantages of a potentially cheaper, faster, and safer validation. This review discusses recent advances and challenges in the field.
Collapse
|
55
|
Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes (Basel) 2020; 11:genes11050556. [PMID: 32429325 PMCID: PMC7288346 DOI: 10.3390/genes11050556] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Histone deacetylases (HDACs) are evolutionary conserved enzymes which operate by removing acetyl groups from histones and other protein regulatory factors, with functional consequences on chromatin remodeling and gene expression profiles. We provide here a review on the recent knowledge accrued on the zinc-dependent HDAC protein family across different species, tissues, and human pathologies, specifically focusing on the role of HDAC inhibitors as anti-cancer agents. We will investigate the chemical specificity of different HDACs and discuss their role in the human interactome as members of chromatin-binding and regulatory complexes.
Collapse
|
56
|
The SWI/SNF complex in cancer - biology, biomarkers and therapy. Nat Rev Clin Oncol 2020; 17:435-448. [PMID: 32303701 DOI: 10.1038/s41571-020-0357-3] [Citation(s) in RCA: 322] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2020] [Indexed: 12/11/2022]
Abstract
Cancer genome-sequencing studies have revealed a remarkably high prevalence of mutations in genes encoding subunits of the SWI/SNF chromatin-remodelling complexes, with nearly 25% of all cancers harbouring aberrations in one or more of these genes. A role for such aberrations in tumorigenesis is evidenced by cancer predisposition in both carriers of germline loss-of-function mutations and genetically engineered mouse models with inactivation of any of several SWI/SNF subunits. Whereas many of the most frequently mutated oncogenes and tumour-suppressor genes have been studied for several decades, the cancer-promoting role of mutations in SWI/SNF genes has been recognized only more recently, and thus comparatively less is known about these alterations. Consequently, increasing research interest is being focused on understanding the prognostic and, in particular, the potential therapeutic implications of mutations in genes encoding SWI/SNF subunits. Herein, we review the burgeoning data on the mechanisms by which mutations affecting SWI/SNF complexes promote cancer and describe promising emerging opportunities for targeted therapy, including immunotherapy with immune-checkpoint inhibitors, presented by these mutations. We also highlight ongoing clinical trials open specifically to patients with cancers harbouring mutations in certain SWI/SNF genes.
Collapse
|
57
|
Khalique S, Lord CJ, Banerjee S, Natrajan R. Translational genomics of ovarian clear cell carcinoma. Semin Cancer Biol 2020; 61:121-131. [PMID: 31698086 DOI: 10.1016/j.semcancer.2019.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 01/19/2023]
Abstract
Ovarian clear cell carcinomas (OCCC) are rare aggressive, chemo-resistant tumours comprising approximately 13% of all epithelial ovarian cancers, which have distinct clinical and molecular features, when compared to other gynaecological malignancies. At present, there are no specific licensed targeted therapies for OCCC, although a number of candidate targets have been identified. This review focuses on recent knowledge underpinning our understanding of the pathogenesis of OCCC including direct and synthetic-lethal therapeutic strategies in particular focussing on ARID1A deficiency. We also discuss current targeted clinical trials and immunotherapeutic approaches.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/diagnosis
- Adenocarcinoma, Clear Cell/etiology
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/therapy
- Biomarkers
- Carcinoma, Ovarian Epithelial/diagnosis
- Carcinoma, Ovarian Epithelial/etiology
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/therapy
- DNA Copy Number Variations
- DNA-Binding Proteins/genetics
- Disease Management
- Epigenesis, Genetic
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- Genomics/methods
- Humans
- Mutation
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Signal Transduction
- Transcription Factors/genetics
- Translational Research, Biomedical
Collapse
Affiliation(s)
- Saira Khalique
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christopher J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; The CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, UK; Division of Clinical Studies, The Institute of Cancer Research, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
58
|
Xiong J, Cui BW, Wang N, Dai YT, Zhang H, Wang CF, Zhong HJ, Cheng S, Ou-Yang BS, Hu Y, Zhang X, Xu B, Qian WB, Tao R, Yan F, Hu JD, Hou M, Ma XJ, Wang X, Liu YH, Zhu ZM, Huang XB, Liu L, Wu CY, Huang L, Shen YF, Huang RB, Xu JY, Wang C, Wu DP, Yu L, Li JF, Xu PP, Wang L, Huang JY, Chen SJ, Zhao WL. Genomic and Transcriptomic Characterization of Natural Killer T Cell Lymphoma. Cancer Cell 2020; 37:403-419.e6. [PMID: 32183952 DOI: 10.1016/j.ccell.2020.02.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/06/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Natural killer/T cell lymphoma (NKTCL) is an aggressive and heterogeneous entity of non-Hodgkin lymphoma, strongly associated with Epstein-Barr virus (EBV) infection. To identify molecular subtypes of NKTCL based on genomic structural alterations and EBV sequences, we performed multi-omics study on 128 biopsy samples of newly diagnosed NKTCL and defined three prominent subtypes, which differ significantly in cell of origin, EBV gene expression, transcriptional signatures, and responses to asparaginase-based regimens and targeted therapy. Our findings thus identify molecular networks of EBV-associated pathogenesis and suggest potential clinical strategies on NKTCL.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Bo-Wen Cui
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Nan Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Yu-Ting Dai
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhang
- Department of Otolaryngology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Fu Wang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui-Juan Zhong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Bin-Shen Ou-Yang
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bin Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wen-Bin Qian
- Department of Hematology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Tao
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Yan
- Department of Hematology, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou, Changzhou, People's Republic of China
| | - Jian-Da Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xue-Jun Ma
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xin Wang
- Department of Hematology, Shandong Province Hospital of Shandong University, Jinan, China
| | - Yuan-Hua Liu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing, China
| | - Zun-Min Zhu
- Department of Hematology, Henan Province People's Hospital, Zhengzhou, China
| | - Xiao-Bin Huang
- Department of Hematology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Chong-Yang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Li Huang
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Yun-Feng Shen
- Department of Hematology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Rui-Bin Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing-Yan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, Nanjing, China
| | - Chun Wang
- Department of Hematology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - De-Pei Wu
- Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian-Feng Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Peng-Peng Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China
| | - Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Jin-Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China.
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai 200025, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
59
|
Moufarrij S, Srivastava A, Gomez S, Hadley M, Palmer E, Austin PT, Chisholm S, Diab N, Roche K, Yu A, Li J, Zhu W, Lopez-Acevedo M, Villagra A, Chiappinelli KB. Combining DNMT and HDAC6 inhibitors increases anti-tumor immune signaling and decreases tumor burden in ovarian cancer. Sci Rep 2020; 10:3470. [PMID: 32103105 PMCID: PMC7044433 DOI: 10.1038/s41598-020-60409-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Novel therapies are urgently needed for ovarian cancer, the deadliest gynecologic malignancy. Ovarian cancer has thus far been refractory to immunotherapies that stimulate the host immune system to recognize and kill cancer cells. This may be because of a suppressive tumor immune microenvironment and lack of recruitment and activation of immune cells that kill cancer cells. Our previous work showed that epigenetic drugs including DNA methyltransferase inhibitors and histone deacetylase 6 inhibitors (DNMTis and HDAC6is) individually increase immune signaling in cancer cells. We find that combining DNMTi and HDAC6i results in an amplified type I interferon response, leading to increased cytokine and chemokine expression and higher expression of the MHC I antigen presentation complex in human and mouse ovarian cancer cell lines. Treating mice bearing ID8 Trp53-/- ovarian cancer with HDAC6i/DNMTi led to an increase in tumor-killing cells such as IFNg+ CD8, NK, and NKT cells and a reversal of the immunosuppressive tumor microenvironment with a decrease in MDSCs and PD-1hi CD4 T cells, corresponding with an increase in survival. Thus combining the epigenetic modulators DNMTi and HDAC6i increases anti-tumor immune signaling from cancer cells and has beneficial effects on the ovarian tumor immune microenvironment.
Collapse
Affiliation(s)
- Sara Moufarrij
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| | - Aneil Srivastava
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Stephanie Gomez
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Melissa Hadley
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Erica Palmer
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Paul Tran Austin
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Sarah Chisholm
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Noor Diab
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
| | - Kyle Roche
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Angela Yu
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Jing Li
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Wenge Zhu
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Micael Lopez-Acevedo
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| | - Alejandro Villagra
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA.
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA.
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA.
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
60
|
Unique Molecular Features in High-Risk Histology Endometrial Cancers. Cancers (Basel) 2019; 11:cancers11111665. [PMID: 31717878 PMCID: PMC6896116 DOI: 10.3390/cancers11111665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Endometrial cancer is the most common gynecologic malignancy in the United States and the sixth most common cancer in women worldwide. Fortunately, most women who develop endometrial cancer have low-grade early-stage endometrioid carcinomas, and simple hysterectomy is curative. Unfortunately, 15% of women with endometrial cancer will develop high-risk histologic tumors including uterine carcinosarcoma or high-grade endometrioid, clear cell, or serous carcinomas. These high-risk histologic tumors account for more than 50% of deaths from this disease. In this review, we will highlight the biologic differences between low- and high-risk carcinomas with a focus on the cell of origin, early precursor lesions including atrophic and proliferative endometrium, and the potential role of stem cells. We will discuss treatment, including standard of care therapy, hormonal therapy, and precision medicine-based or targeted molecular therapies. We will also discuss the impact and need for model systems. The molecular underpinnings behind this high death to incidence ratio are important to understand and improve outcomes.
Collapse
|
61
|
Hung YH, Hsu MC, Chen LT, Hung WC, Pan MR. Alteration of Epigenetic Modifiers in Pancreatic Cancer and Its Clinical Implication. J Clin Med 2019; 8:jcm8060903. [PMID: 31238554 PMCID: PMC6617267 DOI: 10.3390/jcm8060903] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
The incidence of pancreatic cancer has considerably increased in the past decade. Pancreatic cancer has the worst prognosis among the cancers of the digestive tract because the pancreas is located in the posterior abdominal cavity, and most patients do not show clinical symptoms for early detection. Approximately 55% of all patients are diagnosed with pancreatic cancer only after the tumors metastasize. Therefore, identifying useful biomarkers for early diagnosis and screening high-risk groups are important to improve pancreatic cancer therapy. Recent emerging evidence has suggested that genetic and epigenetic alterations play a crucial role in the molecular aspects of pancreatic tumorigenesis. Here, we summarize recent progress in our understanding of the epigenetic alterations in pancreatic cancer and propose potential synthetic lethal strategies to target these genetic defects to treat this deadly disease.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Mei-Ren Pan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
62
|
Sundararajan V, Tan M, Tan TZ, Ye J, Thiery JP, Huang RYJ. SNAI1 recruits HDAC1 to suppress SNAI2 transcription during epithelial to mesenchymal transition. Sci Rep 2019; 9:8295. [PMID: 31165775 PMCID: PMC6549180 DOI: 10.1038/s41598-019-44826-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 01/02/2023] Open
Abstract
Aberrant activation of epithelial to mesenchymal transition (EMT) associated factors were highly correlated with increased mortality in cancer patients. SNAIL family of transcriptional repressors comprised of three members, each of which were essentially associated with gastrulation and neural crest formation. Among which, SNAI1 and SNAI2 were efficiently induced during EMT and their expressions were correlated with poor clinical outcome in patients with breast, colon and ovarian carcinoma. In an ovarian cancer cell lines panel, we identified that SNAI1 and SNAI2 expressions were mutually exclusive, where SNAI1 predominantly represses SNAI2 expression. Detailed analysis of SNAI2 promoter region revealed that SNAI1 binds to two E-box sequences that mediated transcriptional repression. Through epigenetic inhibitor treatments, we identified that inhibition of histone deacetylase (HDAC) activity in SNAI1 overexpressing cells partially rescued SNAI2 expression. Importantly, we demonstrated a significant deacetylation of histone H3 and significant enrichments of HDAC1 and HDAC2 corepressors in both E-box regions of SNAI2 promoter. Our results suggested that SNAI1 repression on SNAI2 expression was predominantly mediated through the recruitment of the histone deacetylation machinery. Utilization of HDAC inhibitors would require additional profiling of SNAI1 activity and combined targeting of SNAI1 and HDACs might render efficient cancer treatment.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, MD6 #12-01, 117599, Singapore, Singapore
| | - Ming Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, MD6 #12-01, 117599, Singapore, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, MD6 #12-01, 117599, Singapore, Singapore
| | - Jieru Ye
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, MD6 #12-01, 117599, Singapore, Singapore
| | - Jean Paul Thiery
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, MD7, #02-03, Singapore, 117597, Singapore.,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou, People's Republic of China.,CNRS Emeritus CNRS UMR 7057 Matter and Complex Systems, University Paris Denis Diderot, Paris, France.,INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, 94805, Villejuif, France
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, MD6 #12-01, 117599, Singapore, Singapore. .,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, 1E Kent Ridge Road, 119228, Singapore, Singapore. .,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10 #04-01, Singapore, 117597, Singapore. .,School of Medicine, College of Medicine, National Taiwan University, No. 1 Ren Ai Road Section 1, 10051, Taipei, Taiwan, Republic of China.
| |
Collapse
|
63
|
Bracken AP, Brien GL, Verrijzer CP. Dangerous liaisons: interplay between SWI/SNF, NuRD, and Polycomb in chromatin regulation and cancer. Genes Dev 2019; 33:936-959. [PMID: 31123059 PMCID: PMC6672049 DOI: 10.1101/gad.326066.119] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, Bracken et al. discuss the functional organization and biochemical activities of remodelers and Polycomb and explore how they work together to control cell differentiation and the maintenance of cell identity. They also discuss how mutations in the genes encoding these various chromatin regulators contribute to oncogenesis by disrupting the chromatin equilibrium. Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.
Collapse
Affiliation(s)
- Adrian P Bracken
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gerard L Brien
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
64
|
Yano M, Katoh T, Miyazawa M, Miyazawa M, Ogane N, Miwa M, Hasegawa K, Narahara H, Yasuda M. Clinicopathological correlation of ARID1A status with HDAC6 and its related factors in ovarian clear cell carcinoma. Sci Rep 2019; 9:2397. [PMID: 30787326 PMCID: PMC6382831 DOI: 10.1038/s41598-019-38653-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is associated with a frequent loss in ARID1A function. ARID1A reportedly suppresses histone deacetylase (HDAC)6 in OCCC directly. Here, we evaluated the clinical significance of HDAC6 expression and its related factors in terms of ARID1A status. Immunohistochemical expression of HDAC6, hypoxia inducible factors-1α (HIF-1α), programmed death-1 ligand (PD-L1), CD44 (cancer stem cell marker), and ARID1A was analysed for 106 OCCC patients. High nuclear HDAC6 expression correlated with patient death (p = 0.038). In the multivariate analysis of overall survival, surgical status (complete or incomplete resection) (hazard ratio (HR) = 17.5; p = <0.001), HDAC6 nuclear expression (HR = 1.68; p = 0.034), and PD-L1 expression (HR = 1.95; p = 0.022) were the independent prognostic factors. HDAC6 upregulation and ARID1A loss did not necessarily occur simultaneously. High HDAC6 expression was associated with poor prognosis in OCCC with ARID1A loss; this was not observed without ARID1A loss. HDAC6 expression showed a significant positive correlation with HIF-1α, PD-L1, and CD44. In OCCC, HDAC6 involvement in prognosis depended on ARID1A status. HDAC6 also led to immuno- and hypoxia- tolerance and cancer stem cell phenotype. HDAC6 is a promising therapeutic target for OCCC with loss of ARID1A.
Collapse
Affiliation(s)
- Mitsutake Yano
- Department of Pathology, Saitama Medical University International Medical Centre, Saitama, Japan. .,Departments of Obstetrics and Gynaecology, Oita University Faculty of Medicine, Oita, Japan.
| | - Tomomi Katoh
- Department of Pathology, Saitama Medical University International Medical Centre, Saitama, Japan
| | - Mariko Miyazawa
- Department of Obstetrics and Gynaecology, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Miyazawa
- Department of Obstetrics and Gynaecology, Tokai University School of Medicine, Kanagawa, Japan
| | - Naoki Ogane
- Division of Pathology, Ashigarakami Hospital, Kanagawa, Japan
| | - Maiko Miwa
- Department of Gynaecologic Oncology, Saitama Medical University International Medical Centre, Saitama, Japan
| | - Kosei Hasegawa
- Department of Gynaecologic Oncology, Saitama Medical University International Medical Centre, Saitama, Japan
| | - Hisashi Narahara
- Departments of Obstetrics and Gynaecology, Oita University Faculty of Medicine, Oita, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Centre, Saitama, Japan.
| |
Collapse
|
65
|
Moufarrij S, Dandapani M, Arthofer E, Gomez S, Srivastava A, Lopez-Acevedo M, Villagra A, Chiappinelli KB. Epigenetic therapy for ovarian cancer: promise and progress. Clin Epigenetics 2019; 11:7. [PMID: 30646939 PMCID: PMC6334391 DOI: 10.1186/s13148-018-0602-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the deadliest gynecologic malignancy, with a 5-year survival rate of approximately 47%, a number that has remained constant over the past two decades. Early diagnosis improves survival, but unfortunately only 15% of ovarian cancers are diagnosed at an early or localized stage. Most ovarian cancers are epithelial in origin and treatment prioritizes surgery and cytoreduction followed by cytotoxic platinum and taxane chemotherapy. While most tumors will initially respond to this treatment, recurrence is likely to occur within a median of 16 months for patients who present with advanced stage disease. New treatment options separate from traditional chemotherapy that take advantage of advances in understanding of the pathophysiology of ovarian cancer are needed to improve outcomes. Recent work has shown that mutations in genes encoding epigenetic regulators are mutated in ovarian cancer, driving tumorigenesis and resistance to treatment. Several of these epigenetic modifiers have emerged as promising drug targets for ovarian cancer therapy. In this article, we delineate epigenetic abnormalities in ovarian cancer, discuss key scientific advances using epigenetic therapies in preclinical ovarian cancer models, and review ongoing clinical trials utilizing epigenetic therapies in ovarian cancer.
Collapse
Affiliation(s)
- Sara Moufarrij
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- Department of Obstetrics & Gynecology, The George Washington University, Washington, D.C., 20052 USA
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Monica Dandapani
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- Department of Obstetrics & Gynecology, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Elisa Arthofer
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Stephanie Gomez
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Aneil Srivastava
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Micael Lopez-Acevedo
- Department of Obstetrics & Gynecology, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Alejandro Villagra
- Department of Biochemistry & Molecular Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, D.C., 20052 USA
- The George Washington Cancer Center, The George Washington University, Washington, D.C., 20052 USA
| |
Collapse
|
66
|
Klymenko Y, Nephew KP. Epigenetic Crosstalk between the Tumor Microenvironment and Ovarian Cancer Cells: A Therapeutic Road Less Traveled. Cancers (Basel) 2018; 10:E295. [PMID: 30200265 PMCID: PMC6162502 DOI: 10.3390/cancers10090295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Metastatic dissemination of epithelial ovarian cancer (EOC) predominantly occurs through direct cell shedding from the primary tumor into the intra-abdominal cavity that is filled with malignant ascitic effusions. Facilitated by the fluid flow, cells distribute throughout the cavity, broadly seed and invade through peritoneal lining, and resume secondary tumor growth in abdominal and pelvic organs. At all steps of this unique metastatic process, cancer cells exist within a multidimensional tumor microenvironment consisting of intraperitoneally residing cancer-reprogramed fibroblasts, adipose, immune, mesenchymal stem, mesothelial, and vascular cells that exert miscellaneous bioactive molecules into malignant ascites and contribute to EOC progression and metastasis via distinct molecular mechanisms and epigenetic dysregulation. This review outlines basic epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulators, and summarizes current knowledge on reciprocal interactions between each participant of the EOC cellular milieu and tumor cells in the context of aberrant epigenetic crosstalk. Promising research directions and potential therapeutic strategies that may encompass epigenetic tailoring as a component of complex EOC treatment are discussed.
Collapse
Affiliation(s)
- Yuliya Klymenko
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, South Bend, IN 46617, USA.
| | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Program, Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Cellular and Integrative Physiology and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
67
|
Fukumoto T, Zhang R, Bitler BG. Epigenetic inhibitors for the precision treatment of ARID1A-mutant ovarian cancers: what are the next steps? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018; 3:233-236. [PMID: 30525111 DOI: 10.1080/23808993.2018.1503050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104
| | - Benjamin G Bitler
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Research Complex-2; MS8613, 12700 East 19th Avenue, Aurora, Colorado 80045
| |
Collapse
|
68
|
Fukumoto T, Magno E, Zhang R. SWI/SNF Complexes in Ovarian Cancer: Mechanistic Insights and Therapeutic Implications. Mol Cancer Res 2018; 16:1819-1825. [PMID: 30037854 DOI: 10.1158/1541-7786.mcr-18-0368] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/05/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Abstract
Ovarian cancer remains the most lethal gynecologic malignancy in the developed world. Despite the unprecedented progress in understanding the genetics of ovarian cancer, cures remain elusive due to a lack of insight into the mechanisms that can be targeted to develop new therapies. SWI/SNF chromatin remodeling complexes are genetically altered in approximately 20% of all human cancers. SWI/SNF alterations vary in different histologic subtypes of ovarian cancer, with ARID1A mutation occurring in approximately 50% of ovarian clear cell carcinomas. Given the complexity and prevalence of SWI/SNF alterations, ovarian cancer represents a paradigm for investigating the molecular basis and exploring therapeutic strategies for SWI/SNF alterations. This review discusses the recent progress in understanding SWI/SNF alterations in ovarian cancer and specifically focuses on: (i) ARID1A mutation in endometriosis-associated clear cell and endometrioid histologic subtypes of ovarian cancer; (ii) SMARCA4 mutation in small cell carcinoma of the ovary, hypercalcemic type; and (iii) amplification/upregulation of CARM1, a regulator of BAF155, in high-grade serous ovarian cancer. Understanding the molecular underpinning of SWI/SNF alterations in different histologic subtypes of ovarian cancer will provide mechanistic insight into how these alterations contribute to ovarian cancer. Finally, the review discusses how these newly gained insights can be leveraged to develop urgently needed therapeutic strategies in a personalized manner.
Collapse
Affiliation(s)
- Takeshi Fukumoto
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Elizabeth Magno
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rugang Zhang
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
69
|
Caumanns JJ, Wisman GBA, Berns K, van der Zee AGJ, de Jong S. ARID1A mutant ovarian clear cell carcinoma: A clear target for synthetic lethal strategies. Biochim Biophys Acta Rev Cancer 2018; 1870:176-184. [PMID: 30025943 DOI: 10.1016/j.bbcan.2018.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022]
Abstract
SWI/SNF chromatin remodeling complexes play an important role in the epigenetic regulation of chromatin structure and gene transcription. Mutual exclusive subunits in the SWI/SNF complex include the DNA targeting members ARID1A and ARID1B as well as the ATPases SMARCA2 and SMARCA4. SWI/SNF complexes are mutated across many cancer types. The highest mutation incidence is found in ARID1A, primarily consisting of deleterious mutations. Current advances have reported synthetic lethal interactions with the loss of ARID1A in several cancer types. In this review, we discuss targets that are only important for tumor growth in an ARID1A mutant context. We focus on synthetic lethal strategies with ARID1A loss in ovarian clear cell carcinoma, a cancer with the highest ARID1A mutation incidence (46-57%). ARID1A directed lethal strategies that can be exploited clinically include targeting of the DNA repair proteins PARP and ATR, and the epigenetic factors EZH2, HDAC2, HDAC6 and BRD2.
Collapse
Affiliation(s)
- Joseph J Caumanns
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - G Bea A Wisman
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Katrien Berns
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Centre Groningen, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
70
|
Muinao T, Pal M, Deka Boruah HP. Origins based clinical and molecular complexities of epithelial ovarian cancer. Int J Biol Macromol 2018; 118:1326-1345. [PMID: 29890249 DOI: 10.1016/j.ijbiomac.2018.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022]
Abstract
Ovarian cancer is the most lethal of all common gynaecological malignancies in women worldwide. Ovarian cancer comprises of >15 distinct tumor types and subtypes characterized by histopathological features, environmental and genetic risk factors, precursor lesions and molecular events during oncogenesis. Recent studies on gene signature profiling of different subtypes of ovarian cancer have revealed significant genetic heterogeneity between and within each ovarian cancer histological subtype. Thus, an immense interest have shown towards a more personalized medicine for understanding the clinical and molecular complexities of four major types of epithelial ovarian cancer (serous, endometrioid, clear cell, and mucinous). As such, further in depth studies are needed for identification of molecular signalling network complexities associated with effective prognostication and targeted therapies to prevent or treat metastasis. Therefore, understanding the metastatic potential of primary ovarian cancer and therapeutic interventions against lethal ovarian cancer for the development of personalized therapies is very much indispensable. Consequently, in this review we have updated the key dysregulated genes of four major subtypes of epithelial carcinomas. We have also highlighted the recent advances and current challenges in unravelling the complexities of the origin of tumor as well as genetic heterogeneity of ovarian cancer.
Collapse
Affiliation(s)
- Thingreila Muinao
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific & Innovative Research, Jorhat Campus, Assam 785006, India
| | - Mintu Pal
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific & Innovative Research, Jorhat Campus, Assam 785006, India.
| | - Hari Prasanna Deka Boruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India; Academy of Scientific & Innovative Research, Jorhat Campus, Assam 785006, India
| |
Collapse
|