51
|
Tian F, Qiao C, Luo J, Guo L, Pang T, Pang R, Li J, Wang C, Wang R, Xie H. Development and validation of a method for the analysis of five diamide insecticides in edible mushrooms using modified QuEChERS and HPLC-MS/MS. Food Chem 2020; 333:127468. [PMID: 32659669 DOI: 10.1016/j.foodchem.2020.127468] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
In this study, a new method for simultaneous determination of cyantraniliprole, chlorantraniliprole, tetrachlorantraniliprole, cyclaniliprole and flubendiamide in edible mushrooms by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) combined with a modified QuEChERS procedure. The samples were extracted using acetonitrile and then cleaned up by primary secondary amine (PSA) and octadecylsilane (C18). The determination of these insecticides was achieved in less than 5 min using an electrospray ionization source in positive mode (ESI+) for cyantraniliprole and chlorantraniliprole, while negative mode (ESI-) for tetrachlorantraniliprole, cyclaniliprole and flubendiamide. The linearities of the calibrations for all target compounds were acceptable (R2 ≥ 0.9922). The limits of detection and quantification were 0.05-2 μg kg-1 and 5 μg kg-1, respectively. Acceptable recoveries (73.5-110.2%) were acquired for these insecticides with RSDs less than 12.7%. The results demonstrated that the proposed method was effective and convenient for the determination of these insecticides in edible mushrooms.
Collapse
Affiliation(s)
- Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jing Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Ruiping Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.
| |
Collapse
|
52
|
Jiang J, Wang Y, Mu W, Zhang Z. Sublethal effects of anthranilic diamide insecticides on the demographic fitness and consumption rates of the Coccinella septempunctata (Coleoptera: Coccinellidae) fed on Aphis craccivora. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4178-4189. [PMID: 31828706 DOI: 10.1007/s11356-019-06993-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
As for developing effective integrated pest management (IPM), it is necessary to understand the sublethal effects of common insecticides on the non-target beneficial arthropods. In this lab-scale study, the sublethal effects of two anthranilic diamide insecticides chlorantraniliprole and cyantraniliprole on the populations of 7-spot ladybird Coccinella septempunctata (Coleoptera: Coccinellidae) were determined and compared using an age-stage, TWO-SEX life table and CONSUME-MSChart computer program. Cyantraniliprole at low-lethal concentrations of 1 and 10 mg L-1 significantly prolonged the larval stages and reduced the total adult longevity, compared with the control. Additionally, the net reproductive rate (R0), intrinsic rate of increase (r), finite rate of increase (λ), and mean generation time (T) were significantly reduced in the group treated with 10 mg L-1 of cyantraniliprole. Similarly, the net predation (C0), the finite predation rate (ω), and stable predation rate (ψ) were significantly reduced by cyantraniliprole at 1 and 10 mg L-1. In contrast, no significant difference in the demographic parameters above was determined for chlorantraniliprole at 1 mg L-1. Therefore, C. septempunctata population may develop faster and possess greater predation potential against aphids under the exposure of chlorantraniliprole, compared to cyantraniliprole. Chlorantraniliprole may be a preference to cyantraniliprole as a combined alternative with ladybeetle predators in IPM framework.
Collapse
Affiliation(s)
- Jiangong Jiang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Yao Wang
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China
| | - Wei Mu
- College of Plant Protection, Key Laboratory of Pesticide Toxicology & Application Technique, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, People's Republic of China.
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
53
|
Xu C, Fan Y, Zhang X, Kong W, Miao W, Li QX. DNA damage in liver cells of the tilapia fish Oreochromis mossambicus larva induced by the insecticide cyantraniliprole at sublethal doses during chronic exposure. CHEMOSPHERE 2020; 238:124586. [PMID: 31442775 DOI: 10.1016/j.chemosphere.2019.124586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Cyantraniliprole can effectively control lepidopteran pests and has been used all over the world. In general, the risk of cyantraniliprole seems low for fish, but the toxicity selectivity among different fish species was not clear. Here the acute toxicity and chronic effects of cyantraniliprole to juvenile tilapia (Oreochromis mossambicus) were assessed. The results showed that 96 h LC50 of cyantraniliprole to tilapia was 38.0 mg/L. After exposed for 28 days, specific growth rates of the blank control, solution control, and the treatments of 0.037, 0.37 and 3.7 mg/L of cyantraniliprole were 1.14, 0.95, 0.93, 0.82 and 0.70% per day, respectively. The results of micronucleus experiment and single cell gel electrophoresis showed that cyantraniliprole damaged DNA in liver cells of tilapia larvae. Quantitative PCR results showed that cyantraniliprole could induce the up-regulation of Rpa 3 that is responsible for the DNA repair. The significantly down-regulation of Chk 2 gene was related to p53 pathway. It is therefore proposed that cyantraniliprole causes DNA damage in liver cells of tilapia and activates DNA damage and repair pathways.
Collapse
Affiliation(s)
- Chengbin Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Yongmei Fan
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Xiaokai Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Weihao Kong
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Disease and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
54
|
Yoon DS, Park JC, Park HG, Lee JS, Han J. Effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105213. [PMID: 31200332 DOI: 10.1016/j.aquatox.2019.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Atrazine is a widely used pesticide which acts as an endocrine disruptor in various organisms. The aim of this study was to investigate adverse effects of atrazine on life parameters, oxidative stress, and ecdysteroid biosynthetic pathway in the marine copepod Tigriopus japonicus. In T. japonicus, no mortality was shown in response to atrazine up to 20 mg/L in acute toxicity assessment. In nauplii, retardation in the growth and prolonged molting and metamorphosis resulted under chronic exposure of atrazine at 20 mg/L. In addition, body sizes of T. japonicus nauplii were significantly decreased (P < 0.01 in length and P < 0.001 in width) in response to 20 mg/L of atrazine. Furthermore, atrazine induced oxidative stress by the generation of reactive oxygen species at all concentrations compared to the control in the nauplii. Also, significant increase in glutathione-S transferase activity was observed in adult T. japonicus at low concentration of atrazine. To understand effects of atrazine on ecdysteroid biosynthetic pathway-involved genes (e.g., neverland, CYP307E1, CYP306A1, CYP302A1, CYP3022A1 [CYP315A1], CYP314A1, and CYP18D1) were examined with mRNA expressions of ecdysone receptor (EcR) and ultraspiracle (USP) in response to 20 mg/L atrazine in nauplii and adults. In the nauplii, these genes were significantly downregulated (P < 0.05) in response to atrazine, compared to the control but not in the adult T. japonicus. These results suggest that atrazine can interfere in vivo life parameters by oxidative stress-induced retrogression and ecdysteroid biosynthetic pathway in this species.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
55
|
Zhao Y, Wang Z, Li D, Feng W, Bian X, Xu J. Two PBDEs exposure inducing feeding depression and disorder of digestive and antioxidative system of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:279-287. [PMID: 30947031 DOI: 10.1016/j.ecoenv.2019.03.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) and 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) are two typical polybrominated diphenyl ethers (PBDEs), and studies have proven that these PBDs can disrupt the behaviors and physical function of aquatic organisms. However, little is known about the compositional impacts of BDE-47/BDE-99 compound pollution on the feeding behavior of Daphnia magna. In this study, a response surface methodology (RSM) was introduced into the combined toxicity assessment of BDE-47 and BDE-99 on the feeding depression of D. magna. Low concentrations of BDE-47 (9.2 μg/L) and BDE-99 (5.4 μg/L) had no effect on the feeding behavior of D. magna; nevertheless, the feeding depression was strengthened, and a concentration-dependent effect was observed with increasing concentrations of BDE-47 and BDE-99. The results of RSM indicated that the mixture of BDE-47 and BDE-99 can enhance their toxicity on the feeding behavior of D. magna. Moreover, real-time PCR (qPCR) analysis showed that the down-regulation of α-amylase (AMS) appeared in most of the exposed D. magna. However, there were significant different in the gene expression of trypsin, superoxide dismutase (SOD) and catalase (CAT) between the exposure and control groups. The change in the enzyme activity of AMS, trypsin, SOD and CAT implied that BDE-47 and BDE-99 cause damage to the digestive and antioxidative systems of D. magna. Correlation analysis indicated that a significant positive correlation existed between the gene expression and enzyme activity of SOD and CAT. Our results contribute to the understanding of toxicity caused by BDE-47/BDE-99 compound pollution in D. magna and help to improve traditional toxicity assessment methods for aquatic environments.
Collapse
Affiliation(s)
- Yucheng Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenglong Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Detian Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenpei Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohong Bian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jiyang Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
56
|
He F, Sun S, Tan H, Sun X, Shang D, Yao C, Qin C, Ji S, Li X, Zhang J, Jiang X. Compatibility of chlorantraniliprole with the generalist predator Coccinella septempunctata L. (Coleoptera: Coccinellidae) based toxicity, life-cycle development and population parameters in laboratory microcosms. CHEMOSPHERE 2019; 225:182-190. [PMID: 30875501 DOI: 10.1016/j.chemosphere.2019.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 05/15/2023]
Abstract
Coccinella septempunctata is a common insect predator that provides biological control of many destructive arthropod pests. An assessment of the toxicity of pesticides to predators is a necessary component of Integrated Pest Management (IPM) strategies. In order to evaluate the risks of field insecticide application, we studied the influence of chlorantraniliprole on C. septempunctata larvae using different exposure doses. Chlorantraniliprole exhibited low contact toxicity against 2nd instar larvae of C. septempunctata with the LR50 was 482.7063 g a.i. ha-1 by after a 72-h exposure. In a long-term test, the LR50 of chlorantraniliprole for C. septempunctata decreased from 88.97 to 58.22 g a.i. ha-1, while the hazard quotient (HQ) values were below the threshold value of 2 during the entire observation period. This indicated a low toxicity risk from insecticide exposure. The total effect (E) suggested that chlorantraniliprole could be classified as harmless/slightly harmful to C. septempunctata below/at 200% of the MRFR (the manufacturer maximum recommended field rate) of 120 g a.i. ha-1. We also determined no observed effect application rates (NOERs) of chlorantraniliprole on survival (7.5 g a.i. ha-1), developmental time (15 g a.i. ha-1) and fecundity (30 g a.i. ha-1). Chlorantraniliprole significantly reduced the pupation rate, adult emergence, egg hatchability, and predation success. Population parameters, including R0, r, λ, and T were significantly affected when C. septempunctata were treated with chlorantraniliprole at higher label rates. These results demonstrated that the use of chlorantraniliprole may reduce C. septempunctata population levels and the level of biological control provided by this species.
Collapse
Affiliation(s)
- Falin He
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shiang Sun
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haili Tan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiao Sun
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Dianlong Shang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chentao Yao
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chao Qin
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shoumin Ji
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiangdong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
57
|
Liu Y, Yan Z, Zhang L, Deng Z, Yuan J, Zhang S, Chen J, Guo R. Food up-take and reproduction performance of Daphnia magna under the exposure of Bisphenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:47-54. [PMID: 30522006 DOI: 10.1016/j.ecoenv.2018.11.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 05/04/2023]
Abstract
Because the application of Bisphenol A (BPA) was restricted, many substitutes, such as Bisphenol F (BPF) and Bisphenol S (BPS), were developed as BPA substitutes. Therefore, environmental impacts of BPA and its substitutes on aquatic organisms should be concerned, especially their combined toxicity. In this study, the impacts of BPA, BPF, BPS and their mixture on the feeding behavior, reproduction and physiological function of daphnids were synthetically evaluated, involving the duration and mode of exposure. In short-term exposure tests, feeding rates of D. magna decreased after exposure to BPA, BPF, BPS and their mixture, while the inhibition reversed into stimulation in the recovery period. It may benefit from overcompensation of D. magna. In long-term exposure tests, the inhibition effect on the reproduction and growth of the exposed D. magna was difficult to recover, and only some experimental groups have a certain recovery. In conclusion, environmental risk of BPA, BPF, BPS and their mixture on the behavior of D. magna increased with prolonged exposure time. Moreover, relative activities of trypsin, amylase (AMS), acetylcholinesterase (AChE), carbonic anhydrase (CA), glutathione peroxidase (GPx) and super oxidase dimutase (SOD) of the exposed daphnids decreased in most treatment groups, indicating the disorder of digestive, nervous and antioxidative system of D. magna. Interestingly, inhibition of enzymes activities decreased with the increase of the exposure time, which implied the tolerance may be occurred.
Collapse
Affiliation(s)
- Yanhua Liu
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhengyu Yan
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Zhang
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhujiangcai Deng
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jiafu Yuan
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Jianqiu Chen
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Ruixin Guo
- Key laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education) & School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
58
|
Yuxuan Z, Peiyong G, Yanmei W, Xiaoyan Z, Meixian W, Simin Y, Yinshi S, Jun D, Haitao S. Evaluation of the subtle effects and oxidative stress response of chloramphenicol, thiamphenicol, and florfenicol in Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:575-584. [PMID: 30569581 DOI: 10.1002/etc.4344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/13/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Phenicol antibiotics, such as chloramphenicol, thiamphenicol, and florfenicol, are commonly used in the veterinary and aquaculture fields to treat diseases and have frequently been detected in aquatic environments. Nevertheless, there is limited information regarding the effects of phenicol antibiotics on aquatic nontarget species. Thus, the present study aims to investigate the long-term (21-d) influence on the reproduction and growth of and the acute (24-h) oxidative response and tissue damage in the crustacean Daphnia magna after exposure to phenicol drugs, including their environmental concentrations. The results indicate that D. magna exposed to florfenicol are likely to cause more adverse effects than those exposed to chloramphenicol and thiamphenicol over long-term (21-d) exposures. Furthermore, changes in biochemical biomarkers such as malondialdehyde (MDA), catalase (CAT), and reduced glutathione (GSH) induced by individual and mixtures of phenicol antibiotics were also observed. Low concentrations of chloramphenicol, thiamphenicol + florfenicol, and chloramphenicol + thiamphenicol significantly increased the MDA levels of D. magna after 24-h exposures, causing cellular oxidative damage in the animals. In addition, discrepancies between CAT activities and GSH levels were observed, underscoring the need to evaluate multiple indicators of oxidative stress in toxicological studies using D. magna as a model. Environ Toxicol Chem 2019;38:575-584. © 2018 SETAC.
Collapse
Affiliation(s)
- Zhang Yuxuan
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| | - Guo Peiyong
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| | - Wu Yanmei
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| | - Zhang Xiaoyan
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection of the People's Republic of China, Nanjing, China
| | - Wang Meixian
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| | - Yang Simin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| | - Sun Yinshi
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| | - Deng Jun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| | - Su Haitao
- Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, China
- Institute of Environmental and Resources Technology, Huaqiao University, Xiamen, China
| |
Collapse
|
59
|
Flubendiamide Enhances Adipogenesis and Inhibits AMPKα in 3T3-L1 Adipocytes. Molecules 2018; 23:molecules23112950. [PMID: 30424524 PMCID: PMC6278525 DOI: 10.3390/molecules23112950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
Flubendiamide, a ryanoid class insecticide, is widely used in agriculture. Several insecticides have been reported to promote adipogenesis. However, the potential influence of flubendiamide on adipogenesis is largely unknown. The current study was therefore to determine the effects of flubendiamide on adipogenesis utilizing the 3T3-L1 adipocytes model. Flubendiamide treatment not only enhanced triglyceride content in 3T3-L1 adipocytes, but also increased the expression of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein α and peroxisome proliferator-activated receptor gamma-γ, two important regulators of adipocyte differentiation. Moreover, the expression of the most important regulator of lipogenesis, acetyl coenzyme A carboxylase, was also increased after flubendiamide treatment. Further study revealed that 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or A769662, two Adenosine 5′-monophosphate (AMP)-activated protein kinase α activators, subverted effects of flubendiamide on enhanced adipogenesis. Together, these results suggest that flubendiamide promotes adipogenesis via an AMPKα-mediated pathway.
Collapse
|
60
|
Zhu X, Zhang M, Yu L, Xu Z, Yang D, Du X, Wu Q, Li J. Synthesis and bioactivities of diamide derivatives containing a phenazine-1-carboxamide scaffold. Nat Prod Res 2018; 33:2453-2460. [PMID: 29569471 DOI: 10.1080/14786419.2018.1451997] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Taking natural product phenazine-1-carboxamide (PCN) as a lead compound, a series of novel phenazine-1-carboxylic acid diamide derivatives were designed and synthesised. Their structures were confirmed by 1H-NMR and HRMS. The bioassays showed that some of the target compounds exhibited promising in vitro fungicidal activities, and exhibited excellent and selective herbicidal activities. Particularly, compounds c, h, o and s displayed root length inhibition activities against barnyard grass with the rate of more than 80%. Compound c exhibited the best activity among all the target compounds against barnyard grass stalk length with the IC50 value of 0.158 mmol/L, and compound o exhibited the best and wide spectrum inhibition against barnyard grass root length and rape in both root length and stalk length herbicidal activities with its IC50 values of 0.067, 0.048 and 0.059 mmol/L respectively. The analysis of preliminary Structure-Activity Relationships provides the theoretical basis for further design of phenazine-1-carboxylic acid.
Collapse
Affiliation(s)
- Xiang Zhu
- a School of Agriculture , Yangtze University , Jingzhou , China
| | - Min Zhang
- a School of Agriculture , Yangtze University , Jingzhou , China
| | - Linhua Yu
- a School of Agriculture , Yangtze University , Jingzhou , China
| | - Zhihong Xu
- a School of Agriculture , Yangtze University , Jingzhou , China
| | - Dan Yang
- a School of Agriculture , Yangtze University , Jingzhou , China
| | - Xiaoying Du
- a School of Agriculture , Yangtze University , Jingzhou , China
| | - Qinglai Wu
- a School of Agriculture , Yangtze University , Jingzhou , China.,b Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education , Yangtze University , Jingzhou , China
| | - Junkai Li
- a School of Agriculture , Yangtze University , Jingzhou , China.,c Hubei Collaborative Innovation Centre for Grain Industry , Yangtze University , Jingzhou , China
| |
Collapse
|
61
|
Liu Y, Guo R, Tang S, Zhu F, Zhang S, Yan Z, Chen J. Single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 on the feeding activity of Daphnia magna: From behavior assessment to neurotoxicity. CHEMOSPHERE 2018; 195:542-550. [PMID: 29277034 DOI: 10.1016/j.chemosphere.2017.12.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/03/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Although 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE-47) and 6-methoxy-2,2',4,4'-tetrabromodiphenyl ether (6-MeO-BDE-47) clearly disrupt the endocrine system, current knowledge of their single and/or mixture toxicities on other behaviors of aquatic organisms remains limited. In the present study, Daphnia magna was used to investigate the single and mixture toxicities of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 as measured by inhibition of feeding during exposure and post-exposure periods. Additionally, the biochemical performance, i.e., the activities of super oxidase dismutase (SOD), glutathione peroxidase (GPx) and acetylcholinesterase (AChE) of the test organism was studied to investigate the potential mechanisms of the toxicity of the target compounds. The three target compounds produced an obvious depressive effect on feeding behavior during the exposure period, and the effect increased with increasing concentrations. D. magna was most sensitive to 6-OH-BDE-47. The toxicity of the ternary mixture showed an obvious concentration-dependent effect, whereas the binary mixture toxicity showed the characteristics of hormesis. During the post-exposure period, overcompensation occurred, indicating a short-term effect of the target compounds on D. magna. Additionally, significant changes occurred in neurological responses, indicating that these compounds might have neurobehavioral toxicity in D. magna. The decrease in oxidative stress enzymes (SOD and GPx) indicated that the antioxidant response of D. magna was destroyed.
Collapse
Affiliation(s)
- Yanhua Liu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Ruixin Guo
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Shengkai Tang
- Key Laboratory of Fisheries Resources in Inland Water of Jiangsu Province, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Fengyi Zhu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China
| | - Zhengyu Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| |
Collapse
|
62
|
Qi S, Wang D, Zhu L, Teng M, Wang C, Xue X, Wu L. Neonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:352-358. [PMID: 29096261 DOI: 10.1016/j.ecoenv.2017.10.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Cycloxaprid (CYC) and guadipyr (GUA) are two new and promising neonicotinoid insecticides whose effects on Daphnia magna are as yet unknown. In this study, the acute toxicities of CYC and GUA to D. magna, including immobilization and embryo-hatching inhibition, and their effects on antioxidant enzymes and related gene expression were determined after a 48-h exposure. Imidacloprid (IMI) was evaluated at the same time as a reference agent. The 48-h EC50 values of IMI, GUA, and CYC for neonate immobilization were 13.0-16.5mg/L and for embryo hatching were 11.3-16.2mg/L. The specific activity of the enzymes superoxide dismutase (SOD) and catalase (CAT) were interfered by IMI, but not by GUA and CYC, while the activity of acetylcholinesterase (AChE) was significantly increased by IMI, but inhibited by GUA and CYC. The relative expressions of the Sod-Cu/Zn, Sod-Mn, Cat, and Ache genes were usually inhibited by IMI, GUA, and CYC, except for Cat by CYC, Ache by GUA, and Sods by IMI. For vitellogenin genes with a SOD-like domain (Vtg1/2-sod), relative expression was increased by IMI and inhibited by GUA and CYC, indicating that IMI, GUA, and CYC have potential toxicity toward reproduction. CYC and GUA are highly active against IMI-resistant pests, and considering the similar toxicity of IMI to D. magna, CYC and GUA are suitable for use in future integrated pest management systems.
Collapse
Affiliation(s)
- Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China; College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Donghui Wang
- College of Life Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, PR China
| | - Lizhen Zhu
- College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100093, PR China
| | - Xiaofeng Xue
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China
| | - Liming Wu
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, PR China.
| |
Collapse
|
63
|
Zhou S, Zhou S, Xie YT, Jin RY, Meng XD, Zhang DK, Hua XW, Liu M, Wu CC, Xiong LX, Zhao Y, Li ZM. The exploration of chiral N -cyano sulfiliminyl dicarboxamides on insecticidal activities. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|