51
|
Yi M, Guo J, He H, Tan W, Harmon N, Ghebreyessus K, Xu B. Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides. SOFT MATTER 2021; 17:8590-8594. [PMID: 34545895 PMCID: PMC8600407 DOI: 10.1039/d1sm01221e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Enzyme-instructed self-assembly (EISA) and hydrogelation is a versatile approach for generating soft materials. Most of the substrates for alkaline phosphatase catalysed EISA utilize phosphotyrosine (pTyr) as the enzymatic trigger for EISA and hydrogelation. Here we show the first example of phosphonaphthyl (pNP) and phosphobiphenyl (pBP) motifs acting as faster enzymatic triggers than phosphotyrosine for EISA and hydrogelation. This work illustrates novel enzyme triggers for rapid enzymatic self-assembly and hydrogelation.
Collapse
Affiliation(s)
- Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Nya Harmon
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, 23668, USA
| | - Kesete Ghebreyessus
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, 23668, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| |
Collapse
|
52
|
Liu S, Zhang Q, Shy AN, Yi M, He H, Lu S, Xu B. Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. J Am Chem Soc 2021; 143:15852-15862. [PMID: 34528792 DOI: 10.1021/jacs.1c07923] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumorigenic risk of undifferentiated human induced pluripotent stem cells (iPSCs), being a major obstacle for clinical application of iPSCs, requires novel approaches for selectively eliminating undifferentiated iPSCs. Here, we show that an l-phosphopentapeptide, upon the dephosphorylation catalyzed by alkaline phosphatase (ALP) overexpressed by iPSCs, rapidly forms intranuclear peptide assemblies made of α-helices to selectively kill iPSCs. The phosphopentapeptide, consisting of four l-leucine residues and a C-terminal l-phosphotyrosine, self-assembles to form micelles/nanoparticles, which transform into peptide nanofibers/nanoribbons after enzymatic dephosphorylation removes the phosphate group from the l-phosphotyrosine. The concentration of ALP and incubation time dictates the morphology of the peptide assemblies. Circular dichroism and FTIR indicate that the l-pentapeptide in the assemblies contains a mixture of an α-helix and aggregated strands. Incubating the l-phosphopentapeptide with human iPSCs results in rapid killing of the iPSCs (=<2 h) due to the significant accumulation of the peptide assemblies in the nuclei of iPSCs. The phosphopentapeptide is innocuous to normal cells (e.g., HEK293 and hematopoietic progenitor cell (HPC)) because normal cells hardly overexpress ALP. Inhibiting ALP, mutating the l-phosphotyrosine from the C-terminal to the middle of the phosphopentapeptides, or replacing l-leucine to d-leucine in the phosphopentapeptide abolishes the intranuclear assemblies of the pentapeptides. Treating the l-phosphopentapeptide with cell lysate of normal cells (e.g., HS-5) confirms the proteolysis of the l-pentapeptide. This work, as the first case of intranuclear assemblies of peptides, not only illustrates the application of enzymatic noncovalent synthesis for selectively targeting nuclei of cells but also may lead to a new way to eliminate other pathological cells that express a high level of certain enzymes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States.,School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Shijiang Lu
- HebeCell, 21 Strathmore Road, Natick, Massachusetts 01760, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
53
|
Zhao C, Chen H, Wang F, Zhang X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf B Biointerfaces 2021; 208:112040. [PMID: 34425532 DOI: 10.1016/j.colsurfb.2021.112040] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/12/2021] [Indexed: 01/01/2023]
Abstract
Amphiphilic self-assembling peptides are widely used in tissue and cell engineering, antimicrobials, drug-delivery systems and other biomedical fields due to their good biocompatibility, functionality, flexibility of design and synthesis, and tremendous potential as delivery carriers for drugs. Currently, the design and study of amphipathic peptides by a bottom-up method to develop new biomedical materials have become a hot topic. However, defined rules have not been established for the design and development of self-assembled peptides. Therefore, the focus of this review is to summarize and provide several rational strategies for the design and study of amphiphilic self-assembly peptides. In addition, this paper also describes the types and general self-assembling mechanism of amphipathic peptides, and outlines their applications in the delivery of hydrophobic drugs, nucleic acid drugs, peptide drugs and vaccines. Amphiphilic self-assembled peptides are expected to exploit new functional materials for drug delivery and other applications.
Collapse
Affiliation(s)
- Chunqian Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongyuan Chen
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, 250021, People's Republic of China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| |
Collapse
|
54
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen HY, Ye D. Enzyme-Mediated In Situ Self-Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021; 60:18082-18093. [PMID: 34010512 DOI: 10.1002/anie.202103307] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/01/2021] [Indexed: 12/13/2022]
Abstract
Pretargeted imaging has emerged as a promising approach to advance nuclear imaging of malignant tumors. Herein, we combine the enzyme-mediated fluorogenic reaction and in situ self-assembly with the inverse electron demand Diels-Alder (IEDDA) reaction to develop an activatable pretargeted strategy for multimodality imaging. The trans-cyclooctene (TCO) bearing small-molecule probe, P-FFGd-TCO, can be activated by alkaline phosphatase and in situ self-assembles into nanoaggregates (FMNPs-TCO) retained on the membranes, permitting to (1) amplify near-infrared (NIR) fluorescence (FL) and magnetic resonance imaging (MRI) signals, and (2) enrich TCOs to promote IEDDA ligation. The Gallium-68 (68 Ga) labeled tetrazine can readily conjugate the tumor-retained FMNPs-TCO to enhance radioactivity uptake in tumors. Strong NIR FL, MRI, and positron emission tomography (PET) signals are concomitantly achieved, allowing for pretargeted multimodality imaging of ALP activity in HeLa tumor-bearing mice.
Collapse
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
55
|
Zhou Y, Qiu P, Yao D, Song Y, Zhu Y, Pan H, Wu J, Zhang J. A crosslinked colloidal network of peptide/nucleic base amphiphiles for targeted cancer cell encapsulation. Chem Sci 2021; 12:10063-10069. [PMID: 34349970 PMCID: PMC8317620 DOI: 10.1039/d1sc02995a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/22/2021] [Indexed: 01/14/2023] Open
Abstract
The use of peptide amphiphiles (PAs) is becoming increasingly popular, not only because of their unique self-assembly properties but also due to the versatility of designs, allowing biological responsiveness, biocompatibility, and easy synthesis, which could potentially contribute to new drug design and disease treatment concepts. Oligonucleotides, another major functional bio-macromolecule class, have been introduced recently as new functional building blocks into PAs, further enriching the tools available for the fabrication of bio-functional PAs. Taking advantage of this, in the present work, two nucleic base-linked (adenine, A and thymine, T) RGD-rich peptide amphiphiles (NPAs) containing the fluorophores naphthalimide and rhodamine (Nph-A and Rh-T) were designed and synthesized. The two NPAs exhibit distinctive assembly behaviours with spherical (Rh-T) and fibrous (Nph-A) morphologies, and mixing Nph-A with Rh-T leads to a densely crosslinked colloidal network (Nph-A/Rh-T) via mutually promoted supramolecular polymerization via nucleation-growth assembly. Because of the RGD-rich sequences in the crosslinked network, further research on in situ targeted cancer cell (MDA-MB-231) encapsulation via RGD-integrin recognition was performed, and the modulation of cell behaviours (e.g., cell viability and migration) was demonstrated using both confocal laser scanning microscopy (CLSM) imaging and a scratch wound healing assay.
Collapse
Affiliation(s)
- Yanzi Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Peng Qiu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine 1665 Kongjiang Road Shanghai 200092 China
| | - Yanyan Song
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Yuedong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Haiting Pan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junchen Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
56
|
Hu Y, Zhang J, Miao Y, Wen X, Wang J, Sun Y, Chen Y, Lin J, Qiu L, Guo K, Chen H, Ye D. Enzyme‐Mediated In Situ Self‐Assembly Promotes In Vivo Bioorthogonal Reaction for Pretargeted Multimodality Imaging. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuxuan Hu
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Junya Zhang
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinxing Miao
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Xidan Wen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Yidan Sun
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Biotechnology and Pharmaceutical Engineering Nanjing Tech University Nanjing 211800 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
57
|
Yang X, Cao Z, Lu H, Wang H. In Situ Construction of Functional Assemblies in Living Cells for Cancer Therapy. Adv Healthc Mater 2021; 10:e2100381. [PMID: 34050607 DOI: 10.1002/adhm.202100381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/08/2021] [Indexed: 02/06/2023]
Abstract
Peptide-based materials hold great promise for various biomedical applications and have drawn increasing attention over the past five years. Despite the progress in fabrication and handling peptide materials in vitro, manipulating assemblies of peptides in living cells (or animals) is still in its infancy. In this contributing review, recent work is summarized using endogenous triggers to construct functional assemblies of peptides in vivo. After introducing the triggers for inducing peptide assemblies, the recent progress is highlighted of the in situ construction of assemblies for biomedical applications with emphasis on cancer therapy. Finally, a brief perspective is provided to discuss the future promises and challenges of this emerging area of supramolecular chemistry.
Collapse
Affiliation(s)
- Xuejiao Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Zeyuan Cao
- Department of Bioinformatics Boston University Boston MA 02215 USA
| | - Honglei Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| |
Collapse
|
58
|
Zheng D, Liu J, Xie L, Wang Y, Ding Y, Peng R, Cui M, Wang L, Zhang Y, Zhang C, Yang Z. Enzyme-instructed and mitochondria-targeting peptide self-assembly to efficiently induce immunogenic cell death. Acta Pharm Sin B 2021; 12:2740-2750. [PMID: 35755291 PMCID: PMC9214332 DOI: 10.1016/j.apsb.2021.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Immunogenic cell death (ICD) plays a major role in cancer immunotherapy by stimulating specific T cell responses and restoring the antitumor immune system. However, effective type II ICD inducers without biotoxicity are still very limited. Herein, a tentative drug- or photosensitizer-free strategy was developed by employing enzymatic self-assembly of the peptide F-pY-T to induce mitochondrial oxidative stress in cancer cells. Upon dephosphorylation catalyzed by alkaline phosphatase overexpressed on cancer cells, the peptide F-pY-T self-assembled to form nanoparticles, which were subsequently internalized. These affected the morphology of mitochondria and induced serious reactive oxygen species production, causing the ICD characterized by the release of danger-associated molecular patterns (DAMPs). DAMPs enhanced specific immune responses by promoting the maturation of DCs and the intratumoral infiltration of tumor-specific T cells to eradicate tumor cells. The dramatic immunotherapeutic capacity could be enhanced further by combination therapy of F-pY-T and anti-PD-L1 agents without visible biotoxicity in the main organs. Thus, our results revealed an alternative strategy to induce efficient ICD by physically promoting mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Debin Zheng
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Jingfei Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Limin Xie
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Yuhan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Yinghao Ding
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Rong Peng
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing 211166, China
| | - Ling Wang
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing 211166, China
- Corresponding authors. Tel./fax: +86 25 86869485 (Yongjie Zhang); +86 22 23502875 (Chunqiu Zhang and Zhimou Yang).
| | - Chunqiu Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
- Corresponding authors. Tel./fax: +86 25 86869485 (Yongjie Zhang); +86 22 23502875 (Chunqiu Zhang and Zhimou Yang).
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
- Corresponding authors. Tel./fax: +86 25 86869485 (Yongjie Zhang); +86 22 23502875 (Chunqiu Zhang and Zhimou Yang).
| |
Collapse
|
59
|
Zheng D, Liu J, Ding Y, Xie L, Zhang Y, Chen Y, Peng R, Cai M, Wang L, Wang H, Gao J, Yang Z. Tandem molecular self-assembly for selective lung cancer therapy with an increase in efficiency by two orders of magnitude. NANOSCALE 2021; 13:10891-10897. [PMID: 34125124 DOI: 10.1039/d1nr01174j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In situ self-assembly of prodrug molecules into nanomedicine can elevate the therapeutic efficacy of anticancer medications by enhancing the targeting and enrichment of anticancer drugs at tumor sites. However, the disassembly and biodegradation of nanomedicine after enrichment prevents the further improvement of the efficiency, and avoiding such disassembly and biodegradation remains a challenge. Herein, we rationally designed a tandem molecular self-assembling prodrug that could selectively improve the therapeutic efficacy of HCPT against lung cancer by two orders of magnitude. The tandem molecular self-assembly utilized an elevated level of alkaline phosphatase and reductase in lung cancer cells. The prodrug first self-assembled into nanofibers by alkaline phosphatase catalysis and was internalized more efficiently by lung cancer cells than free HCPT. The resulting nanofiber was next catalyzed by intracellular reductase to form a more hydrophobic nanofiber that prevented the disassembly and biodegradation, which further significantly improved the efficacy of HCPT against lung cancer both in vitro and in vivo.
Collapse
Affiliation(s)
- Debin Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Jingfei Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Yinghao Ding
- College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Limin Xie
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Yingying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Yaoxia Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Rong Peng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Miao Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Ling Wang
- College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University; Institute of Natural Sciences, Westlake Institute for Advanced Study, No. 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, P. R. China.
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
60
|
Zeng XZ, An HW, Wang H. Chemical Reactions Trigger Peptide Self-Assembly in vivo for Tumor Therapy. ChemMedChem 2021; 16:2452-2458. [PMID: 33882175 DOI: 10.1002/cmdc.202100254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 01/02/2023]
Abstract
Self-assembly peptide materials have promoted the development of science research including life science, optics, medicine, and catalysis over the past two decades. Especially in tumor treatment, peptide self-assembly strategies have exhibited promising potential by their high degree of biocompatibility, construction modularization, and diversity in structure controllability. Driven by physical and chemical triggers, peptides can self-assemble in vivo to form fibers, spheres, hydrogels, or ribbons to achieve predeterminate biological functions. Peptide self-assembly triggered by chemical reactions provides superior specificity and intelligent responsiveness to produce assembly-induced biological effects in target regions. Herein, from the perspective of triggers of peptide assembly, we briefly review the applications of in vivo peptide self-assembly strategies for tumor treatment, including tumor-pathology-factor-induced chemical reactions and bio-orthogonal reactions.
Collapse
Affiliation(s)
- Xiang-Zhong Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China.,Academy for Advanced Interdisciplinary Studies, Peking University, No. 5 Yiheyuan Rd, Haidian District, Beijing, 100871, China
| | - Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), No. 19 Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
61
|
Wu J, Ding W, Han G, You W, Gao W, Shen H, Tang J, Tang Q, Wang X. Nuclear delivery of dual anti-cancer drugs by molecular self-assembly. Biomater Sci 2021; 9:116-123. [PMID: 33325919 DOI: 10.1039/d0bm00971g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanomedicines generally suffer from poor accumulation in tumor cells, low anti-tumor efficacy, and drug resistance. In order to address these problems, we introduced a novel nanomedicine based on dual anti-cancer drugs, which showed good cell nuclear accumulation properties. The novel nanomedicine consisted of three components: (1) dual anti-cancer drugs, 10-hydroxycamptothecin (HCPT) and chlorambucil (CRB), whose targets are located in the cell nucleus, (2) a nuclear localizing dodecapeptide, PMI peptide (TSFAEYWNLLSP), which could activate p53 by binding with MDM2 and MDMX located in the cell nucleus, and (3) an efficient self-assembling tripeptide FFY. Our nanomedicine exhibited enhanced cellular uptake and nuclear accumulation properties, thus achieving an excellent anti-cancer capacity both in vitro and in vivo. Our study will provide an inspiration for the development of novel multifunctional nanomaterials for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jindao Wu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Hepatobiliary Center, Department of Breast Surgery, Department of Oncology, Department of Geriatric Digestion, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
He H, Guo J, Xu J, Wang J, Liu S, Xu B. Dynamic Continuum of Nanoscale Peptide Assemblies Facilitates Endocytosis and Endosomal Escape. NANO LETTERS 2021; 21:4078-4085. [PMID: 33939437 PMCID: PMC8180093 DOI: 10.1021/acs.nanolett.1c01029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Alkaline phosphatase (ALP) enables intracellular targeting by peptide assemblies, but how the ALP substrates enter cells remains elusive. Here we show that nanoscale phosphopeptide assemblies cluster ALP to enable caveolae-mediated endocytosis (CME) and endosomal escape. Specifically, fluorescent phosphopeptides undergo enzyme-catalyzed self-assembly to form nanofibers. Live cell imaging unveils that phosphopeptides nanoparticles, coincubated with HEK293 cells overexpressing red fluorescent protein-tagged tissue-nonspecific ALP (TNAP-RFP), cluster TNAP-RFP in lipid rafts to enable CME. Further dephosphorylation of the phosphopeptides produces peptidic nanofibers for endosomal escape. Inhibiting TNAP, cleaving the membrane anchored TNAP, or disrupting lipid rafts abolishes the endocytosis. Decreasing the transformation to nanofibers prevents the endosomal escape. As the first study establishing a dynamic continuum of nanoscale assemblies for cellular uptake, this work illustrates an effective design for enzyme-responsive supramolecular therapeutics and provides mechanism insights for understanding the dynamics of cellular uptake of proteins or exogenous peptide aggregates.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiashu Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
63
|
Wakabayashi R, Higuchi A, Obayashi H, Goto M, Kamiya N. pH-Responsive Self-Assembly of Designer Aromatic Peptide Amphiphiles and Enzymatic Post-Modification of Assembled Structures. Int J Mol Sci 2021; 22:ijms22073459. [PMID: 33801602 PMCID: PMC8037177 DOI: 10.3390/ijms22073459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Supramolecular fibrous materials in biological systems play important structural and functional roles, and therefore, there is a growing interest in synthetic materials that mimic such fibrils, especially those bearing enzymatic reactivity. In this study, we investigated the self-assembly and enzymatic post-modification of short aromatic peptide amphiphiles (PAs), Fmoc-LnQG (n = 2 or 3), which contain an LQG recognition unit for microbial transglutaminase (MTG). These aromatic PAs self-assemble into fibrous structures via π-π stacking interactions between the Fmoc groups and hydrogen bonds between the peptides. The intermolecular interactions and morphologies of the assemblies were influenced by the solution pH because of the change in the ionization states of the C-terminal carboxy group of the peptides. Moreover, MTG-catalyzed post-modification of a small fluorescent molecule bearing an amine group also showed pH dependency, where the enzymatic reaction rate was increased at higher pH, which may be because of the higher nucleophilicity of the amine group and the electrostatic interaction between MTG and the self-assembled Fmoc-LnQG. Finally, the accumulation of the fluorescent molecule on these assembled materials was directly observed by confocal fluorescence images. Our study provides a method to accumulate functional molecules on supramolecular structures enzymatically with the morphology control.
Collapse
Affiliation(s)
- Rie Wakabayashi
- Department of Applied Chemistry, School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (A.H.); (H.O.); (M.G.)
- Correspondence: (R.W.); (N.K.); Tel.: +81-92-802-2809 (R.W.); +81-92-802-2807 (N.K.)
| | - Ayato Higuchi
- Department of Applied Chemistry, School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (A.H.); (H.O.); (M.G.)
| | - Hiroki Obayashi
- Department of Applied Chemistry, School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (A.H.); (H.O.); (M.G.)
| | - Masahiro Goto
- Department of Applied Chemistry, School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (A.H.); (H.O.); (M.G.)
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, School of Engineering, Kyushu University, Fukuoka 819-0395, Japan; (A.H.); (H.O.); (M.G.)
- Center for Future Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (R.W.); (N.K.); Tel.: +81-92-802-2809 (R.W.); +81-92-802-2807 (N.K.)
| |
Collapse
|
64
|
Abstract
Although peptide assemblies have been explored extensively, the self-assembly of negatively charged peptides (NCPs) received little attention. Stimulated by the fact that acidic stretch is a common feature in the intrinsically disordered regions of histone chaperones, we explored the use of the assemblies of NCPs for trafficking histone proteins. Our results show that the peptides that contain glutamic acid (E)-repeat, at neutral or basic pH, self-assemble to form micelles in solution. Circular dichroism indicates that increasing pH favored the peptides to populate more in disordered and α helix conformations. Being innocuous to cells, the assemblies of these NCPs traffic histone 2B (H2B) to mitochondria. Structure-activity study indicates that self-assembly, proper stereochemistry, and acidic repeats are necessary for trafficking H2B. This work, as the first example of peptide assemblies for protein trafficking, illustrates a supramolecular approach for controlling cellular processes and provides insights for mimicking chaperones and controlling protein-protein interactions.
Collapse
Affiliation(s)
- Dongsik Yang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Beom Jin Kim
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
65
|
Zhang J, Deng M, Shi X, Zhang C, Qu X, Hu X, Wang W, Kong D, Huang P. Cascaded amplification of intracellular oxidative stress and reversion of multidrug resistance by nitric oxide prodrug based-supramolecular hydrogel for synergistic cancer chemotherapy. Bioact Mater 2021; 6:3300-3313. [PMID: 33778206 PMCID: PMC7970318 DOI: 10.1016/j.bioactmat.2021.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Supramolecular hydrogel was facilely developed by self-assembly of NO prodrug conjugated hydrogelator sequence. The locoregionally sustained NO release from the hydrogel could be triggered by intracellular over-expressed GSH/GST. NO could effectively reverse the P-gp mediated MDR effect and facilitate the intracellular accumulation of DOX. This type of stimuli-sensitive NO delivery platform holds great potential for combating drug-resistance cancer.
Collapse
Affiliation(s)
- Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaoguang Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Xiuli Hu
- Hebei Key Laboratory of Functional Polymers, National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
66
|
Kimura S, Yokoya M, Yamanaka M. Biological-stimuli-responsive Supramolecular Hydrogels toward Medicinal and Pharmaceutical Applications. CHEM LETT 2021. [DOI: 10.1246/cl.200765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shinya Kimura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masashi Yokoya
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Masamichi Yamanaka
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
67
|
Yang D, Kim BJ, He H, Xu B. Enzymatically Forming Cell Compatible Supramolecular Assemblies of Tryptophan-Rich Short Peptides. Pept Sci (Hoboken) 2021; 113:e24173. [PMID: 35445163 PMCID: PMC9017786 DOI: 10.1002/pep2.24173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/04/2020] [Indexed: 10/27/2023]
Abstract
Here we report a new type of tryptophan-rich short peptides, which act as hydrogelators, form supramolecular assemblies via enzymatic dephosphorylation, and exhibit cell compatibility. The facile synthesis of the peptides starts with the production of phosphotyrosine, then uses solid phase peptide synthesis (SPPS) to build the phosphopeptides that contain multiple tryptophan residues. Besides exhibiting excellent solubility, these phosphopeptides, unlike the previously reported cytotoxic phenylalanine-rich phosphopeptides, are largely compatible toward mammalian cells. Our preliminary mechanistic study suggests that the tryptophan-rich peptides, instead of forming pericellular assemblies, largely accumulate in lysosomes. Such lysosomal localization may account for their cell compatibility. Moreover, these tryptophan-rich peptides are able to transiently reduce the cytotoxicity of phenylalanine-rich peptide assemblies. This rather unexpected result implies that tryptophan may act as a useful aromatic building block for developing cell compatible supramolecular assemblies for soft materials and find applications for protecting cells from cytotoxic peptide assemblies.
Collapse
Affiliation(s)
- Dongsik Yang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Beom Jin Kim
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
68
|
Chen J, Zhao Y, Yao Q, Gao Y. Pathological environment directed in situ peptidic supramolecular assemblies for nanomedicines. Biomed Mater 2021; 16:022011. [PMID: 33630754 DOI: 10.1088/1748-605x/abc2e9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptidic self-assembly provides a powerful method to build biomedical materials with integrated functions. In particular, pathological environment instructed peptidic supramolecular have gained great progress in treating various diseases. Typically, certain pathology related factors convert hydrophilic precursors to corresponding more hydrophobic motifs to assemble into supramolecular structures. Herein, we would like to review the recent progress of nanomedicines based on the development of instructed self-assembly against several specific disease models. Firstly we introduce the cancer instructed self-assembly. These assemblies have exhibited great inhibition efficacy, as well as enhanced imaging contrast, against cancer models both in vitro and in vivo. Then we discuss the infection instructed peptidic self-assembly. A number of different molecular designs have demonstrated the potential antibacterial application with satisfied efficiency for peptidic supramolecular assemblies. Further, we discuss the application of instructed peptidic self-assembly for other diseases including neurodegenerative disease and vaccine. The assemblies have succeeded in down-regulating abnormal Aβ aggregates and immunotherapy. In summary, the self-assembly precursors are typical two-component molecules with (1) a self-assembling motif and (2) a cleavable trigger responsive to the pathological environment. Upon cleavage, the self-assembly occurs selectively in pathological loci whose targeting capability is independent from active targeting. Bearing the novel targeting regime, we envision that the pathological conditions instructed peptidic self-assembly will lead a paradigm shift on biomedical materials.
Collapse
Affiliation(s)
- Jiali Chen
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Zhao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
69
|
Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials 2021; 270:120680. [PMID: 33588140 DOI: 10.1016/j.biomaterials.2021.120680] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic cancer (PC) is one kind of the most lethal malignancies worldwide, owing to its insidious symptoms, early metastases, and negative responses to current therapies. With an increasing understanding of pathology, the tumor microenvironment (TME) plays a significant role in ineffective treatment and poor prognosis of PC. Thus, a growing number of studies have focused on whether components of the TME could be effective targets for PC therapy. Biomaterials have been widely applied in cancer therapy, and numerous organic or inorganic biomaterials for TME regulation have been developed to inhibit the growth and metastasis of PC, as well as reverse therapeutic resistance. In this review, we discuss various biomaterials utilized to treat PC based on different components of the TME, including, but not limited to, extracellular matrix (ECM), abnormal tumor vascularization, and tumor-associated immune cells, as well as other unconventional therapeutic strategies. Besides, the perspectives on the underlying future of theranostic nanomedicines for PC therapy are also presented.
Collapse
|
70
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
71
|
Deng Y, Zhan W, Liang G. Intracellular Self-Assembly of Peptide Conjugates for Tumor Imaging and Therapy. Adv Healthc Mater 2021; 10:e2001211. [PMID: 32902191 DOI: 10.1002/adhm.202001211] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Intracellular self-assembly (ISA) is a versatile and powerful strategy for in situ constructing sophisticated and functional supramolecular nanostructures, which has been widely applied in biomedicine and biomedical engineering. Among the common building blocks for ISA, peptides have attracted increasingly attention due to their intrinsic bioactivity, biocompatibility, and biodegradability. Particularly, by conjugating functional motifs (e.g., probes or drugs) to peptides to yield the peptide conjugates, the latter show enhanced stability and efficiency, and probably new functions. In recent years, employing ISA of peptide conjugates for tumor imaging and treatment has achieved great progresses. Therefore, the recent progress of ISA of peptide conjugates is summarized in this progress report. Moreover, several examples of ISA of peptide conjugates for other important imaging or therapeutic applications are also introduced. Finally, a brief perspective on remaining challenges and potential directions for future research in this area is presented.
Collapse
Affiliation(s)
- Yu Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 China
| |
Collapse
|
72
|
He H, Lin X, Wu D, Wang J, Guo J, Green DR, Zhang H, Xu B. Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100270. [PMID: 33511360 PMCID: PMC7839975 DOI: 10.1016/j.xcrp.2020.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Xinyi Lin
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Douglas R. Green
- Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Hongwei Zhang
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
- Lead contact
- Correspondence:
| |
Collapse
|
73
|
Rütter M, Milošević N, David A. Say no to drugs: Bioactive macromolecular therapeutics without conventional drugs. J Control Release 2020; 330:1191-1207. [PMID: 33207257 DOI: 10.1016/j.jconrel.2020.11.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The vast majority of nanomedicines (NM) investigated today consists of a macromolecular carrier and a drug payload (conjugated or encapsulated), with a purpose of preferential delivery of the drug to the desired site of action, either through passive accumulation, or by active targeting via ligand-receptor interaction. Several drug delivery systems (DDS) have already been approved for clinical use. However, recent reports are corroborating the notion that NM do not necessarily need to include a drug payload, but can exert biological effects through specific binding/blocking of important target proteins at the site of action. The seminal work of Kopeček et al. on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers containing biorecognition motifs (peptides or oligonucleotides) for crosslinking cell surface non-internalizing receptors of malignant cells and inducing their apoptosis, without containing any low molecular weight drug, led to the definition of a special group of NM, termed Drug-Free Macromolecular Therapeutics (DFMT). Systems utilizing this approach are typically designed to employ pendant targeting-ligands on the same macromolecule to facilitate multivalent interactions with receptors. The lack of conventional small molecule drugs reduces toxicity and adverse effects at off-target sites. In this review, we describe different types of DFMT that possess biological activity without attached low molecular weight drugs. We classified the relevant research into several groups by their mechanisms of action, and compare the advantages and disadvantages of these different approaches. We show that identification of target sites, specificity of attached targeting ligands, binding affinity and the synthesis of carriers of defined size and ligand spacing are crucial aspects of DFMT development. We further discuss how knowledge in the field of NM accumulated in the past few decades can help in the design of a successful DFMT to speed up the translation into clinical practice.
Collapse
Affiliation(s)
- Marie Rütter
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Nenad Milošević
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Ayelet David
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
74
|
Yang D, He H, Xu B. Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides. Beilstein J Org Chem 2020; 16:2709-2718. [PMID: 33214796 PMCID: PMC7653338 DOI: 10.3762/bjoc.16.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/16/2020] [Indexed: 11/26/2022] Open
Abstract
Here, we report the use of an enzymatic reaction to cleave the branch off branched peptides for inducing the morphological transition of the assemblies of the peptides. The attachment of DEDDDLLI sequences to the ε-amine of the lysine residue of a tetrapeptide produces branched peptides that form micelles. Upon the proteolytic cleavage of the branch, catalyzed by proteinase K, the micelles turn into nanofibers. We also found that the acetylation of the N-terminal of the branch increased the stability of the branched peptides. Moreover, these branched peptides facilitate the delivery of the proteins into cells. This work contributes insights for the development of peptide supramolecular assemblies via enzymatic noncovalent synthesis in cellular environment.
Collapse
Affiliation(s)
- Dongsik Yang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
75
|
Guo J, Tian C, Xu B. Biomaterials based on noncovalent interactions of small molecules. EXCLI JOURNAL 2020; 19:1124-1140. [PMID: 33088250 PMCID: PMC7573174 DOI: 10.17179/excli2020-2656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
Unlike conventional materials that covalent bonds connecting atoms as the major force to hold the materials together, supramolecular biomaterials rely on noncovalent intermolecular interactions to assemble. The reversibility and biocompatibility of supramolecular biomaterials render them with diverse range of functions and lead to rapid development in the past two decades. This review focuses on the noncovalent and enzymatic control of supramolecular biomaterials, with the introduction to various triggering mechanism to initiate self-assembly. Representative applications of supramolecular biomaterials are highlighted in four categories: tissue engineering, cancer therapy, drug delivery, and molecular imaging. By introducing various applications, we intend to show enzymatic control and noncovalent interactions as a powerful tool for achieving spatiotemporal control of biomaterials both invitro and in vivo for biomedicine.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| | - Changhao Tian
- Department of Physics, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, 210093, China
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA
| |
Collapse
|
76
|
Liu D, Yin J, Liang S, Shi W, Jiang X, Gao Y. Enzyme-Regulated Peptide-Liquid Metal Hybrid Hydrogels as Cell Amber for Single-Cell Manipulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45807-45813. [PMID: 32951417 DOI: 10.1021/acsami.0c13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current strategies to construct cell-based bioartificial tissues largely remain on a multicell level. Taking cell diversity into account, single-cell manipulation is urgently needed for delicate bioartificial tissue construction. Current single-cell isolation and profiling techniques involve invasive processes and thus are not applicable for single-cell manipulation. Here, we managed to fabricate peptide-liquid metal hybrid hydrogels as "cell ambers" which were suitable for single-cell isolation as well as further handling. The successful preparation of uniform liquid metal nanoparticles allowed the fabrication of peptide-liquid metal hydrogel with excellent recovery property upon mechanical destruction. The alkaline phosphatase-instructed supramolecular self-assembly process allowed the formation of microhydrogel post-filling in the PDMS template. The co-culture of the hydrogel precursor and mammalian cells realized the embedding of cells into elastic hydrogels which were the so-called cell ambers. The cell ambers turned out to be biocompatible and capable of supporting cell survival. Aided with the micro-operating system and a laser scanning confocal microscope, we could arrange these as-prepared 3D single-cell ambers into various patterns as desired. Our strategy provided the possibility to manipulate a single cell, which served as a prototype of cell architecture toward cell-based bioartificial tissue construction.
Collapse
Affiliation(s)
- Dongdong Liu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxiang Yin
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Sen Liang
- The Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Shi
- The Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, Beijing 100190, China
| | - Xingyu Jiang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Biomedical Engineering, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
77
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
78
|
He H, Liu S, Wu D, Xu B. Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells. Angew Chem Int Ed Engl 2020; 59:16445-16450. [PMID: 32521103 PMCID: PMC7844580 DOI: 10.1002/anie.202006290] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 12/24/2022]
Abstract
Herein, we show that an enzymatic reaction can generate peptide assemblies that sequestrate proteins to selectively kill cancer cells. A phosphopeptide bearing the antagonistic motif (AVPI) to the inhibitors of apoptotic proteins (IAPs) enters cancer cells and normal cells by caveolin-dependent endocytosis and macropinocytosis, respectively. The AVPI-bearing peptide assemblies sequestrates IAPs and releases bortezomib (BTZ), a proteasome inhibitor, in the cytosol of cancer cells, but rescues the normal cells (namely, HS-5 cells) by trafficking the BTZ into lysosomes. Alkaline phosphatase (ALP) acts as a context-dependent signal for trafficking the peptide/BTZ assemblies and selectively induces the death of the cancer cells. The assemblies of AVPI exhibit enhanced proteolytic resistance. This work, which utilizes the difference in endocytic uptake of enzymatically formed peptide assemblies to selectively kill cancer cells, promises a new way to develop selective cancer therapeutics.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Shuang Liu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02453, USA
| |
Collapse
|
79
|
Jin S, Jeena MT, Jana B, Moon M, Choi H, Lee E, Ryu JH. Spatiotemporal Self-Assembly of Peptides Dictates Cancer-Selective Toxicity. Biomacromolecules 2020; 21:4806-4813. [DOI: 10.1021/acs.biomac.0c01000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Seongeon Jin
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - M. T. Jeena
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Minhyeok Moon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Huyeon Choi
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
80
|
Zhang YL, Chang R, Duan HZ, Chen YX. Metal ion and light sequentially induced sol-gel-sol transition of a responsive peptide-hydrogel. SOFT MATTER 2020; 16:7652-7658. [PMID: 32797141 DOI: 10.1039/d0sm00442a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a new responsive peptide hydrogel FmocFFpSC(oNB)-PEG, which could achieve gel formation induced by calcium ions and sequential dissolution stimulated by light. It provides a potential delivery system for the efficient encapsulation of drugs and their controlled release in a spatial and temporal way.
Collapse
Affiliation(s)
- Yun-Lai Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Hua-Zhen Duan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
81
|
Shy AN, Li J, Shi J, Zhou N, Xu B. Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels. J Drug Target 2020; 28:760-765. [PMID: 32668995 PMCID: PMC7729926 DOI: 10.1080/1061186x.2020.1797048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
This article reports enzyme-instructed self-assembly (EISA) of stereoisomers of pentapeptides as a simple approach for generating biocompatible supramolecular hydrogels as potential soft bionanomaterials. Peptide-based supramolecular hydrogels are emerging as a new type of biomaterials. The use of tyrosine phosphate offers a trigger for enzymatic hydrogelation, and the incorporation of D-amino acids can increase the proteolytic stability of peptides. This work compared four phosphorpeptides that are stereoisomers in terms of rate of dephosphorylation, proteolytic stability, and cell compatibility. The results show that the naphthyl (Nap)-capped pentapeptides, containing the amino acid sequence of Phe-Phe-Gly-Glu-pTyr, are able to undergo EISA to form the hydrogels consisting the nanofibres of the dephosphorylated pentapeptides. The naphthyl-capped D-phosphopentpeptides, contrasting to a naphthyl-capped D-phosphotripeptide (Nap-D-Phe-D-Phe-D-pTyr), are largely cell compatible. This result, suggesting that the sequence of phophopeptides also dedicates the cell compatibility of the peptide assemblies resulted from EISA, provides useful insights for developing supramolecular hydrogels as potential biomaterials with tailored properties.
Collapse
Affiliation(s)
- Adrianna N. Shy
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Jie Li
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Ning Zhou
- Department of Chemistry, Brandeis University, Waltham, MA USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, Waltham, MA USA
| |
Collapse
|
82
|
Feng Z, Wang H, Wang F, Oh Y, Berciu C, Cui Q, Egelman EH, Xu B. Artificial Intracellular Filaments. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100085. [PMID: 32776017 PMCID: PMC7413147 DOI: 10.1016/j.xcrp.2020.100085] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Intracellular protein filaments are ubiquitous for cellular functions, but forming bona fide biomimetic intracellular filaments of small molecules in living cells remains elusive. Here, we report the in situ formation of self-limiting intracellular filaments of a small peptide via enzymatic morphological transition of a phosphorylated and trimethylated heterochiral tetrapeptide. Enzymatic dephosphorylation reduces repulsive intermolecular electrostatic interactions and converts the peptidic nanoparticles into filaments, which exhibit distinct types of cross-β structures with either C7 or C2 symmetries, with the hydrophilic C-terminal residues at the periphery of the helix. Macromolecular crowding promotes the peptide filaments to form bundles, which extend from the plasma membrane to nuclear membrane and hardly interact with endogenous components, including cytoskeletons. Stereochemistry and post-translational modification (PTM) of peptides are critical for generating the intracellular bundles. This work may offer a way to gain lost functions or to provide molecular insights for understanding normal and aberrant intracellular filaments.
Collapse
Affiliation(s)
- Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- These authors contributed equally
| | - Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- These authors contributed equally
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Box 800733, Charlottesville, VA 22908-0733, USA
| | - Younghoon Oh
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
- Rafik B. Hariri Institute for Computing and Computational Science & Engineering, Boston University, 111 Cummington Mall, Boston, MA 02215, USA
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 04107, Republic of Korea
| | - Cristina Berciu
- Microscopy Core Facility, McLean Hospital, Belmont, MA 02478, USA
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Box 800733, Charlottesville, VA 22908-0733, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Lead Contact
| |
Collapse
|
83
|
He H, Liu S, Wu D, Xu B. Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Shuang Liu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Difei Wu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
84
|
Liu S, Xu B. Enzyme-Instructed Self-Assembly for Subcellular Targeting. ACS OMEGA 2020; 5:15771-15776. [PMID: 32656395 PMCID: PMC7345418 DOI: 10.1021/acsomega.0c02019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Subcellular compartmentalization is a key feature of eukaryotic cells. Selectively targeting subcellular compartments, though holding many exciting opportunities for biomedicine, remains rather underdeveloped. Self-assembly provides a new way for subcellular targeting. In this mini-review, we briefly introduce the development of supramolecular self-assemblies for targeting the nucleus, mitochondria, endoplasmic reticulum, and cell membranes. We mainly focus on the use of enzyme-instructed self-assembly (EISA), which spatiotemporally controls the formation of supramolecular assemblies for subcellular targeting and its applications, such as developing cancer therapeutics.
Collapse
Affiliation(s)
- Shuang Liu
- Department
of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
- School
of Materials Science and Engineering, Wuhan
University of Technology, 122 Luoshi Road, Wuhan, Hubei 430070, China
| | - Bing Xu
- Department
of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
85
|
He H, Lin X, Guo J, Wang J, Xu B. Perimitochondrial Enzymatic Self-Assembly for Selective Targeting the Mitochondria of Cancer Cells. ACS NANO 2020; 14:6947-6955. [PMID: 32383849 PMCID: PMC7316614 DOI: 10.1021/acsnano.0c01388] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Emerging evidence indicates that mitochondria contribute to drug resistance in cancer, but how to selectively target the mitochondria of cancer cells remains less explored. Here, we show perimitochondrial enzymatic self-assembly for selectively targeting the mitochondria of liver cancer cells. Nanoparticles of a peptide-lipid conjugate, being a substrate of enterokinase (ENTK), encapsulate chloramphenicol (CLRP), a clinically used antibiotic that is deactivated by glucuronidases in cytosol but not in mitochondria. Perimitochondrial ENTK cleaves the Flag-tag on the conjugate to deliver CLRP selectively into the mitochondria of cancer cells, thus inhibiting the mitochondrial protein synthesis, inducing the release of cytochrome c into the cytosol and resulting in cancer cell death. This strategy selectively targets liver cancer cells over normal liver cells. Moreover, blocking the mitochondrial protein synthesis sensitizes the cancer cells, relying on glycolysis and/or OXPHOS, to cisplatin. This work illustrates a facile approach, selectively targeting mitochondria of cancer cells and repurposing clinically approved ribosome inhibitors, to interrupt the metabolism of cancer cells for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Bing Xu
- Corresponding Author: Bing Xu-Department of Chemistry, Brandeis University,
| |
Collapse
|
86
|
Zhang S, Cortes W, Zhang Y. Constructing Cross-Linked Nanofibrous Scaffold via Dual-Enzyme-Instructed Hierarchical Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6261-6267. [PMID: 32418429 DOI: 10.1021/acs.langmuir.0c01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To explore the potential of step-by-step assembly in the fabrication of biological materials, we designed and synthesized two peptide-based molecules for enzyme-instructed hierarchical assembly. Upon the treatment of alkaline phosphatase, one molecule undergoes enzyme-instructed self-assembly forming uniformed nanofibers. The other one that can self-assemble into vesicles undergoes enzyme-induced transformation of self-assembly converting vesicles into irregular aggregates upon the treatment of carboxylesterase. Coadministration of two enzymes to a mixture of these two molecules in a stage-by-stage fashion leads to a physically knotted nanofibrous scaffold that is applicable as a nanostructured matrix for cell culture.
Collapse
Affiliation(s)
- Shijin Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| | - William Cortes
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna Son, Okinawa 904-0495, Japan
| |
Collapse
|
87
|
He H, Guo J, Lin X, Xu B. Enzyme-Instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angew Chem Int Ed Engl 2020; 59:9330-9334. [PMID: 32119754 PMCID: PMC7269854 DOI: 10.1002/anie.202000983] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 01/11/2023]
Abstract
Presently, little is known of how the inter-organelle crosstalk impacts cancer cells owing to the lack of approaches that can manipulate inter-organelle communication in cancer cells. We found that a negatively charged, enzyme cleavable peptide (MitoFlag) enables the trafficking of histone protein H2B, a nuclear protein, to the mitochondria in cancer cells. MitoFlag interacts with the nuclear location sequence of H2B to block it from entering the nucleus. A protease on the mitochondria cleaves the Flag from the MitoFlag/H2B complex to form assemblies that retain H2B on the mitochondria and facilitate H2B entering the mitochondria. Adding NLS, replacing aspartic acid by glutamic acid residues, or changing the l- to d-aspartic acid residue on MitoFlag abolishes the trafficking of H2B into mitochondria of HeLa cells. As the first example of the enzyme-instructed self-assembly of a synthetic peptide for trafficking endogenous proteins, this work provides insights for understanding and manipulating inter-organelle communication in cells.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Xingyi Lin
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
88
|
Abstract
Peptides are one of the most important functional motifs for constructing smart drug delivery systems (DDSs). Functional peptides can be conjugated with drugs or carriers via covalent bonds, or assembled into DDSs via supramolecular forces, which enables the DDSs to acquire desired functions such as targeting and/or environmental responsiveness. In this mini review, we first introduce the different types of functional peptides that are commonly used for constructing DDSs, and we highlight representative strategies for designing smart DDSs by using functional peptides in the past few years. We also state the challenges of peptide-based DDSs and come up with prospects.
Collapse
Affiliation(s)
- Zheng Lian
- People's Public Security University of China, Beijing 100038, China
| | | |
Collapse
|
89
|
Maruyama T, Restu WK. Intracellular self-assembly of supramolecular gelators to selectively kill cells of interest. Polym J 2020. [DOI: 10.1038/s41428-020-0335-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
90
|
He H, Guo J, Lin X, Xu B. Enzyme‐Instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongjian He
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Jiaqi Guo
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Xinyi Lin
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| | - Bing Xu
- Department of Chemistry Brandeis University 415 South Street Waltham MA 02453 USA
| |
Collapse
|
91
|
Zhang X, Ren C, Hu F, Gao Y, Wang Z, Li H, Liu J, Liu B, Yang C. Detection of Bacterial Alkaline Phosphatase Activity by Enzymatic In Situ Self-Assembly of the AIEgen-Peptide Conjugate. Anal Chem 2020; 92:5185-5190. [PMID: 32207924 DOI: 10.1021/acs.analchem.9b05704] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormal levels of alkaline phosphatase (ALP) activity are associated with various diseases, and many ALP probes have been developed to date. However, the development of ALP-sensitive probes for living cells, especially for the detection of bacterial ALP, remains challenging because of the complex and dynamic context. In this study, we constructed the first fluorescent probe (TPEPy-pY) for sensing bacterial ALP activity. TPEPy-pY is an AIEgen-peptide conjugate with property of aggregation-induced emission (AIE) and could turn on its fluorescence by ALP-catalyzed in situ self-assembly of the probe. The probe shows excellent selectivity and sensitivity for ALP activity, with a detection limit of 6.6 × 10-3 U mL-1. TPEPy-pY performs well in detection and in situ imaging of bacterial ALP activity against E. coli. Also, the detection does not require tedious washing steps and takes approximately 1 h, which is advantageous over commercial ALP kits. Therefore, the proposed strategy paved a new avenue for bacterial ALP detection, and we envision that more self-assembling fluorescent probes will be designed with higher sensitivity in the near future.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chunhua Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yang Gao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhongyan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Huiqiang Li
- Department of Clinical Immunology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
92
|
Sun B, Ariawan AD, Warren H, Goodchild SC, In Het Panhuis M, Ittner LM, Martin AD. Programmable enzymatic oxidation of tyrosine-lysine tetrapeptides. J Mater Chem B 2020; 8:3104-3112. [PMID: 32207762 DOI: 10.1039/d0tb00250j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to control the response of self-assembled systems upon exposure to external stimuli has been a long-standing goal of supramolecular chemistry. Short peptides are an attractive platform to realise this objective due to their chemical diversity and modular nature. Here, we synthesise a library of Fmoc-capped tetrapeptides, each containing two tyrosine and two lysine residues and varying in their amino acid sequence. Despite having similar secondary structure, these tetrapeptides form structures which are highly sequence dependent, yielding aggregates, nanofibres or monomers. This in turn highly affects the rate and degree of oxidative polymerisation by the enzyme tyrosinase, with self-assembled nanofibres exhibiting a greater degree of polymerisation. We monitor the formation of tyrosine oxidation products over time, finding that the precipitation of polymers is driven by quinone-based species. This affects the electrochemical properties of the oxidised peptide polymers, as determined through electrical impedance spectroscopy. Finally, intrinsic fluorescence microscale thermophoresis studies confirm that the degree of oxidative polymerisation is highly dependent on tyrosine solvent accessibility and the presence of peptide monomers. The ability to tune the kinetics of enzymatically active substrates and understand their polymerisation pathways on a molecular level is important for the creation of programmable, enzyme responsive biomaterials.
Collapse
Affiliation(s)
- Biyun Sun
- Dementia Research Centre, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Enzymatic reactions and self-assembly are two fundamental attributes of cells. It is not surprising that one can use enzyme-instructed self-assembly (EISA)-the integration of enzymatic transformation and molecular self-assembly-to modulate the emergent properties of supramolecular assemblies for controlling cell behaviors. The exploration of EISA for developing cancer therapy and imaging has made considerable progress over the last five years. In this Topical Review, we discuss these exciting results and the future promise of EISA. After describing several key studies to illustrate the progress of EISA in developing cancer therapy, we discuss the use of EISA for molecular imaging. Then, we give the outlook of EISA for developing supramolecular anticancer medicine that inhibits multiple hallmark capabilities of cancer.
Collapse
Affiliation(s)
- Beom Jin Kim
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
94
|
Gong Z, Shi Y, Tan H, Wang L, Gao Z, Lian B, Wang G, Sun H, Sun P, Zhou B, Bai J. Plasma Amine Oxidase-Induced Nanoparticle-to-Nanofiber Geometric Transformation of an Amphiphilic Peptide for Drug Encapsulation and Enhanced Bactericidal Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4323-4332. [PMID: 31899611 DOI: 10.1021/acsami.9b21296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients with cancer have reduced immune function and are susceptible to bacterial infection after surgery, chemotherapy, or radiotherapy. Spherical nanoparticles formed by the self-assembled peptide V6K3 can be used as carriers for poorly soluble antitumor drugs to effectively deliver drugs into tumor cells. V6K3 was designed to achieve nanoparticle-to-nanofiber geometric transformation under induction by plasma amine oxidase (PAO). PAO is commercially available and functionally similar to lysyl oxidase (LO), which is widely present in serum. After the addition of fetal bovine serum (FBS) or PAO, the secondary structure of the peptide changed, while the spherical nanoparticles stretched and transformed into nanofibers. The conversion of the self-assembled morphology reveals the susceptibility of this amphiphilic peptide to subtle chemical modifications and may lead to promising strategies to control self-assembled architecture via enzyme induction. Enzymatically self-assembled V6K3 had bactericidal properties after PAO addition that were surprisingly superior to those before PAO addition, enabling this peptide to be used to prevent infection. The amphiphilic peptide V6K3 displayed antitumor properties and low toxicity in mammalian cells, demonstrating good biocompatibility, as well as bactericidal properties, to prevent bacterial contamination. These advantages indicate that enzymatically self-assembled V6K3 has great biomedical application potential in cancer therapy.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Yuanyuan Shi
- Medical College , Qingdao University , Qingdao 266021 , P. R. China
| | - Haining Tan
- National Glycoengineering Research Center , Shandong University , Jinan 250012 , P. R. China
| | - Lei Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects , Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Zhiqin Gao
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Bo Lian
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Gang Wang
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Hengyi Sun
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Panpan Sun
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Baolong Zhou
- School of Pharmacy , Weifang Medical University , Weifang 261042 , P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| |
Collapse
|
95
|
An HW, Hou D, Zheng R, Wang MD, Zeng XZ, Xiao WY, Yan TD, Wang JQ, Zhao CH, Cheng LM, Zhang JM, Wang L, Wang ZQ, Wang H, Xu W. A Near-Infrared Peptide Probe with Tumor-Specific Excretion-Retarded Effect for Image-Guided Surgery of Renal Cell Carcinoma. ACS NANO 2020; 14:927-936. [PMID: 31927974 DOI: 10.1021/acsnano.9b08209] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Image-guided surgery plays a crucial role in realizing complete tumor removal, reducing postoperative recurrence and increasing patient survival. However, imaging of tumor lesion in the typical metabolic organs, e.g., kidney and liver, still has great challenges due to the intrinsic nonspecific accumulation of imaging probes in those organs. Herein, we report an in situ self-assembled near-infrared (NIR) peptide probe with tumor-specific excretion-retarded (TER) effect in tumor lesions, enabling high-performance imaging of human renal cell carcinoma (RCC) and achieving complete tumor removal, ultimately reducing postoperative recurrence. The NIR peptide probe first specifically recognizes αvβ3 integrin overexpressed in renal cancer cells, then is cleaved by MMP-2/9, which is up-regulated in the tumor microenvironment. The probe residue spontaneously self-assembles into nanofibers that exhibit an excretion-retarded effect in the kidney, which contributes to a high signal-to-noise (S/N) ratio in orthotopic RCC mice. Intriguingly, the TER effect also enables precisely identifying eye-invisible tiny lesions (<1 mm), which contributes to complete tumor removal and significantly reduces the postoperative recurrence compared with traditional surgery. Finally, the TER strategy is successfully employed in high-performance identification of human RCC in an ex vivo kidney perfusion model. Taken together, this NIR peptide probe based on the TER strategy is a promising method for detecting tumors in metabolic organs in diverse biomedical applications.
Collapse
Affiliation(s)
- Hong-Wei An
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics , Yuquan Road , Beijing , 100049 , China
| | - Dayong Hou
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Rui Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Man-Di Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Xiang-Zhong Zeng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Wu-Yi Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Tong-Da Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
| | - Jia-Qi Wang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Chang-Hao Zhao
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Li-Ming Cheng
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Jin-Ming Zhang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Lu Wang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Zi-Qi Wang
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology (NCNST) , Beijing , 100190 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| | - Wanhai Xu
- Department of Urology , Fourth Hospital of Harbin Medical University, Heilongjiang Key Laboratory of Scientific Research in Urology , Harbin , 150001 , China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy , Harbin Medical University , Harbin , 150001 , China
| |
Collapse
|
96
|
Wang Z, Ma C, Shang Y, Yang L, Zhang J, Yang C, Ren C, Liu J, Fan G, Liu J. Simultaneous co-assembly of fenofibrate and ketoprofen peptide for the dual-targeted treatment of nonalcoholic fatty liver disease (NAFLD). Chem Commun (Camb) 2020; 56:4922-4925. [DOI: 10.1039/d0cc00513d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An ingenious co-assembled nanosystem based on fenofibrate and ketoprofen peptide for the dual-targeted treatment of NAFLD by reducing hepatic lipid accumulation and inflammatory responses.
Collapse
|
97
|
|
98
|
Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. J Control Release 2019; 317:109-117. [PMID: 31778740 DOI: 10.1016/j.jconrel.2019.11.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 11/23/2022]
Abstract
Subcellular delivery of nanomedicines has emerged as a promising approach to enhance the therapeutic efficacy of anticancer drugs. Nuclear accumulation of anticancer drugs are essential for its therapeutic efficacy because their targets are generally located within the nucleus. However, strategies for the nuclear accumulation of nanomedicines with anticancer drugs rarely reported. In this study, we reported a promising nanomedicine, comprising a drug-peptide amphiphile, with enhanced cellular uptake and nuclear accumulation capability for cancer therapy. The drug-peptide amphiphile consisted of the peptide ligand PMI (TSFAEYWNLLSP), which was capable of activating the p53 gene by binding with the MDM2 and MDMX located in the cell nucleus. Peptide conformations could be finely tuned by using different strategies including heating-cooling and enzyme-instructed self-assembly (EISA) to trigger molecular self-assembly at different temperatures. Due to the different peptide conformations, the drug-peptide amphiphile self-assembled into nanomedicines with various properties, including stabilities, cellular uptake, and nuclear accumulation. The optimized nanomedicine formed by EISA strategy at a low temperature of 4 °C showed enhanced cellular uptake and nuclear accumulation capability, and thus exhibited superior anticancer ability both in vitro and in vivo. Overall, our study provides a useful strategy for finely tuning the properties and activities of peptide-based supramolecular nanomaterials, which may lead to optimized nanomedicines with enhanced performance.
Collapse
|
99
|
Wu C, Liu J, Tang X, Zhai Z, Xu K, Zhong W. An enzyme-assisted self-delivery system of lonidamine–peptide conjugates for selectively killing cancer cells. Chem Commun (Camb) 2019; 55:14852-14855. [DOI: 10.1039/c9cc06204a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A self-delivery system consisting of lonidamine and a self-assembling peptide was designed for the selective killing of phosphatase-overexpressing cancer cells.
Collapse
Affiliation(s)
- Can Wu
- Department of Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jing Liu
- Department of Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xuan Tang
- Department of Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ziran Zhai
- Department of Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Keming Xu
- Department of Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Wenying Zhong
- Department of Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|