51
|
Souri A, Masoodi M, Niyogi S, Naji A. Speciation and risk assessment of selected trace metals in bottom sediment of coral reef ecosystems of the Persian Gulf. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21416-21428. [PMID: 32277419 DOI: 10.1007/s11356-020-08632-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
To evaluate the hazard assessment of anthropogenic activities on coastal ecosystems, fractionation and bioaccumulation of trace metals were carried out for sediment and coral samples of three distinct habitats including petroleum exploration area of Kharg, the rural harbor of Chirouyeh, and unpopulated area of Hendorabi. Fractionation results suggested that Ni (~ 51%), Pb (~ 49%), and V (~ 45%) in Kharg; Ni (~ 46%), Pb (~ 84%), and Zn (~ 47%) in Chirouyeh; and Cd (~ 51%) in Hendorabi were the predominant metals in the non-resistant fractions of the sediment samples. Risk Assessment Code (RAC), individual contamination factor (ICF), and global contamination factor (GCF) were derived. The highest relative risk for Cd, Cu, and Ti was observed in Kharg, whereas the highest relative risk for Ni, Pb, V, and Zn was recorded in Chirouyeh. The lowest risk for almost all of the trace metals was observed in Hendorabi. Biota-sediment accumulation factor (BSAF) values of coral samples revealed that species examined in the present study are reliable biomonitors for Cd, Ni, Pb, and Zn contamination. Principal component analysis (PCA) and Pearson's correlation coefficient (PCC) suggested that Pb, Ni, and Zn can be considered the main pollutants of the Persian Gulf which originated mainly from petroleum industries. Furthermore, the metal uptake rates of coral samples seemed to be dependent on bioabsorption pathways and coral species. Overall, the present work constitutes a good basis for further studies on trace metal fractionation, risk assessment, and source apportionment in the Persian Gulf, which could contribute to more effective decisions for reducing the anthropogenic trace metal pollution.
Collapse
Affiliation(s)
- Alireza Souri
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Mehdi Masoodi
- Department of Geology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada
| | - Abolfazl Naji
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| |
Collapse
|
52
|
Xu L, Huo X, Liu Y, Zhang Y, Qin Q, Xu X. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. CHEMOSPHERE 2020; 246:125829. [PMID: 31927382 DOI: 10.1016/j.chemosphere.2020.125829] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 12/14/2019] [Accepted: 01/02/2020] [Indexed: 02/05/2023]
Abstract
Experimental studies have uncovered chemical exposure-induced ototoxicity, but population-based hearing risk assessment especially for early-life exposure to heavy metals and relevant biological mechanism remains unclear. We aimed to measure lead (Pb) and cadmium (Cd) levels, blood DNA methylations of Rb1, CASP8 and MeCP2 and hearing in 116 preschool children 3- to 7-years of age from an e-waste and a reference area, and to evaluate the association of exposures with hearing loss potentially affected by epigenetic modifications. A higher median Pb level but not Cd was found in the exposed group than the reference group. Average hearing thresholds in either ear of the exposed children were higher. Higher promoter methylation levels at cg02978827 and position +14, and lower at position +4 of Rb1 were found in the exposed group. Pb was positively correlated with chewing pencil habit while negatively correlated with washing hands before dinner. Slightly negative trends of promoter methylations in Rb1 and CASP8, while a strong positive trend of MeCP2 promoter methylation, were found along with increasing Pb and Cd levels. Logistic analyses showed the adjusted OR of Pb for hearing loss in the left ear and both ears was 1.46 (95% CI: 1.12, 1.91) and 1.40 (95% CI: 1.06, 1.84), respectively. Our results show an elevated Pb level, altered promoter DNA methylations and hearing ability in children of e-waste areas, suggesting that epigenetic changes of specific genes involves in the development of the auditory system during early exposure to environmental chemicals.
Collapse
Affiliation(s)
- Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yu Liu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China; Department of Cell Biolog Park y and Genetics, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
53
|
Zupo V, Graber G, Kamel S, Plichta V, Granitzer S, Gundacker C, Wittmann KJ. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:112975. [PMID: 31541831 DOI: 10.1016/j.envpol.2019.112975] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
We analysed the total mercury (Hg) accumulation in bodies and gut contents of 13 species of marine wild fish, 7 species of wild freshwater fish and 4 species of farmed fish. In addition, metal concentrations were recorded in water, sediment, fish prey and fodder materials, to track the dynamics of bio-accumulation. Cultured freshwater fish were collected at four Austrian farms and compared with samples obtained from markets. Wild marine fish were collected at Santa Croce bank, in Italy (Mediterranean Sea). Metal accumulation varied with sampling site, species, and age (or weight) of fish. Wild marine fish exhibited higher levels than wild freshwater fish, which in turn had higher Hg levels than cultured freshwater fish. Mercury increased according to trophic levels of consumers. Total Hg contents in muscle of cultured and wild freshwater fish sampled in 2006-2008 did not exceed legal nutritional limits. Similarly, in market samples of trout and carp collected in 2019, we found low or undetectable concentrations of total Hg in muscle tissue. In contrast, some marine fish (both market samples and some species from coastal waters) exceeded the legal limits. Environmental contamination, food webs and biological factors are the main causes of Hg accumulation in fish. Our results reflect the actual differences between specific European sites and should not be generalized. However, they support the generally increasing demand for monitoring mercury pollution in view of its impact on human health and its value as an indicator of ecosystem contamination.
Collapse
Affiliation(s)
- Valerio Zupo
- Benthic Ecology Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, I-80077 Ischia (Napoli), Italy.
| | - Gunnar Graber
- Abteilung für Umwelthygiene, Medizinische Universität Wien, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Samar Kamel
- Abteilung für Umwelthygiene, Medizinische Universität Wien, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Veronika Plichta
- Institut für Medizinische Genetik, Medizinische Universität Wien, Währinger Straße 10, A-1090 Vienna, Austria
| | - Sebastian Granitzer
- Institut für Medizinische Genetik, Medizinische Universität Wien, Währinger Straße 10, A-1090 Vienna, Austria
| | - Claudia Gundacker
- Institut für Medizinische Genetik, Medizinische Universität Wien, Währinger Straße 10, A-1090 Vienna, Austria
| | - Karl J Wittmann
- Abteilung für Umwelthygiene, Medizinische Universität Wien, Kinderspitalgasse 15, A-1090 Vienna, Austria
| |
Collapse
|
54
|
Wang X, Gu Y, Tan X, Liu Y, Zhou Y, Hu X, Cai X, Xu W, Zhang C, Liu S. Functionalized Biochar/Clay Composites for Reducing the Bioavailable Fraction of Arsenic and Cadmium in River Sediment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2337-2347. [PMID: 31343777 DOI: 10.1002/etc.4542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/09/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Biochar has frequently been used for the treatment of heavy metal pollution in water and soil; its effect on contaminated sediments requires further research. To improve the ability of biochar to immobilize heavy metals in sediment, we prepared a functionalized biochar/attapulgite composite by pyrolysis of the clay attapulgite and zinc chloride-pretreated rice straw biomass. Compared with the original biochar, the biochar/attapulgite composite had a large increase in specific surface area, pore volume, oxygen-containing functional groups, and cation exchange capacity. Biochar effectively improved the dispersibility of attapulgite as a matrix. The results showed that the biochar/attapulgite composite effectively reduced the bioavailable fraction of arsenic (As) and cadmium (Cd) in river sediment, which was a great improvement compared with the raw biochar. After the sediment was treated with different biochar/attapulgite composites, the concentrations of As and Cd in the overlying water and the porewater, and the content of acid-extractable and toxicity characteristic leaching procedure (TCLP)-extractable As and Cd in the solid phase of the sediment decreased significantly. Both zinc chloride activation and attapulgite improved As and Cd immobilization in sediment when we used the biochar/attapulgite composite. The results suggest that biochar/attapulgite composite can be used as an efficient in situ sorbent amendment to improve the heavy metal immobilization ability of the sediment. Environ Toxicol Chem 2019;38:2337-2347. © 2019 SETAC.
Collapse
Affiliation(s)
- Xiaohua Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
- College of Architecture and Urban Planning, Hunan City University, Yiyang, People's Republic of China
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Yahui Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, People's Republic of China
| | - XiaoXi Cai
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
- College of Art and Design, Hunan First Normal University, Changsha, People's Republic of China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, People's Republic of China
| | - Shaoheng Liu
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde, Hunan, People's Republic of China
| |
Collapse
|
55
|
Liu K, Wang F, Li J, Tiwari S, Chen B. Assessment of trends and emission sources of heavy metals from the soil sediments near the Bohai Bay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29095-29109. [PMID: 31392613 DOI: 10.1007/s11356-019-06130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic emission sources (mainly vehicular and industrial emission) are one of the major emission sources of the heavy metals in aquatic ecosystems which have significant potential to perturb the marine geochemistry and ecosystem as well as human life also. In the present study, we tried to investigate the accumulation of heavy metals (Zn, Cr, Ni, Cu, Pb, Co, As, Cd, and Hg) at two sediment cores near the Bohai Bay in Southern Tianjin and reconstruct their historical trends over the last hundred years to understand the impacts of anthropogenic activities. The concentration of Zn and Cr is found maximum than the other studied heavy metals. Results suggest that in the mid-twentieth century, the maximum concentrations of Zn, Cr, Ni, Cu, and Pb are mainly because of the opening of Dagang Oilfield which emits a huge amount of heavy metals into the environment. Source apportionment analysis has been carried out using positive matrix factorization (PMF) model which suggests three major emission sectors of heavy metals, i.e., coal combustion, manufacturing, and smelting dust, having different contribution 32%, 40%, and 28% respectively to the total heavy metal burden. Industrial emissions are found to be the major sources of Cr, Ni, and Co while Pb is mainly originated from the coal combustion. The risk assessment analysis shows the value of mean effects range median (ERM) quotients ~ 0.17 for the two sediment cores which suggest nearly 21% toxicity of the studied metals indicating towards the policymakers for the mitigation of air pollution surrounding Tianjin.
Collapse
Affiliation(s)
- Kun Liu
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Fu Wang
- Tianjin Center, China Geological Survey (CGS), Tianjin, 300170, China.
- Key Laboratory of Muddy Coast Geo-environment, China Geological Survey, CGS, Tianjin, 300170, China.
| | - Jiwei Li
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
| | - Shani Tiwari
- Environmental Research Institute, Shandong University, Qingdao, 266237, China.
| | - Bing Chen
- Environmental Research Institute, Shandong University, Qingdao, 266237, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
| |
Collapse
|