51
|
Datta P, Bang S, Yue Z, Beach T, Stilgenbauer M, Wang H, Bowers DJ, Kurokawa M, Xiao H, Zheng YR. Engineering liposomal nanoparticles of cholesterol-tethered amphiphilic Pt(iv) prodrugs with prolonged circulation time in blood. Dalton Trans 2020; 49:8107-8113. [PMID: 32490446 DOI: 10.1039/d0dt01297a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cisplatin is a platinum-based chemotherapeutic agent widely used in the treatment of various solid tumors. However, a major challenge in the use of cisplatin and in the development of cisplatin derivatives, namely Pt(iv) prodrugs, is their premature reduction in the bloodstream before reaching cancer cells. To circumvent this problem, we designed liposomal nanoparticles coupled with a cholesterol-tethered amphiphilic Pt(iv) prodrug. The addition of cholesterol served to stabilize the formation of the liposome, while selectively incorporating cholesterol as the axial ligand also allowed the Pt(iv) prodrug to readily migrate into the liposomal bilayer. Notably, upon embedding into the nanoparticles, the Pt(iv) prodrug showed marked resistance against premature reduction in human plasma in vitro. Pharmacokinetic analysis in a mouse model also showed that the nanoparticles significantly extend the half-life of the Pt(iv) prodrug to 180 min, which represents a >6-fold increase compared to cisplatin. Importantly, such lipid modification did not compromise the genotoxicity of cisplatin, as the Pt(iv) prodrug induced DNA damage and apoptosis in ovarian cancer cell lines efficiently. Taken together, our strategy provides a novel insight as to how to stabilize a platinum-based compound to increase the circulation time in vivo, which is expected to enhance the efficacy of drug treatment.
Collapse
Affiliation(s)
- Payel Datta
- Department of Chemistry and Biochemistry, Kent State University, 236 Integrated Sciences Building, Kent, Ohio 44242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Li Q, Huang Y. Mitochondrial targeted strategies and their
application for cancer and other diseases treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00481-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
53
|
Ma J, Li L, Yue K, Li Y, Liu H, Wang PG, Wang C, Wang J, Luo W, Xie S. Bromocoumarinplatin, targeting simultaneously mitochondria and nuclei with p53 apoptosis pathway to overcome cisplatin resistance. Bioorg Chem 2020; 99:103768. [PMID: 32217375 DOI: 10.1016/j.bioorg.2020.103768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/07/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria as one of potential anticancer target, alternatively damaging mtDNA other than nDNA is a potential method for platinum-based anticancer drugs to overcome cisplatin resistance. We herein report that bromocoumarinplatin 1, a coumarin-Pt(IV) prodrug, targeted simultaneously mitochondria and nuclei with the contents of Pt in nDNA and mtDNA were 25.75% and 65.91%, respectively, which demonstrated mtDNA apoptosis played a key role in overcoming cisplatin resistance. Moreover, 1 promoted the expression of p53 gene and protein more effectively than cisplatin, leading to the increased anticancer activity of 1 through p53 pathway. The property of preferential accumulation in cancer cells (Snu-368 and Snu-739) compared to the matched normal cells (HL-7702 cells) demonstrated that 1 was potentially safe for clinical therapeutic use. In addition, the higher therapeutic indices of 1 for HCT-116 cells in vivo indicated that bromocoumarinplatin behaved a vital function in the treatment of colon cancer.
Collapse
Affiliation(s)
- Jing Ma
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Jinming Ave, 475004, Kaifeng, China
| | - Linrong Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Jinming Ave, 475004, Kaifeng, China
| | - Kexin Yue
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Jinming Ave, 475004, Kaifeng, China
| | - Yingguang Li
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Jinming Ave, 475004, Kaifeng, China
| | - Hanfang Liu
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Jinming Ave, 475004, Kaifeng, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518005, China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Jiajia Wang
- Joint National Laboratory for Antibody Drug Engineering; School of Basic Medicine Science, Henan University, Kaifeng, China.
| | - Wen Luo
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China.
| | - Songqiang Xie
- School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Jinming Ave, 475004, Kaifeng, China.
| |
Collapse
|
54
|
Gordon-Williams R, Farquhar-Smith P. Recent advances in understanding chemotherapy-induced peripheral neuropathy. F1000Res 2020; 9. [PMID: 32201575 PMCID: PMC7076330 DOI: 10.12688/f1000research.21625.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common cause of pain and poor quality of life for those undergoing treatment for cancer and those surviving cancer. Many advances have been made in the pre-clinical science; despite this, these findings have not been translated into novel preventative measures and treatments for CIPN. This review aims to give an update on the pre-clinical science, preventative measures, assessment and treatment of CIPN.
Collapse
Affiliation(s)
- Richard Gordon-Williams
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Paul Farquhar-Smith
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
55
|
Metal complexes for mitochondrial bioimaging. J Inorg Biochem 2020; 204:110985. [DOI: 10.1016/j.jinorgbio.2019.110985] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 02/07/2023]
|
56
|
Qin QP, Wang ZF, Huang XL, Tan MX, Luo ZH, Wang SL, Zou BQ, Liang H. Two telomerase-targeting Pt(ii) complexes of jatrorrhizine and berberine derivatives induce apoptosis in human bladder tumor cells. Dalton Trans 2020; 48:15247-15254. [PMID: 31577283 DOI: 10.1039/c9dt02381j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Two novel Pt(ii) complexes, [Pt(B-TFA)Cl]Cl (Pt1) and [Pt(J-TFA)Cl]Cl (Pt2) with jatrorrhizine and berberine derivatives (B-TFA and J-TFA) were first prepared as desirable luminescent agents for cellular applications and potent telomerase inhibitors, which can induce bladder T-24 tumor cell apoptosis by targeting telomerase, together with induction of mitochondrial dysfunction, telomere DNA damage and cell-cycle arrest. Importantly, T-24 tumor inhibition rate (TIR) was 50.4% for Pt2, which was higher than that of Pt1 (26.4%) and cisplatin (37.1%). Taken together, all the results indicated that jatrorrhizine and berberine derivatives Pt1 and Pt2 show low toxicity and could be novel Pt-based anti-cancer drug candidates.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Muhammad N, Tan CP, Muhammad K, Wang J, Sadia N, Pan ZY, Ji LN, Mao ZW. Mitochondria-targeting monofunctional platinum( ii)–lonidamine conjugates for cancer cell de-energization. Inorg Chem Front 2020. [DOI: 10.1039/d0qi01028f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the rational design and anticancer mechanism studies of novel mitochondria-targeting monofunctional Pt(ii)–lonidamine conjugates for the selective de-energization of cancer cells.
Collapse
Affiliation(s)
- Nafees Muhammad
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Kamran Muhammad
- State Key Laboratory of Oncology in South China
- Sun Yat-Sen University Cancer Research Center
- Collaborative Innovation Center for Cancer Medicine
- Guangzhou 510275
- P. R. China
| | - Jie Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Nasreen Sadia
- Department of Environmental Engineering
- University of Engineering & Technology (UET) Taxila
- Taxila 47080
- Pakistan
| | - Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
58
|
Zhang C, Guan R, Liao X, Ouyang C, Liu J, Ji L, Chao H. Mitochondrial DNA targeting and impairment by a dinuclear Ir–Pt complex that overcomes cisplatin resistance. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00224k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A dinuclear complex [(ppy)Ir(tpy)PtCl]2+ (Ir–Pt) can exhibit strong antitumor activity towards cisplatin-resistant cancer cells and induce cell necrosis via mtDNA damage and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Cheng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Cheng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Jiangping Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
59
|
Jeena M, Kim S, Jin S, Ryu JH. Recent Progress in Mitochondria-Targeted Drug and Drug-Free Agents for Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010004. [PMID: 31861339 PMCID: PMC7016936 DOI: 10.3390/cancers12010004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitochondrion is a dynamic eukaryotic organelle that controls lethal and vital functions of the cell. Being a critical center of metabolic activities and involved in many diseases, mitochondria have been attracting attention as a potential target for therapeutics, especially for cancer treatment. Structural and functional differences between healthy and cancerous mitochondria, such as membrane potential, respiratory rate, energy production pathway, and gene mutations, could be employed for the design of selective targeting systems for cancer mitochondria. A number of mitochondria-targeting compounds, including mitochondria-directed conventional drugs, mitochondrial proteins/metabolism-inhibiting agents, and mitochondria-targeted photosensitizers, have been discussed. Recently, certain drug-free approaches have been introduced as an alternative to induce selective cancer mitochondria dysfunction, such as intramitochondrial aggregation, self-assembly, and biomineralization. In this review, we discuss the recent progress in mitochondria-targeted cancer therapy from the conventional approach of drug/cytotoxic agent conjugates to advanced drug-free approaches.
Collapse
|
60
|
Zaidieh T, Smith JR, Ball KE, An Q. ROS as a novel indicator to predict anticancer drug efficacy. BMC Cancer 2019; 19:1224. [PMID: 31842863 PMCID: PMC6916036 DOI: 10.1186/s12885-019-6438-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022] Open
Abstract
Background Mitochondria are considered a primary intracellular site of reactive oxygen species (ROS) generation. Generally, cancer cells with mitochondrial genetic abnormalities (copy number change and mutations) have escalated ROS levels compared to normal cells. Since high levels of ROS can trigger apoptosis, treating cancer cells with low doses of mitochondria-targeting / ROS-stimulating agents may offer cancer-specific therapy. This study aimed to investigate how baseline ROS levels might influence cancer cells’ response to ROS-stimulating therapy. Methods Four cancer and one normal cell lines were treated with a conventional drug (cisplatin) and a mitochondria-targeting agent (dequalinium chloride hydrate) separately and jointly. Cell viability was assessed and drug combination synergisms were indicated by the combination index (CI). Mitochondrial DNA copy number (mtDNAcn), ROS and mitochondrial membrane potential (MMP) were measured, and the relative expression levels of the genes and proteins involved in ROS-mediated apoptosis pathways were also investigated. Results Our data showed a correlation between the baseline ROS level, mtDNAcn and drug sensitivity in the tested cells. Synergistic effect of both drugs was also observed with ROS being the key contributor in cell death. Conclusions Our findings suggest that mitochondria-targeting therapy could be more effective compared to conventional treatments. In addition, cancer cells with low levels of ROS may be more sensitive to the treatment, while cells with high levels of ROS may be more resistant. Doubtlessly, further studies employing a wider range of cell lines and in vivo experiments are needed to validate our results. However, this study provides an insight into understanding the influence of intracellular ROS on drug sensitivity, and may lead to the development of new therapeutic strategies to improve efficacy of anticancer therapy.
Collapse
Affiliation(s)
- Tarek Zaidieh
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| | - James R Smith
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Karen E Ball
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Qian An
- School of Pharmacy and Biomedical Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
61
|
Kim S, Nam HY, Lee J, Seo J. Mitochondrion-Targeting Peptides and Peptidomimetics: Recent Progress and Design Principles. Biochemistry 2019; 59:270-284. [PMID: 31696703 DOI: 10.1021/acs.biochem.9b00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondria are multifunctional subcellular organelles whose operations encompass energy production, signal transduction, and metabolic regulation. Given their wide range of roles, they have been studied extensively as a potential therapeutic target for the treatment of various diseases, including cancer, diabetes, and neurodegenerative diseases. Mitochondrion-mediated pathways have been identified as promising targets in the context of these diseases. However, the delivery of specific probes and drugs to the mitochondria is one of the major problems that remains to be solved. Over the past decade, much effort has been devoted to developing mitochondrion-targeted delivery methods based on the membrane characteristics and the protein import machinery of mitochondria. While various methods utilizing small molecules to polymeric particles have been introduced, it is notable that many of these compounds share common structural elements and physicochemical properties for optimal selectivity and efficiency. In this Perspective, we will review the most recently developed mitochondrion-targeting peptides and peptidomimetics to outline the key aspects of structural requirements and design principles. We will also discuss successful and potential applications of mitochondrial delivery to assess opportunities and challenges in the targeting of mitochondria.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Seoul 01133 , Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
62
|
Geng Y, Zhong Y, Zhou Q, Chen S, Piao Y, Yin W, Lu H, Shen Y. A neutral water-soluble mitochondria-targeting polymer. Chem Commun (Camb) 2019; 55:10015-10018. [PMID: 31378791 DOI: 10.1039/c9cc04291a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the first neutral and water-soluble polymer capable of strong mitochondrial targeting in vitro and in vivo, zwitterionic poly[2-(N-oxide-N,N-diethylamino)ethyl methacrylate] (OPDEA). OPDEA is quickly internalized via macropinocytosis by various cancer cells and transferred into the mitochondria, which slightly lowers the mitochondrial membrane potential as determined by the JC-1 assay.
Collapse
Affiliation(s)
- Yu Geng
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Guo Y, He Y, Wu S, Zhang S, Song D, Zhu Z, Guo Z, Wang X. Enhancing Cytotoxicity of a Monofunctional Platinum Complex via a Dual-DNA-Damage Approach. Inorg Chem 2019; 58:13150-13160. [PMID: 31539237 DOI: 10.1021/acs.inorgchem.9b02033] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) is an attractive cellular target for anticancer agents in addition to nuclear DNA (nDNA). The cationic platinum(II) complex cis-[Pt(NP)(NH3)2Cl]NO3 (PtNP, NP = N-(2-ethylpyridine)-1,8-naphthalimide) bearing the DNA-intercalating moiety NP was designed. The structure of PtNP was fully characterized by single-crystal X-ray crystallography, NMR, and HRMS. PtNP is superior to cisplatin in both in vitro and in vivo anticancer activities with low systemic toxicity. The interaction of PtNP with CT-DNA demonstrated that PtNP could effectively bind to DNA through both covalent and noncovalent double binding modes. In addition to causing significant damage to nDNA and remarkable inhibition to DNA damage repair, PtNP also distributed in mitochondria, inducing mtDNA damage and affecting the downstream transcriptional level of mitochondrion-encoded genes. In addition, PtNP disturbed the physiological processes of mitochondria by reducing the mitochondrial membrane potential and promoting the generation of reactive oxygen species. Mechanistic studies demonstrate that PtNP induced apoptosis via mitochondrial pathways by upregulating Bax and Puma and downregulating Bcl-2 proteins, leading to the release of cytochrome c and activation of caspase-3 and caspase-9. As a dual-DNA-damage agent, PtNP is able to improve the anticancer activity by damaging both nuclear and mitochondrial DNA, thus providing a new anticancer mechanism of action for the naphthalimide monofunctional platinum(II) complexes.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Yafeng He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Shengde Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , People's Republic of China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences , Nanjing University , Nanjing 210023 , People's Republic of China
| |
Collapse
|
64
|
Qin QP, Wang ZF, Wang SL, Luo DM, Zou BQ, Yao PF, Tan MX, Liang H. In vitro and in vivo antitumor activities of three novel binuclear platinum(II) complexes with 4′-substituted-2,2′:6′,2″-terpyridine ligands. Eur J Med Chem 2019; 170:195-202. [DOI: 10.1016/j.ejmech.2019.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
|
65
|
Lajous H, Lelièvre B, Vauléon E, Lecomte P, Garcion E. Rethinking Alkylating(-Like) Agents for Solid Tumor Management. Trends Pharmacol Sci 2019; 40:342-357. [PMID: 30979523 DOI: 10.1016/j.tips.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Although old molecules, alkylating agents and platinum derivatives are still widely used in the treatment of various solid tumors. However, systemic toxicity and cellular resistance mechanisms impede their efficacy. Innovative strategies, including local administration, optimization of treatment schedule/dosage, synergistic combinations, and the encapsulation of bioactive molecules in smart, multifunctional drug delivery systems, have shown promising results in potentiating anticancer activity while circumventing such hurdles. Furthermore, questioning of the old paradigm according to which nuclear DNA is the critical target of their anticancer activity has shed light on subcellular alternative and neglected targets that obviously participate in the mediation of cytotoxicity or resistance. Thus, rethinking of the use of these pivotal antineoplastic agents appears critical to improve clinical outcomes in the management of solid tumors.
Collapse
Affiliation(s)
- Hélène Lajous
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, B6a Sart-Tilman, B-4000 Liege, Belgium
| | - Bénédicte Lelièvre
- Centre Régional de Pharmacovigilance, Laboratoire de Pharmacologie-Toxicologie, CHU Angers, 4 rue Larrey, F-49100 Angers, France
| | - Elodie Vauléon
- Centre Eugène Marquis, Rennes, France; INSERM U1242, Université de Rennes 1, Rennes, France
| | - Philippe Lecomte
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liege, B6a Sart-Tilman, B-4000 Liege, Belgium; Equivalent contribution
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Equivalent contribution.
| |
Collapse
|
66
|
Abstract
Background:
Since the serendipitous discovery of the antitumor activity of cisplatin
there has been a continuous surge in studies aimed at the development of new cytotoxic
metal complexes. While the majority of these complexes have been designed to interact with
nuclear DNA, other targets for anticancer metallodrugs attract increasing interest. In cancer
cells the mitochondrial metabolism is deregulated. Impaired apoptosis, insensitivity to antigrowth
signals and unlimited proliferation have been linked to mitochondrial dysfunction. It
is therefore not surprising that mitochondria have emerged as a major target for cancer therapy.
Mitochondria-targeting agents are able to bypass resistance mechanisms and to (re-) activate
cell-death programs.
Methods:
Web-based literature searching tools such as SciFinder were used to search for reports
on cytotoxic metal complexes that are taken up by the mitochondria and interact with
mitochondrial DNA or mitochondrial proteins, disrupt the mitochondrial membrane potential,
facilitate mitochondrial membrane permeabilization or activate mitochondria-dependent celldeath
signaling by unbalancing the cellular redox state. Included in the search were publications
investigating strategies to selectively accumulate metallodrugs in the mitochondria.
Results:
This review includes 241 references on antimitochondrial metal complexes, the use
of mitochondria-targeting carrier ligands and the formation of lipophilic cationic complexes.
Conclusion:
Recent developments in the design, cytotoxic potency, and mechanistic understanding
of antimitochondrial metal complexes, in particular of cyclometalated Au, Ru, Ir and
Pt complexes, Ru polypyridine complexes and Au-N-heterocyclic carbene and phosphine
complexes are summarized and discussed.
Collapse
Affiliation(s)
- Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
67
|
Zhu Z, Wang Z, Zhang C, Wang Y, Zhang H, Gan Z, Guo Z, Wang X. Mitochondrion-targeted platinum complexes suppressing lung cancer through multiple pathways involving energy metabolism. Chem Sci 2019; 10:3089-3095. [PMID: 30996891 PMCID: PMC6428137 DOI: 10.1039/c8sc04871a] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are potential therapeutic targets for anticancer drugs. A series of mitochondrion-targeted monofunctional platinum complexes, [Pt(ortho-PPh3CH2Py)(NH3)2Cl](NO3)2 (OPT), [Pt(meta-PPh3CH2Py)(NH3)2Cl](NO3)2 (MPT), and [Pt(para-PPh3CH2Py)(NH3)2Cl](NO3)2 (PPT) (PPh3 = triphenylphosphonium, Py = pyridine), are studied in this article. The antitumor activity and mechanism of action have been investigated in vitro and in vivo as well as on molecular levels. OPT exhibits higher efficacy than cisplatin against A549 lung cancer cells; furthermore, it shows a strong inhibition towards the growth of non-small-cell lung cancer in nude mice. The DNA binding ability of these complexes follows an order of PPT > OPT > MPT. Cellular uptake and distribution studies show that OPT accumulates mainly in mitochondria, while MPT and PPT accumulate more preferentially in nuclei than in mitochondria. As a result, OPT induces remarkable changes in the ultrastructure and membrane of mitochondria, leading to more radical mitochondrial dysfunctions than cisplatin. The release of cytochrome c from mitochondria is more evident for cells treated with OPT than with cisplatin, though the apoptosis of A549 cells induced by OPT is similar to that induced by cisplatin. Disruption to mitochondrial oxidative phosphorylation and glycolysis is involved in the antitumor mechanism of these compounds. The results indicate that in addition to DNA binding, bioenergetic pathways also play crucial roles in the antitumor activity of mitochondrion-targeted monofunctional platinum complexes.
Collapse
Affiliation(s)
- Zhenzhu Zhu
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| | - Zenghui Wang
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89689006
| | - Changli Zhang
- School of Biochemical and Environmental Engineering , Nanjing Xiaozhuang University , Nanjing , P. R. China
| | - Yanjun Wang
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| | - Hongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology , Model Animal Research Center of Nanjing University , Nanjing , P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry , School of Chemistry and Chemical Engineering , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89689006
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology , School of Life Sciences , Nanjing University , Nanjing , P. R. China . ; ; Tel: +86 25 89684549
| |
Collapse
|
68
|
Cao JJ, Zheng Y, Wu XW, Tan CP, Chen MH, Wu N, Ji LN, Mao ZW. Anticancer Cyclometalated Iridium(III) Complexes with Planar Ligands: Mitochondrial DNA Damage and Metabolism Disturbance. J Med Chem 2019; 62:3311-3322. [PMID: 30816710 DOI: 10.1021/acs.jmedchem.8b01704] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging studies have shown that mitochondrial DNA (mtDNA) is a potential target for cancer therapy. Herein, six cyclometalated Ir(III) complexes Ir1-Ir6 containing a series of extended planar diimine ligands have been designed and assessed for their efficacy as anticancer agents. Ir1-Ir6 show much higher cytotoxicity than cisplatin and they can effectively localize to mitochondria. Among them, complexes Ir3 and Ir4 with dipyrido[3,2- a:2',3'- c]phenazine (dppz) ligands can bind to DNA tightly in vitro, intercalate to mtDNA in situ, and induce mtDNA damage. Ir3- and Ir4-impaired mitochondria exhibit decline of mitochondrial membrane potential, disability of adenosine triphosphate generation, disruption of mitochondrial energetic and metabolic status, which subsequently cause protective mitophagy, G0/G1 phase cell cycle arrest, and apoptosis. In vivo antitumor evaluations also show that Ir4 can inhibit tumor xenograft growth effectively. Overall, our work proves that targeting the mitochondrial genome may present an effective strategy to develop metal-based anticancer agents to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Xiao-Wen Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Mu-He Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Na Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| |
Collapse
|
69
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
70
|
Stilgenbauer M, Jayawardhana AMDS, Datta P, Yue Z, Gray M, Nielsen F, Bowers DJ, Xiao H, Zheng YR. A spermine-conjugated lipophilic Pt(iv) prodrug designed to eliminate cancer stem cells in ovarian cancer. Chem Commun (Camb) 2019; 55:6106-6109. [DOI: 10.1039/c9cc02081k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A spermine-conjugated lipophilic Pt(iv) prodrug is designed to induce mitochondrial damage and eliminate ovarian cancer stem cells.
Collapse
Affiliation(s)
| | | | - Payel Datta
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Zhizhou Yue
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Michael Gray
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Frederick Nielsen
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - David J. Bowers
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
71
|
Huang GB, Chen S, Qin QP, Luo JR, Tan MX, Wang ZF, Zou BQ, Liang H. In vitro and in vivo activity of novel platinum(ii) complexes with naphthalene imide derivatives inhibiting human non-small cell lung cancer cells. NEW J CHEM 2019. [DOI: 10.1039/c9nj01076a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
3 induced NCI-H460 cell apoptosis via inhibition of the telomerase and dysfunction of mitochondria. Remarkably, 3 obviously inhibited NCI-H460 xenograft tumor growth in vivo.
Collapse
Affiliation(s)
- Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Shan Chen
- College of Physical Science and Technology
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Jin-Rong Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology
- School of Chemistry and Food Science
- Yulin Normal University
- Yulin 537000
- P. R. China
| | - Bi-Qun Zou
- Department of Chemistry
- Guilin Normal College
- 9 Feihu Road
- Gulin 541001
- P. R. China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
72
|
Jayawardhana AMDS, Qiu Z, Kempf S, Wang H, Miterko M, Bowers DJ, Zheng YR. Dual-action organoplatinum polymeric nanoparticles overcoming drug resistance in ovarian cancer. Dalton Trans 2019; 48:12451-12458. [DOI: 10.1039/c9dt01683j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This work demonstrates the development of “dual-action” organometallic polymeric nanoparticles (OPNPs) for treating drug-resistant ovarian cancer.
Collapse
Affiliation(s)
| | - Zhihan Qiu
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Susan Kempf
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Han Wang
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Mitchell Miterko
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - David J. Bowers
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - Yao-Rong Zheng
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| |
Collapse
|
73
|
Mallick A, Nandi A, Basu S. Polyethylenimine Coated Graphene Oxide Nanoparticles for Targeting Mitochondria in Cancer Cells. ACS APPLIED BIO MATERIALS 2018; 2:14-19. [DOI: 10.1021/acsabm.8b00519] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Aditi Nandi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT)-Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
74
|
Alharbi M, Zuñiga F, Elfeky O, Guanzon D, Lai A, Rice GE, Perrin L, Hooper J, Salomon C. The potential role of miRNAs and exosomes in chemotherapy in ovarian cancer. Endocr Relat Cancer 2018; 25:R663-R685. [PMID: 30400025 DOI: 10.1530/erc-18-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Chemoresistance is one of the major obstacles in the treatment of cancer patients. It poses a fundamental challenge to the effectiveness of chemotherapy and is often linked to relapse in patients. Chemoresistant cells can be identified in different types of cancers; however, ovarian cancer has one of the highest rates of chemoresistance-related relapse (50% of patients within 5 years). Resistance in cells can either develop through prolonged cycles of treatment or through intrinsic pathways. Mechanistically, the problem of drug resistance is complex mainly because numerous factors are involved, such as overexpression of drug efflux pumps, drug inactivation, DNA repair mechanisms and alterations to and/or mutations in the drug target. Additionally, there is strong evidence that circulating miRNAs participate in the development of chemoresistance. Recently, miRNAs have been identified in exosomes, where they are encapsulated and hence protected from degradation. These miRNAs within exosomes (exo-miRNAs) can regulate the gene expression of target cells both locally and systemically. Exo-miRNAs play an important role in disease progression and can potentially facilitate chemoresistance in cancer cells. In addition, and from a diagnostic perspective, exo-miRNAs profiles may contribute to the development of predictive models to identify responder and non-responder chemotherapy. Such model may also be used for monitoring treatment response and disease progression. Exo-miRNAs may ultimately serve as both a predictive biomarker for cancer response to therapy and as a prognostic marker for the development of chemotherapy resistance. Therefore, this review examines the potential role of exo-miRNAs in chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Mona Alharbi
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Felipe Zuñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Omar Elfeky
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
- Perinatology Research Branch, NICHD/NIH, Wayne State University, Detroit, Michigan, USA
| | - Lewis Perrin
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - John Hooper
- Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
- Mater Ovarian Cancer Research Collaborative, Mater Adult Hospital, South Brisbane, Queensland, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
75
|
Zheng Y, Zhang DY, Zhang H, Cao JJ, Tan CP, Ji LN, Mao ZW. Photodamaging of Mitochondrial DNA to Overcome Cisplatin Resistance by a RuII
-PtII
Bimetallic Complex. Chemistry 2018; 24:18971-18980. [DOI: 10.1002/chem.201803630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yue Zheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Jian-Jun Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| |
Collapse
|
76
|
Deo KM, Ang DL, McGhie B, Rajamanickam A, Dhiman A, Khoury A, Holland J, Bjelosevic A, Pages B, Gordon C, Aldrich-Wright JR. Platinum coordination compounds with potent anticancer activity. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
77
|
Battogtokh G, Choi YS, Kang DS, Park SJ, Shim MS, Huh KM, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm Sin B 2018; 8:862-880. [PMID: 30505656 PMCID: PMC6251809 DOI: 10.1016/j.apsb.2018.05.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial targeting is a promising approach for solving current issues in clinical application of chemotherapy and diagnosis of several disorders. Here, we discuss direct conjugation of mitochondrial-targeting moieties to anticancer drugs, antioxidants and sensor molecules. Among them, the most widely applied mitochondrial targeting moiety is triphenylphosphonium (TPP), which is a delocalized cationic lipid that readily accumulates and penetrates through the mitochondrial membrane due to the highly negative mitochondrial membrane potential. Other moieties, including short peptides, dequalinium, guanidine, rhodamine, and F16, are also known to be promising mitochondrial targeting agents. Direct conjugation of mitochondrial targeting moieties to anticancer drugs, antioxidants and sensors results in increased cytotoxicity, anti-oxidizing activity and sensing activity, respectively, compared with their non-targeting counterparts, especially in drug-resistant cells. Although many mitochondria-targeted anticancer drug conjugates have been investigated in vitro and in vivo, further clinical studies are still needed. On the other hand, several mitochondria-targeting antioxidants have been analyzed in clinical phases I, II and III trials, and one conjugate has been approved for treating eye disease in Russia. There are numerous ongoing studies of mitochondria-targeted sensors.
Collapse
Key Words
- (Fx, r)3, (l-cyclohexyl alanine-d-arginine)3
- 4-AT, 4-amino-TEMPO
- 5-FU, 5-Fluorouracil
- AD, Alzheimer׳s disease
- AIE, aggregation-induced emission
- ATP, adenosine triphosphate
- Anticancer agents
- Antioxidants
- Arg, arginine
- Aβ, beta amyloid
- BODIPY, boron-dipyrromethene
- C-dots, carbon dots
- CAT, catalase
- COX, cytochrome c oxidase
- CZBI, carbazole and benzo[e]indolium
- CoA, coenzyme A
- DDS, drug delivery system
- DEPMPO, 5-(diethylphosphono)-5-methyl-1-pyrroline N-oxide
- DIPPMPO, 5-(diisopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide
- DQA, dequalinium
- Direct conjugation
- Dmt, dimethyltyrosine
- EPR, enhanced permeability and retention
- F16, (E)-4-(1H-indol-3-ylvinyl)-N-methylpyridinium iodide
- GPX, glutathione peroxidase
- GS, gramicidin S
- HTPP, 5-(4-hydroxy-phenyl)-10,15,20-triphenylporphyrin
- IMM, inner mitochondrial membrane
- IMS, intermembrane space
- IOA, imidazole-substituted oleic acid
- LA, lipoic acid
- LAH2, dihydrolipoic acid
- Lys, lysine
- MET, mesenchymal-epithelial transition
- MLS, mitochondria localization sequences
- MPO, myeloperoxidase
- MPP, mitochondria-penetrating peptides
- MitoChlor, TPP-chlorambucil
- MitoE, TPP-vitamin E
- MitoLA, TPP-lipoic acid
- MitoQ, TPP-ubiquinone
- MitoVES, TPP-vitamin E succinate
- Mitochondria-targeting
- Nit, nitrooxy
- NitDOX, nitrooxy-DOX
- OMM, outer mitochondrial membrane
- OXPHOS, oxidative phosphorylation
- PD, Parkinson׳s disease
- PDT, photodynamic therapy
- PET, photoinduced electron transfer
- PS, photosensitizer
- PTPC, permeability transition pore complex
- Phe, phenylalanine
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- SS peptide, Szeto-Schiller peptides
- Sensing agents
- SkQ1, Skulachev ion-quinone
- TEMPOL, 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl
- TPEY-TEMPO, [2-(1-oxyl-2,2,6,6-tetramethylpiperidin-4-ylimino)-ethyl]-triphenyl-phosphonium
- TPP, triphenylphosphonium
- Tyr, tyrosine
- VDAC/ANT, voltage-dependent anion channel/adenine nucleotide translocase
- VES, vitamin E succinate
- XO, xanthine oxidase
- mitoTEMPO, (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium)
- mtCbl, (Fx,r)3-chlorambucil
- mtDNA, mitochondrial DNA
- mtPt, mitochondria-targeting (Fx,r)3-platinum(II)
- nDNA, nuclear DNA
- αTOS, alpha-tocopheryl succinate.
Collapse
Affiliation(s)
- Gantumur Battogtokh
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Yeon Su Choi
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Dong Seop Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Sang Jun Park
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong-Yeon Cho
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Joo Young Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Hye Suk Lee
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
78
|
Thiabendazole-based Rh(III) and Ir(III) biscyclometallated complexes with mitochondria-targeted anticancer activity and metal-sensitive photodynamic activity. Eur J Med Chem 2018; 157:279-293. [DOI: 10.1016/j.ejmech.2018.07.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/20/2022]
|
79
|
Wu Q, Liu LY, Li S, Wang FX, Li J, Qian Y, Su Z, Mao ZW, Sadler PJ, Liu HK. Rigid dinuclear ruthenium-arene complexes showing strong DNA interactions. J Inorg Biochem 2018; 189:30-39. [PMID: 30218888 DOI: 10.1016/j.jinorgbio.2018.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
Abstract
Six novel dinuclear Ru(II)-arene complexes [Ru2(η6-p-cymene)2(1,3-bib)2Cl2]×2·Solvent (X = Cl- (1), I- (2), NO3- (3), BF4- (4), PF6- (5), CF3SO3- (6); 1,3-bib = 1,3-di(1H-imidazol-1-yl) benzene) were synthesized and fully characterized by FT-IR, 1H NMR, ESI-MS, Elemental Analysis (EA) and Powder X-ray Diffraction (PXRD). Single crystal X-ray diffractions studies showed that 3 and 4 have rigid bowl-like structures, where one counter-anion (NO3- for 3 and BF4- for 4) was trapped inside the cavity to balance the charge, respectively. Even complexes 1-6 showed only moderate or little anti-proliferative activity toward cancer cells, strong interactions with DNA molecules through intercalation, however, were confirmed by UV-Vis, CD and fluorescence spectroscopy. Apoptosis and cell cycle arrest studies for complex 2 with cancer A549 cells indicated concentration-dependent late apoptosis and the G1/G0 phase arrest. Interactions with the tripeptide glutathione (γ-L-Glu-L-Cys-Gly, GSH) might explain the relatively low antiproliferative potency of these complexes. This class of rigid dinuclear cations hold potential as DNA-targeting anticancer agents if their uptake and delivery could be under controlled.
Collapse
Affiliation(s)
- Qi Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shunli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ji Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
80
|
Reshetnikov V, Daum S, Janko C, Karawacka W, Tietze R, Alexiou C, Paryzhak S, Dumych T, Bilyy R, Tripal P, Schmid B, Palmisano R, Mokhir A. ROS-Responsive N-Alkylaminoferrocenes for Cancer-Cell-Specific Targeting of Mitochondria. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Viktor Reshetnikov
- Friedrich-Alexander-University of Erlangen-Nürnberg; Department of Chemistry and Pharmacy, Organic Chemistry Chair II; Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Steffen Daum
- Friedrich-Alexander-University of Erlangen-Nürnberg; Department of Chemistry and Pharmacy, Organic Chemistry Chair II; Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery; Section of Experimental Oncology and Nanomedicine (SEON); Universitätsklinikum Erlangen; Glückstraße 10a 91054 Erlangen Germany
| | - Weronika Karawacka
- Friedrich-Alexander-University of Erlangen-Nürnberg; Department of Chemistry and Pharmacy, Organic Chemistry Chair II; Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
- Department of Otorhinolaryngology, Head and Neck Surgery; Section of Experimental Oncology and Nanomedicine (SEON); Universitätsklinikum Erlangen; Glückstraße 10a 91054 Erlangen Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery; Section of Experimental Oncology and Nanomedicine (SEON); Universitätsklinikum Erlangen; Glückstraße 10a 91054 Erlangen Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery; Section of Experimental Oncology and Nanomedicine (SEON); Universitätsklinikum Erlangen; Glückstraße 10a 91054 Erlangen Germany
| | - Solomiya Paryzhak
- Danylo Halytsky Lviv National Medical University; Pekarska str. 69 79010 Lviv Ukraine
| | - Tetiana Dumych
- Danylo Halytsky Lviv National Medical University; Pekarska str. 69 79010 Lviv Ukraine
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University; Pekarska str. 69 79010 Lviv Ukraine
| | - Philipp Tripal
- Optical Imaging Centre Erlangen OICE; Friedrich-Alexander-University of Erlangen-Nürnberg; Hartmann-str. 14 91052 Erlangen Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen OICE; Friedrich-Alexander-University of Erlangen-Nürnberg; Hartmann-str. 14 91052 Erlangen Germany
| | - Ralf Palmisano
- Optical Imaging Centre Erlangen OICE; Friedrich-Alexander-University of Erlangen-Nürnberg; Hartmann-str. 14 91052 Erlangen Germany
| | - Andriy Mokhir
- Friedrich-Alexander-University of Erlangen-Nürnberg; Department of Chemistry and Pharmacy, Organic Chemistry Chair II; Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
81
|
Reshetnikov V, Daum S, Janko C, Karawacka W, Tietze R, Alexiou C, Paryzhak S, Dumych T, Bilyy R, Tripal P, Schmid B, Palmisano R, Mokhir A. ROS-Responsive N-Alkylaminoferrocenes for Cancer-Cell-Specific Targeting of Mitochondria. Angew Chem Int Ed Engl 2018; 57:11943-11946. [PMID: 30035345 DOI: 10.1002/anie.201805955] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/04/2018] [Indexed: 01/11/2023]
Abstract
Mitochondrial membrane potential is more negative in cancer cells than in normal cells, allowing cancer targeting by delocalized lipophilic cations (DLCs). However, as the difference is rather small, these drugs affect also normal cells. Now a concept of pro-DLCs is proposed based on an N-alkylaminoferrocene structure. These prodrugs are activated by the reaction with reactive oxygen species (ROS) forming ferrocenium-based DLCs. Since ROS are overproduced in cancer, the high-efficiency cancer-cell-specific targeting of mitochondria could be achieved as demonstrated by fluorescence microscopy in combination with two fluorogenic pro-DLCs in vitro and in vivo. We prepared a conjugate of another pro-DLC with a clinically approved drug carboplatin and confirmed that its accumulation in mitochondria was higher than that of the free drug. This was reflected in the substantially higher anticancer effect of the conjugate.
Collapse
Affiliation(s)
- Viktor Reshetnikov
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Organic Chemistry Chair II, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Steffen Daum
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Organic Chemistry Chair II, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, Glückstraße 10a, 91054, Erlangen, Germany
| | - Weronika Karawacka
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Organic Chemistry Chair II, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, Glückstraße 10a, 91054, Erlangen, Germany
| | - Rainer Tietze
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, Glückstraße 10a, 91054, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Universitätsklinikum Erlangen, Glückstraße 10a, 91054, Erlangen, Germany
| | - Solomiya Paryzhak
- Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010, Lviv, Ukraine
| | - Tetiana Dumych
- Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010, Lviv, Ukraine
| | - Rostyslav Bilyy
- Danylo Halytsky Lviv National Medical University, Pekarska str. 69, 79010, Lviv, Ukraine
| | - Philipp Tripal
- Optical Imaging Centre Erlangen OICE, Friedrich-Alexander-University of Erlangen-Nürnberg, Hartmann-str. 14, 91052, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen OICE, Friedrich-Alexander-University of Erlangen-Nürnberg, Hartmann-str. 14, 91052, Erlangen, Germany
| | - Ralf Palmisano
- Optical Imaging Centre Erlangen OICE, Friedrich-Alexander-University of Erlangen-Nürnberg, Hartmann-str. 14, 91052, Erlangen, Germany
| | - Andriy Mokhir
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Organic Chemistry Chair II, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
82
|
Jin S, Hao Y, Zhu Z, Muhammad N, Zhang Z, Wang K, Guo Y, Guo Z, Wang X. Impact of Mitochondrion-Targeting Group on the Reactivity and Cytostatic Pathway of Platinum(IV) Complexes. Inorg Chem 2018; 57:11135-11145. [DOI: 10.1021/acs.inorgchem.8b01707] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
83
|
Battogtokh G, Cho YY, Lee JY, Lee HS, Kang HC. Mitochondrial-Targeting Anticancer Agent Conjugates and Nanocarrier Systems for Cancer Treatment. Front Pharmacol 2018; 9:922. [PMID: 30174604 PMCID: PMC6107715 DOI: 10.3389/fphar.2018.00922] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022] Open
Abstract
The mitochondrion is an important intracellular organelle for drug targeting due to its key roles and functions in cellular proliferation and death. In the last few decades, several studies have revealed mitochondrial functions, attracting the focus of many researchers to work in this field over nuclear targeting. Mitochondrial targeting was initiated in 1995 with a triphenylphosphonium-thiobutyl conjugate as an antioxidant agent. The major driving force for mitochondrial targeting in cancer cells is the higher mitochondrial membrane potential compared with that of the cytosol, which allows some molecules to selectively target mitochondria. In this review, we discuss mitochondria-targeting ligand-conjugated anticancer agents and their in vitro and in vivo behaviors. In addition, we describe a mitochondria-targeting nanocarrier system for anticancer drug delivery. As previously reported, several agents have been known to have mitochondrial targeting potential; however, they are not sufficient for direct application for cancer therapy. Thus, many studies have focused on direct conjugation of targeting ligands to therapeutic agents to improve their efficacy. There are many variables for optimal mitochondria-targeted agent development, such as choosing a correct targeting ligand and linker. However, using the nanocarrier system could solve some issues related to solubility and selectivity. Thus, this review focuses on mitochondria-targeting drug conjugates and mitochondria-targeted nanocarrier systems for anticancer agent delivery.
Collapse
Affiliation(s)
| | | | | | | | - Han Chang Kang
- Department of Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
84
|
Yilmaz VT, Icsel C, Turgut OR, Aygun M, Erkisa M, Turkdemir MH, Ulukaya E. Synthesis, structures and anticancer potentials of platinum(II) saccharinate complexes of tertiary phosphines with phenyl and cyclohexyl groups targeting mitochondria and DNA. Eur J Med Chem 2018; 155:609-622. [DOI: 10.1016/j.ejmech.2018.06.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 12/17/2022]
|
85
|
Mitochondrial dynamics tracking with iridium(III) complexes. Curr Opin Chem Biol 2018; 43:51-57. [DOI: 10.1016/j.cbpa.2017.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022]
|
86
|
Basu U, Banik B, Wen R, Pathak RK, Dhar S. The Platin-X series: activation, targeting, and delivery. Dalton Trans 2018; 45:12992-3004. [PMID: 27493131 DOI: 10.1039/c6dt01738j] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anticancer platinum (Pt) complexes have long been considered to be one of the biggest success stories in the history of medicinal inorganic chemistry. Yet there remains the hunt for the "magic bullet" which can satisfy the requirements of an effective chemotherapeutic drug formulation. Pt(iv) complexes are kinetically more inert than the Pt(ii) congeners and offer the opportunity to append additional functional groups/ligands for prodrug activation, tumor targeting, or drug delivery. The ultimate aim of functionalization is to enhance the tumor selective action and attenuate systemic toxicity of the drugs. Moreover, an increase in cellular accumulation to surmount the resistance of the tumor against the drugs is also of paramount importance in drug development and discovery. In this review, we will address the attempts made in our lab to develop Pt(iv) prodrugs that can be activated and delivered using targeted nanotechnology-based delivery platforms.
Collapse
Affiliation(s)
- Uttara Basu
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Bhabatosh Banik
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Rakesh K Pathak
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
87
|
Parker JP, Devocelle M, Morgan MP, Marmion CJ. Derivatisation of buforin IIb, a cationic henicosapeptide, to afford its complexation to platinum(ii) resulting in a novel platinum(ii)-buforin IIb conjugate with anti-cancer activity. Dalton Trans 2018; 45:13038-41. [PMID: 27292799 DOI: 10.1039/c6dt01510g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the synthesis of buforin IIb, its novel malonate derivative malBuf and its Pt(ii) complex cis-[Pt(NH3)2(malBuf-2H)]. We decided to harness the cell targeting, cell-penetrating and anti-proliferative effects of buforin IIb to help target a cytotoxic dose of a Pt DNA binding species, {Pt(NH3)2} to cancer cells whilst also delivering a peptide with potent anti-cancer properties. Preliminary in vitro data shows cis-[Pt(NH3)2(malBuf-2H)] to be more cytotoxic against the cisplatin resistant ovarian cancer cell line (A2780cisR) relative to buforin IIb, cisplatin and cis-[Pt(NH3)2(malonate)].
Collapse
Affiliation(s)
- J P Parker
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | - M Devocelle
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | - M P Morgan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - C J Marmion
- Centre for Synthesis and Chemical Biology, Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
88
|
Wlodarczyk MT, Dragulska SA, Camacho-Vanegas O, Dottino PR, Jarzęcki AA, Martignetti JA, Mieszawska AJ. Platinum (II) complex-nuclear localization sequence peptide hybrid for overcoming platinum resistance in cancer therapy. ACS Biomater Sci Eng 2018; 4:463-467. [PMID: 32042890 DOI: 10.1021/acsbiomaterials.7b00921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Platinum therapy represents first line of treatment in many malignancies but its high systemic toxicity limits the therapeutic dosage. Herein, we report the synthesis of carboplatin-like complexes with azide and alkyne functional groups and the formation of a platinum (II) - nuclear localization sequence peptide (Pt-NLS) hybrid to improve the import of platinum (II) complexes directly into the cell's nucleus. The Pt-NLS hybrid successfully enters cells and their nuclei, forming Pt-induced nuclear lesions. The in vitro efficacy of Pt-NLS is high, superior to native carboplatin at the same concentration. The methodology used is simple and cost-effective and most importantly can easily be extended to load the Pt (II) onto other supports, opening new possibilities for enhanced delivery of Pt (II) therapy.
Collapse
Affiliation(s)
- Marek T Wlodarczyk
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn NY 11210.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
| | - Sylwia A Dragulska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn NY 11210
| | - Olga Camacho-Vanegas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029
| | - Peter R Dottino
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Icahn sSchool of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029
| | - Andrzej A Jarzęcki
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn NY 11210
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029.,Laboratory for Translational Research, Western Connecticut Health Network, 131 West Street, Danbury, CT 06810
| | - Aneta J Mieszawska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn NY 11210
| |
Collapse
|
89
|
Živković MD, Kljun J, Ilic-Tomic T, Pavic A, Veselinović A, Manojlović DD, Nikodinovic-Runic J, Turel I. A new class of platinum(ii) complexes with the phosphine ligand pta which show potent anticancer activity. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00299h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A series of 16 Pt(ii) complexes with 8-hydroxyquinolines and sulfoxide/phosphine ligands were synthetized, characterized and evaluated for cytotoxic and embryotoxic activity.
Collapse
Affiliation(s)
- M. D. Živković
- University of Kragujevac
- Faculty of Medical Sciences
- Department of Pharmacy Svetozara Markovića 69
- 34000 Kragujevac
- Serbia
| | - J. Kljun
- University of Ljubljana
- Department of Chemistry and Biochemistry
- Faculty of Chemistry and Chemical Technology
- SI-1000 Ljubljana
- Slovenia
| | - T. Ilic-Tomic
- University of Belgrade
- Institute of Molecular Genetics and Genetic Engineering
- 11000 Belgrade
- Serbia
| | - A. Pavic
- University of Belgrade
- Institute of Molecular Genetics and Genetic Engineering
- 11000 Belgrade
- Serbia
| | - A. Veselinović
- University of Niš
- Department of Chemistry Faculty of Medicine
- 18000 Niš
- Serbia
| | - D. D. Manojlović
- University of Belgrade
- Department of Analytical Chemistry
- Faculty of Chemistry
- 11000 Belgrade
- Serbia
| | - J. Nikodinovic-Runic
- University of Belgrade
- Institute of Molecular Genetics and Genetic Engineering
- 11000 Belgrade
- Serbia
| | - I. Turel
- University of Ljubljana
- Department of Chemistry and Biochemistry
- Faculty of Chemistry and Chemical Technology
- SI-1000 Ljubljana
- Slovenia
| |
Collapse
|
90
|
Ouyang C, Chen L, Rees TW, Chen Y, Liu J, Ji L, Long J, Chao H. A mitochondria-targeting hetero-binuclear Ir(iii)–Pt(ii) complex induces necrosis in cisplatin-resistant tumor cells. Chem Commun (Camb) 2018; 54:6268-6271. [DOI: 10.1039/c8cc02795a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A hetero-binuclear Ir(iii)–Pt(ii) complex can selectively accumulate in the mitochondria to induce mitochondrial DNA (mtDNA) damage and evoke cellular events consistent with necrosis in A549R cells.
Collapse
Affiliation(s)
- Cheng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Lei Chen
- Center for Mitochondrial Biology and Medicine
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology and Frontier Institute of Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
| | - Thomas W. Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology and Frontier Institute of Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology and Frontier Institute of Science and Technology
- Xi’an Jiaotong University
- Xi’an 710049
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| |
Collapse
|
91
|
Vargo JW, Walker SN, Gopal SR, Deshmukh AR, McDermott BM, Alagramam KN, Stepanyan R. Inhibition of Mitochondrial Division Attenuates Cisplatin-Induced Toxicity in the Neuromast Hair Cells. Front Cell Neurosci 2017; 11:393. [PMID: 29311828 PMCID: PMC5732985 DOI: 10.3389/fncel.2017.00393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022] Open
Abstract
Cisplatin and other related platinum antineoplastic drugs are commonly used in the treatment of a variety of cancers in both adults and children but are often associated with severe side effects, including hearing loss. Cisplatin’s ototoxic effects are multifaceted, culminating in irreversible damage to the mechanosensory hair cells in the inner ear. Platinum drugs act on cancerous cells by forming nuclear DNA adducts, which may initiate signaling leading to cell cycle arrest or apoptosis. Moreover, it was reported that cisplatin may induce mitochondrial DNA damage in non-cancerous cells. Therefore, protecting mitochondria may alleviate cisplatin-induced insult to non-proliferating cells. Thus, it is important to identify agents that shield the mitochondria from cisplatin-induced insult without compromising the anti-tumor actions of the platinum-based drugs. In this study we tested the protective properties of mitochondrial division inhibitor, mdivi-1, a derivative of quinazolinone and a regulator of mitochondrial fission. Interestingly, it has been reported that mdivi-1 increases the apoptosis of cells that are resistant to cisplatin. The ability of mdivi-1 to protect hair cells against cisplatin-induced toxicity was evaluated in a fish model. Wild-type (Tübingen strain), cdh23 mutant, and transgenic pvalb3b::GFP zebrafish stably expressing GFP in the hair cells were used in this study. Larvae at 5–6 days post fertilization were placed in varying concentrations of cisplatin (50–200 μM) and/or mdivi-1 (1–10 μM) for 16 h. To evaluate hair cell’s viability the number of hair bundles per neuromast were counted. To assess hair cell function, we used the FM1-43 uptake assay and recordings of neuromast microphonic potentials. The results showed that mdivi-1 protected hair cells of lateral line neuromasts when they were challenged by 50 μM of cisplatin: viability of hair cells increased almost twice from 19% ± 1.8% to 36% ± 2.0% (p < 0.001). No protection was observed when higher concentrations of cisplatin were used. In addition, our data were in accord with previously reported results that functional mechanotransduction strongly potentiates cisplatin-induced hair cell toxicity. Together, our results suggest that mitochondrial protection may prevent cisplatin-induced damage to hair cells.
Collapse
Affiliation(s)
- Jonathon W Vargo
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Steven N Walker
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Suhasini R Gopal
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Aditi R Deshmukh
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Ruben Stepanyan
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
92
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
93
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 961] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
94
|
Alta RYP, Vitorino HA, Goswami D, Terêsa Machini M, Espósito BP. Triphenylphosphonium-desferrioxamine as a candidate mitochondrial iron chelator. Biometals 2017; 30:709-718. [PMID: 28770399 DOI: 10.1007/s10534-017-0039-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
Abstract
Cell-impermeant iron chelator desferrioxamine (DFO) can have access to organelles if appended to suitable vectors. Mitochondria are important targets for the treatment of iron overload-related neurodegenerative diseases. Triphenylphosphonium (TPP) is a delocalized lipophilic cation used to ferry molecules to mitochondria. Here we report the synthesis and characterization of the conjugate TPP-DFO as a mitochondrial iron chelator. TPP-DFO maintained both a high affinity for iron and the antioxidant activity when compared to parent DFO. TPP-DFO was less toxic than TPP alone to A2780 cells (IC50 = 135.60 ± 1.08 and 4.34 ± 1.06 μmol L-1, respectively) and its native fluorescence was used to assess its mitochondrial localization (Rr = +0.56). These results suggest that TPP-DFO could be an interesting alternative for the treatment of mitochondrial iron overload e.g. in Friedreich's ataxia.
Collapse
Affiliation(s)
- Roxana Y P Alta
- Laboratory of Bioinorganic Chemistry and Metallodrugs, Department of Fundamental Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil. .,Laboratory of Peptide Chemistry, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil.
| | - Hector A Vitorino
- Laboratory of Bioinorganic Chemistry and Metallodrugs, Department of Fundamental Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil
| | | | - M Terêsa Machini
- Laboratory of Peptide Chemistry, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil
| | - Breno P Espósito
- Laboratory of Bioinorganic Chemistry and Metallodrugs, Department of Fundamental Chemistry, University of São Paulo, Av. Lineu Prestes 748, São Paulo, 05508-000, São Paulo, Brazil
| |
Collapse
|
95
|
Lei EK, Kelley SO. Delivery and Release of Small-Molecule Probes in Mitochondria Using Traceless Linkers. J Am Chem Soc 2017; 139:9455-9458. [DOI: 10.1021/jacs.7b04415] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eric K. Lei
- Department
of Biochemistry, Faculty of Medicine, §Department of Chemistry, Faculty
of Arts and Science, and #Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Shana O. Kelley
- Department
of Biochemistry, Faculty of Medicine, §Department of Chemistry, Faculty
of Arts and Science, and #Department of Pharmaceutical Sciences, Leslie Dan Faculty
of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
96
|
Nath AK, Shi X, Harrison DL, Morningstar JE, Mahon S, Chan A, Sips P, Lee J, MacRae CA, Boss GR, Brenner M, Gerszten RE, Peterson RT. Cisplatin Analogs Confer Protection against Cyanide Poisoning. Cell Chem Biol 2017; 24:565-575.e4. [PMID: 28416275 DOI: 10.1016/j.chembiol.2017.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/19/2017] [Accepted: 03/16/2017] [Indexed: 02/04/2023]
Abstract
Cisplatin holds an illustrious position in the history of chemistry most notably for its role in the virtual cure of testicular cancer. Here we describe a role for this small molecule in cyanide detoxification in vivo. Cyanide kills organisms as diverse as insects, fish, and humans within seconds to hours. Current antidotes exhibit limited efficacy and are not amenable to mass distribution requiring the development of new classes of antidotes. The binding affinity of the cyanide anion for the positively charged metal platinum is known to create an extremely stable complex in vitro. We therefore screened a panel of diverse cisplatin analogs and identified compounds that conferred protection from cyanide poisoning in zebrafish, mice, and rabbits. Cumulatively, this discovery pipeline begins to establish the characteristics of platinum ligands that influence their solubility, toxicity, and efficacy, and provides proof of concept that platinum-based complexes are effective antidotes for cyanide poisoning.
Collapse
Affiliation(s)
- Anjali K Nath
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA.
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Devin L Harrison
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Jordan E Morningstar
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sari Mahon
- Department of Medicine, Beckman Laser Institute, University of California, Irvine, CA 92697, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Patrick Sips
- Division of Cardiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jangwoen Lee
- Department of Medicine, Beckman Laser Institute, University of California, Irvine, CA 92697, USA
| | - Calum A MacRae
- Broad Institute, Cambridge, MA 02142, USA; Division of Cardiology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Brenner
- Department of Medicine, Beckman Laser Institute, University of California, Irvine, CA 92697, USA
| | - Robert E Gerszten
- Broad Institute, Cambridge, MA 02142, USA; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Randall T Peterson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
97
|
Abstract
The balance of oxidants and antioxidants within the cell is crucial for maintaining health, and regulating physiological processes such as signalling. Consequently, imbalances between oxidants and antioxidants are now understood to lead to oxidative stress, a physiological feature that underlies many diseases. These processes have spurred the field of chemical biology to develop a plethora of sensors, both small-molecule and fluorescent protein-based, for the detection of specific oxidizing species and general redox balances within cells. The mitochondrion, in particular, is the site of many vital redox reactions. There is therefore a need to target redox sensors to this particular organelle. It has been well established that targeting mitochondria can be achieved by the use of a lipophilic cation-targeting group, or by utilizing natural peptidic mitochondrial localization sequences. Here, we review how these two approaches have been used by a number of researchers to develop mitochondrially localized fluorescent redox sensors that are already proving useful in providing insights into the roles of reactive oxygen species in the mitochondria.
Collapse
Affiliation(s)
| | | | - Elizabeth J. New
- School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
98
|
Alta RYP, Vitorino HA, Goswami D, Liria CW, Wisnovsky SP, Kelley SO, Machini MT, Espósito BP. Mitochondria-penetrating peptides conjugated to desferrioxamine as chelators for mitochondrial labile iron. PLoS One 2017; 12:e0171729. [PMID: 28178347 PMCID: PMC5298241 DOI: 10.1371/journal.pone.0171729] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/24/2017] [Indexed: 12/16/2022] Open
Abstract
Desferrioxamine (DFO) is a bacterial siderophore with a high affinity for iron, but low cell penetration. As part of our ongoing project focused on DFO-conjugates, we synthesized, purified, characterized and studied new mtDFOs (DFO conjugated to the Mitochondria Penetrating Peptides TAT49-57, 1A, SS02 and SS20) using a succinic linker. These new conjugates retained their strong iron binding ability and antioxidant capacity. They were relatively non toxic to A2780 cells (IC50 40–100 μM) and had good mitochondrial localization (Rr +0.45 –+0.68) as observed when labeled with carboxy-tetramethylrhodamine (TAMRA) In general, mtDFO caused only modest levels of mitochondrial DNA (mtDNA) damage. DFO-SS02 retained the antioxidant ability of the parent peptide, shown by the inhibition of mitochondrial superoxide formation. None of the compounds displayed cell cycle arrest or enhanced apoptosis. Taken together, these results indicate that mtDFO could be promising compounds for amelioration of the disease symptoms of iron overload in mitochondria.
Collapse
Affiliation(s)
- Roxana Y. P. Alta
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Hector A. Vitorino
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Cleber W. Liria
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Simon P. Wisnovsky
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Shana O. Kelley
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - M. Terêsa Machini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail: (MTM); (BPE)
| | - Breno P. Espósito
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- * E-mail: (MTM); (BPE)
| |
Collapse
|
99
|
Li J, He X, Zou Y, Chen D, Yang L, Rao J, Chen H, Chan MCW, Li L, Guo Z, Zhang LW, Chen C. Mitochondria-targeted platinum(ii) complexes: dual inhibitory activities on tumor cell proliferation and migration/invasion via intracellular trafficking of β-catenin. Metallomics 2017; 9:726-733. [DOI: 10.1039/c6mt00188b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
100
|
Herst PM, Rowe MR, Carson GM, Berridge MV. Functional Mitochondria in Health and Disease. Front Endocrinol (Lausanne) 2017; 8:296. [PMID: 29163365 PMCID: PMC5675848 DOI: 10.3389/fendo.2017.00296] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing environmental conditions is mandatory for normal cellular function and for cancer progression. Any loss of this adaptive response has the potential to compromise cellular function and render the cell more susceptible to external stressors such as oxidative stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of individual mitochondria into dynamic networks, whereas a decrease in demand results in the removal of superfluous mitochondria through fission and mitophagy. Effective communication between nucleus and mitochondria (mito-nuclear cross talk), involving the generation of different mitochondrial stress signals as well as the nuclear stress response pathways to deal with these stressors, maintains bioenergetic homeostasis under most conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic measures such as acquisition of new mitochondria from donor cells occurs to ensure cell survival. This review starts with a brief discussion of the evolutionary origin of mitochondria and summarizes how mutations in mtDNA lead to mitochondriopathies and other degenerative diseases. Mito-nuclear cross talk, including various stress signals generated by mitochondria and corresponding stress response pathways activated by the nucleus are summarized. We also introduce and discuss a small family of recently discovered hormone-like mitopeptides that modulate body metabolism. Under conditions of severe mitochondrial stress, mitochondria have been shown to traffic between cells, replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding the processes involved in cellular bioenergetics and metabolic adaptation has the potential to generate new knowledge that will lead to improved treatment of many of the metabolic, degenerative, and age-related inflammatory diseases that characterize modern societies.
Collapse
Affiliation(s)
- Patries M. Herst
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| | - Matthew R. Rowe
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Georgia M. Carson
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Michael V. Berridge
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| |
Collapse
|