51
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel‐Catalyzed Regioselective Alkenylarylation of γ,δ‐Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Vivek Aryal
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Margaret G. Lakomy
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
52
|
Dhungana RK, Aryal V, Niroula D, Sapkota RR, Lakomy MG, Giri R. Nickel-Catalyzed Regioselective Alkenylarylation of γ,δ-Alkenyl Ketones via Carbonyl Coordination. Angew Chem Int Ed Engl 2021; 60:19092-19096. [PMID: 34115911 PMCID: PMC8373804 DOI: 10.1002/anie.202104871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Indexed: 11/07/2022]
Abstract
We disclose a nickel-catalyzed reaction, which enabled us to difunctionalize unactivated γ,δ-alkenes in ketones with alkenyl triflates and arylboronic esters. The reaction was made feasible by the use of 5-chloro-8-hydroxyquinoline as a ligand along with NiBr2 ⋅DME as a catalyst and LiOtBu as base. The reaction proceeded with a wide range of cyclic, acyclic, endocyclic and exocyclic alkenyl ketones, and electron-rich and electron-deficient arylboronate esters. The reaction also worked with both cyclic and acyclic alkenyl triflates. Control experiments indicate that carbonyl coordination is required for the reaction to proceed.
Collapse
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Vivek Aryal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Doleshwar Niroula
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rishi R. Sapkota
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Margaret G. Lakomy
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ramesh Giri
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
53
|
Ni HQ, Li ZQ, Tran VT, Engle KM. Modular synthesis of non-conjugated N-(quinolin-8-yl) alkenyl amides via cross-metathesis. Tetrahedron 2021; 93:132279. [PMID: 34393281 PMCID: PMC8360400 DOI: 10.1016/j.tet.2021.132279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We report a direct and modular method to access non-conjugated alkenyl amides containing the 8-aminoquinoline (AQ) directing auxiliary and related groups via cross-metathesis. In this way, readily available, AQ-containing, terminal β,γ-unsaturated amides can be coupled with various terminal alkenes to furnish internal alkene products that are otherwise difficult to prepare. The value of this family of products stems from their ability to participate in a number of directed alkene functionalization reactions.
Collapse
Affiliation(s)
- Hui-Qi Ni
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Van T Tran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
54
|
Cabrera-Afonso MJ, Sookezian A, Badir SO, El Khatib M, Molander GA. Photoinduced 1,2-dicarbofunctionalization of alkenes with organotrifluoroborate nucleophiles via radical/polar crossover. Chem Sci 2021; 12:9189-9195. [PMID: 34276949 PMCID: PMC8261722 DOI: 10.1039/d1sc02547c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/06/2021] [Indexed: 01/08/2023] Open
Abstract
Alkene 1,2-dicarbofunctionalizations are highly sought-after transformations as they enable a rapid increase of molecular complexity in one synthetic step. Traditionally, these conjunctive couplings proceed through the intermediacy of alkylmetal species susceptible to deleterious pathways including β-hydride elimination and protodemetalation. Herein, an intermolecular 1,2-dicarbofunctionalization using alkyl N-(acyloxy)phthalimide redox-active esters as radical progenitors and organotrifluoroborates as carbon-centered nucleophiles is reported. This redox-neutral, multicomponent reaction is postulated to proceed through photochemical radical/polar crossover to afford a key carbocation species that undergoes subsequent trapping with organoboron nucleophiles to accomplish the carboallylation, carboalkenylation, carboalkynylation, and carboarylation of alkenes with regio- and chemoselective control. The mechanistic intricacies of this difunctionalization were elucidated through Stern-Volmer quenching studies, photochemical quantum yield measurements, and trapping experiments of radical and ionic intermediates.
Collapse
Affiliation(s)
- María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Anasheh Sookezian
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mirna El Khatib
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Stellar-Chance Building, 422 Curie Boulevard Philadelphia Pennsylvania 19104-6059 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
55
|
Zhang SL, Zhang WW, Li BJ. Ir-Catalyzed Regio- and Enantioselective Hydroalkynylation of Trisubstituted Alkene to Access All-Carbon Quaternary Stereocenters. J Am Chem Soc 2021; 143:9639-9647. [PMID: 34152752 DOI: 10.1021/jacs.1c04493] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stereoselective construction of all-carbon quaternary stereocenters, especially acyclic ones, represents an important challenge in organic synthesis. In particular, homopropargyl amides with a quaternary stereocenter β to a nitrogen atom are valuable synthetic intermediates, which could be transformed to diverse chiral structures through alkyne transformations. However, highly enantioselective synthetic methods for homopropargyl amides with a β quaternary stereocenter are extremely rare. We report here unprecedented substrate-directed, iridium-catalyzed enantioselective hydroalkynylations of trisubstituted alkenes to form an acyclic all-carbon quaternary stereocenter β to a nitrogen atom. The hydroalkynylation of enamide occurred with unconventional selectivity, favoring the more hindered reaction site. Homopropargyl amides with β-stereocenters were prepared in high regio- and enantioselectivities. Combined experimental and computational studies revealed the origin of the regio- and enantioselectivities.
Collapse
Affiliation(s)
- Su-Lei Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
56
|
Liu CF, Luo X, Wang H, Koh MJ. Catalytic Regioselective Olefin Hydroarylation(alkenylation) by Sequential Carbonickelation-Hydride Transfer. J Am Chem Soc 2021; 143:9498-9506. [PMID: 34152130 DOI: 10.1021/jacs.1c03228] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alkene hydrocarbofunctionalization represents one of the most important classes of chemical transformations, but related branched-selective examples with unactivated olefins are scarce. Here, we report that catalytic amounts of a dimeric Ni(I) complex and an exogenous alkoxide base promote Markovnikov-selective hydroarylation(alkenylation) of unactivated and activated olefins using organo bromides or triflates derived from widely available phenols and ketones. Products bearing aryl- and alkenyl-substituted tertiary and quaternary centers could be isolated in up to 95% yield and >99:1 regioisomeric ratios. Contrary to previous dual-catalytic methods that rely on metal-hydride atom transfer (MHAT) to the olefin prior to carbofunctionalization with a cocatalyst, our mechanistic evidence points toward a nonradical reaction pathway that begins with site-selective carbonickelation across the C═C bond followed by hydride transfer using alkoxide as the hydride source. Utility of the single-catalyst protocol is highlighted through the synthesis of medicinally relevant scaffolds.
Collapse
Affiliation(s)
- Chen-Fei Liu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hongyu Wang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
57
|
Xu Q, Zhou X, Zhang S, Pan L, Liu Q, Li Y. Visible-Light-Induced Sulfur-Alkenylation of Alkenes. Org Lett 2021; 23:4870-4875. [PMID: 34109797 DOI: 10.1021/acs.orglett.1c01596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A visible-light-induced intermolecular sulfur-alkenylation of alkenes, including both activated and unactivated alkenes, is described. This sulfur-alkenylation reaction proceed in a highly regio- and stereospecific manner involving the visible-light-induced conversion of a ketene dithioacetal to the thiavinyl 1,3-dipole intermediate, followed by a formal [3 + 2] cycloaddition and C-S bond cleavage. Furthermore, it is also an efficient approach for the late-stage functionalization of natural products and complex molecules, even being induced by sunlight under ambient conditions.
Collapse
Affiliation(s)
- Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxuan Zhou
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Si Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
58
|
Zhang H, Lv X, Yu H, Bai Z, Chen G, He G. β-Lactam Synthesis via Copper-Catalyzed Directed Aminoalkylation of Unactivated Alkenes with Cyclobutanone O-Benzoyloximes. Org Lett 2021; 23:3620-3625. [DOI: 10.1021/acs.orglett.1c01007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoyan Lv
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanrui Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
59
|
Jiang Y, Pan J, Yang T, Zhao Y, Koh MJ. Nickel-catalyzed site- and stereoselective reductive alkylalkynylation of alkynes. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
60
|
Xu S, Chen H, Zhou Z, Kong W. Three-Component Alkene Difunctionalization by Direct and Selective Activation of Aliphatic C-H Bonds. Angew Chem Int Ed Engl 2021; 60:7405-7411. [PMID: 33300196 DOI: 10.1002/anie.202014632] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/29/2020] [Indexed: 11/07/2022]
Abstract
Catalytic alkene difunctionalization is a powerful strategy for the rapid assembly of complex molecules and has wide range of applications in synthetic chemistry. Despite significant progress, a compelling challenge that still needs to be solved is the installation of highly functionalized C(sp3 )-hybridized centers without requiring pre-activated substrates. We herein report that inexpensive and easy-to-synthesize decatungstate photo-HAT, in combination with nickel catalysis, provides a versatile platform for three-component alkene difunctionalization through direct and selective activation of aliphatic C-H bonds. Compared with previous studies, the significant advantages of this strategy are that the most abundant hydrocarbons are used as feedstocks, and various highly functionalized tertiary, secondary, and primary C(sp3 )-hybrid centers can be easily installed. The practicability of this strategy is demonstrated in the selective late-stage functionalization of natural products and the concise synthesis of pharmaceutically relevant molecules including Piragliatin.
Collapse
Affiliation(s)
- Sheng Xu
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Herong Chen
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Zhijun Zhou
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS), Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
61
|
Xu S, Chen H, Zhou Z, Kong W. Three‐Component Alkene Difunctionalization by Direct and Selective Activation of Aliphatic C−H Bonds. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sheng Xu
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Herong Chen
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Zhijun Zhou
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis (CPS) Institute for Advanced Studies (IAS) Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
62
|
Bai Z, Zhang H, Wang H, Yu H, Chen G, He G. Enantioselective Alkylamination of Unactivated Alkenes under Copper Catalysis. J Am Chem Soc 2020; 143:1195-1202. [PMID: 33378201 DOI: 10.1021/jacs.0c12333] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enantioselective addition reaction of various alkyl groups to unactivated internal alkenes under Cu catalysis has been developed. The reaction uses amide-linked aminoquinoline as the directing group, 4-alkyl Hantzsch esters as the donor of alkyl radicals, and rarely used biaryl diphosphine oxide as a chiral ligand. β-lactams featuring two contiguous stereocenters at Cβ and the β substituent can be obtained in good yield with excellent enantioselectivity. Mechanistic studies indicate that a nucleophilic addition of the alkyl radical to CuII-coordinated alkene is the enantio-determining step.
Collapse
Affiliation(s)
- Zibo Bai
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Heng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hanrui Yu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
63
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Giri R. Ni-Catalyzed Regioselective 1,2-Dialkylation of Alkenes Enabled by the Formation of Two C(sp 3)-C(sp 3) Bonds. J Am Chem Soc 2020; 142:20930-20936. [PMID: 33271014 PMCID: PMC7953840 DOI: 10.1021/jacs.0c09778] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We disclose a Ni-catalyzed vicinal difunctionalization of alkenes with benzyl halides and alkylzinc reagents, which produces products with two new alkyl-alkyl bonds. This alkene dialkylation is effective in combining secondary benzyl halides and secondary alkylzinc reagents with internal alkenes, which furnishes products with three contiguous all-carbon secondary stereocenters. The products can be readily elaborated to access complex tetralene, benzosuberene, and bicyclodecene cores. The reaction also features as the most efficient alkene difunctionalization process to date with catalyst loadings down to 500 ppm and the catalytic turnover number (TON) and turnover frequency (TOF) registering up to 2 × 103 and 165 h-1 at rt, respectively.
Collapse
Affiliation(s)
- Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Laura M Wickham
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
64
|
Yang T, Jiang Y, Luo Y, Lim JJH, Lan Y, Koh MJ. Chemoselective Union of Olefins, Organohalides, and Redox-Active Esters Enables Regioselective Alkene Dialkylation. J Am Chem Soc 2020; 142:21410-21419. [DOI: 10.1021/jacs.0c09922] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Yang
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Yi Jiang
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Yixin Luo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Joel Jun Han Lim
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Singapore 117549, Republic of Singapore
| |
Collapse
|
65
|
Apolinar O, Tran VT, Kim N, Schmidt MA, Derosa J, Engle KM. Sulfonamide Directivity Enables Ni-Catalyzed 1,2-Diarylation of Diverse Alkenyl Amines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03857] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Omar Apolinar
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Van T. Tran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nana Kim
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael A. Schmidt
- Chemical Process Development, Bristol Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Joseph Derosa
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M. Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
66
|
Alkyl halides as both hydride and alkyl sources in catalytic regioselective reductive olefin hydroalkylation. Nat Commun 2020; 11:5857. [PMID: 33203895 PMCID: PMC7673021 DOI: 10.1038/s41467-020-19717-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Among the plethora of catalytic methods developed for hydrocarbofunctionalization of olefins to date, reactions that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond to afford branched products are scarce. Here, we show that a Ni-based catalyst in conjunction with a stoichiometric reducing agent promote Markovnikov-selective hydroalkylation of unactivated alkenes tethered to a recyclable 8-aminoquinaldine directing auxiliary. These mild reductive processes employ readily available primary and secondary haloalkanes as both the hydride and alkyl donor. Reactions of alkenyl amides with ≥ five-carbon chain length regioselectively afforded β-alkylated products through remote hydroalkylation, underscoring the fidelity of the catalytic process and the directing group’s capability in stabilizing five-membered nickelacycle intermediates. The operationally simple protocol exhibits exceptional functional group tolerance and is amenable to the synthesis of bioactive molecules as well as regioconvergent transformations. Methods that regioselectively install a functionalized alkyl unit at the 2-position of a terminal unactivated C=C bond are scarce. Here, the authors report a Markovnikov-selective hydroalkylation of unactivated amide-tethered alkenes catalyzed by nickel in conjunction with a stoichiometric reductant.
Collapse
|
67
|
Lu MZ, Luo H, Hu Z, Shao C, Kan Y, Loh TP. Directed Palladium(II)-Catalyzed Intermolecular Anti-Markovnikov Hydroarylation of Unactivated Alkenes with (Hetero)arylsilanes. Org Lett 2020; 22:9022-9028. [PMID: 33151076 DOI: 10.1021/acs.orglett.0c03416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe herein a regioselective palladium(II)-catalyzed intermolecular hydroarylation of unactivated aliphatic alkenes with electronically and sterically diverse (hetero)arylsilanes under redox-neutral conditions. A removable bidentate 8-aminoquinoline auxiliary was readily employed to dictate the regioselectivity, prevent β-hydride elimination, and facilitate protodepalladation. This silicon-based protocol features a broad substrate scope with excellent functional group compatibility and enables an expeditious route to a variety of γ-aryl butyric acid derivatives in good yields with exclusive anti-Markovnikov selectivity.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Zhengsong Hu
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Changdong Shao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Yuhe Kan
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Teck-Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
68
|
Wang L, Wang C. Nickel-Catalyzed Three-Component Reductive Alkylacylation of Electron-Deficient Activated Alkenes. Org Lett 2020; 22:8829-8835. [DOI: 10.1021/acs.orglett.0c03210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lin Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
69
|
Qi X, Wang J, Dong Z, Dong G, Liu P. Compatibility Score for Rational Electrophile Selection in Pd/NBE Cooperative Catalysis. Chem 2020; 6:2810-2825. [PMID: 34046530 DOI: 10.1016/j.chempr.2020.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mechanistically guided approach is developed to predict electrophile compatibility in the palladium/norbornene (Pd/NBE) cooperative catalysis for the ipso/ortho difunctionalization of aryl halides. A key challenge in these reactions is to identify orthogonal electrophile and aryl hali de starting materials that react selectively with different transition metal complexes in separate oxidative addition events in the catalytic cycle. We performed detailed experimental and computational mechanistic studies to identify the catalytically active Pd(II) intermediate and the substrate-dependent mechanisms in reactions with various types of carbon and nitrogen electrophiles. We introduced the concept of electrophile compatibility score (ECS) to rationally select electrophiles based on the orthogonal reactivity of electrophile and aryl halide towards the Pd(0) and Pd(II) complexes. This approach was applied to predict electrophile compatibility in the Pd/NBE cooperative catalysis with a variety of electrophilic coupling partners used in alkylation, arylation, amination, and acylation reactions.
Collapse
Affiliation(s)
- Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhe Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Lead Contact
| |
Collapse
|
70
|
Dhungana RK, Sapkota RR, Niroula D, Giri R. Walking metals: catalytic difunctionalization of alkenes at nonclassical sites. Chem Sci 2020; 11:9757-9774. [PMID: 34094239 PMCID: PMC8162390 DOI: 10.1039/d0sc03634j] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/06/2020] [Indexed: 12/25/2022] Open
Abstract
Migration of metals along a carbon chain is triggered by two of the most common organometallic elementary steps - β-hydride (β-H) elimination and alkene hydrometallation. This process heralds a new future for creating bonds at carbon sites that fall outside the tenets of the conventional wisdom for reactivity and bond formation, and provides an opportunity to leverage β-H elimination to advance the very reaction of alkene difunctionalization it is intrinsically predestined to disrupt. Almost four decades since its genesis, the early adventure for alkene difunctionalization by metal migration was sporadic, and its later development went on a hiatus primarily due to original impetus on arresting β-H elimination for vicinal alkene difunctionalization. With the recent surge on alkene difunctionalization, efforts have been gradually shifting to harnessing the process of β-H elimination to difunctionalize alkenes at sites other than the classical vicinal carbons, termed henceforth nonclassical reaction sites for pedagogical simplicity. In this review article, we extricate and examine the origin and the development of such reactions over the years. This review covers a wide range of reactions for the difunctionalization of alkenes at geminal (1,1), allylic (1,3) and remote (1,n) carbon sites with a variety of coupling partners. These reactions have enabled engineering of complex molecular frameworks with the generation of new carbon-carbon (C-C)/C-C, C-C/C-heteroatom (halogens, O, N, B) and C-B/C-B bonds. The development of these unique transformations is also presented with mechanistic hypotheses and experimental evidences put forward by researchers. Judged by the number of reports emerging recently, it is now strikingly evident that the field of alkene difunctionalization by metal migration has begun to gain momentum, which holds a great future prospect to develop into a synthetic method of enormous potential.
Collapse
Affiliation(s)
- Roshan K Dhungana
- Department of Chemistry, The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Rishi R Sapkota
- Department of Chemistry, The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry, The Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University University Park Pennsylvania 16802 USA
| |
Collapse
|
71
|
Abstract
1,2-Dicarbofunctionalization of alkenes has emerged as an efficient synthetic strategy for preparing substituted molecules by coupling readily available alkenes with electrophiles and/or nucleophiles. Nickel complexes serve as effective catalysts owing to their tendency to undergo facile oxidative addition and slow β-hydride elimination, and their capability to access both two-electron and radical pathways. Two-component alkene functionalization reactions have achieved high chemo-, regio-, and stereoselectivities by tethering one of the coupling partners to the alkene substrate. Three-component reactions, however, often incorporate directing groups to control the selectivity. Only a few examples of directing-group-free difunctionalizations of unactivated alkenes have been reported. Therefore, great opportunities exist for the development of three-component difunctionalization reactions with broad substrate scopes and tunable chemo-, regio-, and stereoselectivities.
Collapse
Affiliation(s)
- Xiaoxu Qi
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tianning Diao
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
72
|
Affiliation(s)
- Yun‐Cheng Luo
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
73
|
Liu L, Lee W, Youshaw CR, Yuan M, Geherty MB, Zavalij PY, Gutierrez O. Fe-catalyzed three-component dicarbofunctionalization of unactivated alkenes with alkyl halides and Grignard reagents. Chem Sci 2020; 11:8301-8305. [PMID: 34094183 PMCID: PMC8163237 DOI: 10.1039/d0sc02127j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
A highly chemoselective iron-catalyzed three-component dicarbofunctionalization of unactivated olefins with alkyl halides (iodides and bromides) and sp2-hybridized Grignard reagents is reported. The reaction operates under fast turnover frequency and tolerates a diverse range of sp2-hybridized nucleophiles (electron-rich and electron-deficient (hetero)aryl and alkenyl Grignard reagents), alkyl halides (tertiary alkyl iodides/bromides and perfluorinated bromides), and unactivated olefins bearing diverse functional groups including tethered alkenes, ethers, protected alcohols, aldehydes, and amines to yield the desired 1,2-alkylarylated products with high regiocontrol. Further, we demonstrate that this protocol is amenable for the synthesis of new (hetero)carbocycles including tetrahydrofurans and pyrrolidines via a three-component radical cascade cyclization/arylation that forges three new C-C bonds.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Cassandra R Youshaw
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Michael B Geherty
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Peter Y Zavalij
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| |
Collapse
|
74
|
Jin Y, Yang H, Wang C. Nickel-Catalyzed Asymmetric Reductive Arylbenzylation of Unactivated Alkenes. Org Lett 2020; 22:2724-2729. [DOI: 10.1021/acs.orglett.0c00688] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Haobo Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| |
Collapse
|