51
|
Lacey CA, Miao EA. Programmed Cell Death in the Evolutionary Race against Bacterial Virulence Factors. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036459. [PMID: 31501197 DOI: 10.1101/cshperspect.a036459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Innate immune sensors can recognize when host cells are irrevocably compromised by pathogens, and in response can trigger programmed cell death (pyroptosis, apoptosis, and necroptosis). Innate sensors can directly bind microbial ligands; for example, NAIP/NLRC4 detects flagellin/rod/needle, whereas caspase-11 detects lipopolysaccharide. Other sensors are guards that monitor normal function of cellular proteins; for instance, pyrin monitors Rho GTPases, whereas caspase-8 and receptor-interacting protein kinase (RIPK)3 guards RIPK1 transcriptional signaling. Some proteins that need to be guarded can be duplicated as decoy domains, as seen in the integrated decoy domains within NLRP1 that watch for microbial attack. Here, we discuss the evolutionary battle between pathogens and host innate immune sensors/guards, illustrated by the Red Queen hypothesis. We discuss in depth four pathogens, and how they either fail in this evolutionary race (Chromobacterium violaceum, Burkholderia thailandensis), or how the evolutionary race generates increasingly complex virulence factors and host innate immune signaling pathways (Yersinia species, and enteropathogenic Escherichia coli [EPEC]).
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Edward A Miao
- Department of Microbiology and Immunology, Center for Gastrointestinal Biology and Disease, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
52
|
Lucke M, Correa MG, Levy A. The Role of Secretion Systems, Effectors, and Secondary Metabolites of Beneficial Rhizobacteria in Interactions With Plants and Microbes. FRONTIERS IN PLANT SCIENCE 2020; 11:589416. [PMID: 33240304 PMCID: PMC7680756 DOI: 10.3389/fpls.2020.589416] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 05/05/2023]
Abstract
Beneficial rhizobacteria dwell in plant roots and promote plant growth, development, and resistance to various stress types. In recent years there have been large-scale efforts to culture root-associated bacteria and sequence their genomes to uncover novel beneficial microbes. However, only a few strains of rhizobacteria from the large pool of soil microbes have been studied at the molecular level. This review focuses on the molecular basis underlying the phenotypes of three beneficial microbe groups; (1) plant-growth promoting rhizobacteria (PGPR), (2) root nodulating bacteria (RNB), and (3) biocontrol agents (BCAs). We focus on bacterial proteins and secondary metabolites that mediate known phenotypes within and around plants, and the mechanisms used to secrete these. We highlight the necessity for a better understanding of bacterial genes responsible for beneficial plant traits, which can be used for targeted gene-centered and molecule-centered discovery and deployment of novel beneficial rhizobacteria.
Collapse
|
53
|
Mukhopadhyay S, Ganguli S, Chakrabarti S. <em>Shigella</em> pathogenesis: molecular and computational insights. AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
54
|
Lopez‐Barbosa N, Ludwicki MB, DeLisa MP. Proteome editing using engineered proteins that hijack cellular quality control machinery. AIChE J 2019. [DOI: 10.1002/aic.16854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Natalia Lopez‐Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
| | - Morgan B. Ludwicki
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York
- Nancy E. and Peter C. Meinig School of Biomedical Engineering Cornell University Ithaca New York
- Biochemistry, Molecular and Cell Biology Cornell University Ithaca New York
| |
Collapse
|
55
|
Liu S, Feng J, Pu J, Xu X, Lu S, Yang J, Wang Y, Jin D, Du X, Meng X, Luo X, Sun H, Xiong Y, Ye C, Lan R, Xu J. Genomic and molecular characterisation of Escherichia marmotae from wild rodents in Qinghai-Tibet plateau as a potential pathogen. Sci Rep 2019; 9:10619. [PMID: 31337784 PMCID: PMC6650469 DOI: 10.1038/s41598-019-46831-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022] Open
Abstract
Wildlife is a reservoir of emerging infectious diseases of humans and domestic animals. Marmota himalayana mainly resides 2800-4000 m above sea level in the Qinghai-Tibetan Plateau, and is the primary animal reservoir of plague pathogen Yersinia pestis. Recently we isolated a new species, Escherichia marmotae from the faeces of M. himalayana. In this study we characterised E. marmotae by genomic analysis and in vitro virulence testing to determine its potential as a human pathogen. We sequenced the genomes of the seven E. marmotae strains and found that they contained a plasmid that carried a Shigella-like type III secretion system (T3SS) and their effectors, and shared the same O antigen gene cluster as Shigella dysenterae 8 and E. coli O38. We also showed that E. marmotae was invasive to HEp-2 cells although it was much less invasive than Shigella. Thus E. marmotae is likely to be an invasive pathogen. However, E. marmotae has a truncated IpaA invasin, and lacks the environmental response regulator VirF and the IcsA-actin based intracellular motility, rendering it far less invasive in comparison to Shigella. E. marmotae also carried a diverse set of virulence factors in addition to the T3SS, including an IS1414 encoded enterotoxin gene astA with 37 copies, E. coli virulence genes lifA/efa, cif, and epeA, and the sfp gene cluster, Yersinia T3SS effector yopJ, one Type II secretion system and two Type VI secretion systems. Therefore, E. marmotae is a potential invasive pathogen.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China.,Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jie Feng
- Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing, 100101, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Xuefang Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Yiting Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Xiaochen Du
- Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing, 100101, China
| | - Xiangli Meng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Xia Luo
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Changyun Ye
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center of Diagnosis and Treatment of Infectious Diseases, National Institute of Communicable Disease Control and Prevention, Chinese Center of Disease Control and Prevention, Beijing, 102206, China. .,Shanghai Institute of Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, Shanghai, 201508, China.
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Diarrhoea is a major global health problem, and recent studies have confirmed Shigella as a major contributor to this burden. Here, we review recent advances in Shigella research; focusing on their epidemiology, pathogenesis, antimicrobial resistance, and the role of the gut microbiome during infection. RECENT FINDINGS Enhanced epidemiological data, combined with new generation diagnostics, has highlighted a greater burden of Shigella disease than was previously estimated, which is not restricted to vulnerable populations in low-middle income countries. As we gain an ever more detailed insight into the orchestrated mechanisms that Shigella exploit to trigger infection, we can also begin to appreciate the complex role of the gut microbiome in preventing and inducing such infections. The use of genomics, in combination with epidemiological data and laboratory investigations, has unravelled the evolution and spread of various species. Such measures have identified resistance to antimicrobials as a key contributor to the success of specific clones. SUMMARY We need to apply novel findings towards sustainable approaches for treating and preventing Shigella infections. Vaccines and alternative treatments are under development and may offer an opportunity to reduce the burden of Shigella disease and restrict the mobility of antimicrobial resistant clones.
Collapse
|
57
|
McDermott JE, Cort JR, Nakayasu ES, Pruneda JN, Overall C, Adkins JN. Prediction of bacterial E3 ubiquitin ligase effectors using reduced amino acid peptide fingerprinting. PeerJ 2019; 7:e7055. [PMID: 31211016 PMCID: PMC6557245 DOI: 10.7717/peerj.7055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Background Although pathogenic Gram-negative bacteria lack their own ubiquitination machinery, they have evolved or acquired virulence effectors that can manipulate the host ubiquitination process through structural and/or functional mimicry of host machinery. Many such effectors have been identified in a wide variety of bacterial pathogens that share little sequence similarity amongst themselves or with eukaryotic ubiquitin E3 ligases. Methods To allow identification of novel bacterial E3 ubiquitin ligase effectors from protein sequences we have developed a machine learning approach, the SVM-based Identification and Evaluation of Virulence Effector Ubiquitin ligases (SIEVE-Ub). We extend the string kernel approach used previously to sequence classification by introducing reduced amino acid (RED) alphabet encoding for protein sequences. Results We found that 14mer peptides with amino acids represented as simply either hydrophobic or hydrophilic provided the best models for discrimination of E3 ligases from other effector proteins with a receiver-operator characteristic area under the curve (AUC) of 0.90. When considering a subset of E3 ubiquitin ligase effectors that do not fall into known sequence based families we found that the AUC was 0.82, demonstrating the effectiveness of our method at identifying novel functional family members. Feature selection was used to identify a parsimonious set of 10 RED peptides that provided good discrimination, and these peptides were found to be located in functionally important regions of the proteins involved in E2 and host target protein binding. Our general approach enables construction of models based on other effector functions. We used SIEVE-Ub to predict nine potential novel E3 ligases from a large set of bacterial genomes. SIEVE-Ub is available for download at https://doi.org/10.6084/m9.figshare.7766984.v1 or https://github.com/biodataganache/SIEVE-Ub for the most current version.
Collapse
Affiliation(s)
- Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America.,Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - John R Cort
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States of America
| | - Christopher Overall
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, United States of America
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States of America
| |
Collapse
|
58
|
Ji C, Du S, Li P, Zhu Q, Yang X, Long C, Yu J, Shao F, Xiao J. Structural mechanism for guanylate-binding proteins (GBPs) targeting by the Shigella E3 ligase IpaH9.8. PLoS Pathog 2019; 15:e1007876. [PMID: 31216343 PMCID: PMC6602295 DOI: 10.1371/journal.ppat.1007876] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/01/2019] [Accepted: 05/27/2019] [Indexed: 01/08/2023] Open
Abstract
The guanylate-binding proteins (GBPs) belong to the dynamin superfamily of GTPases and function in cell-autonomous defense against intracellular pathogens. IpaH9.8, an E3 ligase from the pathogenic bacterium Shigella flexneri, ubiquitinates a subset of GBPs and leads to their proteasomal degradation. Here we report the structure of a C-terminally truncated GBP1 in complex with the IpaH9.8 Leucine-rich repeat (LRR) domain. IpaH9.8LRR engages the GTPase domain of GBP1, and differences in the Switch II and α3 helix regions render some GBPs such as GBP3 and GBP7 resistant to IpaH9.8. Comparisons with other IpaH structures uncover interaction hot spots in their LRR domains. The C-terminal region of GBP1 undergoes a large rotation compared to previously determined structures. We further show that the C-terminal farnesylation modification also plays a role in regulating GBP1 conformation. Our results suggest a general mechanism by which the IpaH proteins target their cellular substrates and shed light on the structural dynamics of the GBPs. Shigella flexneri is a Gram-negative bacteria that causes diarrhea in humans and leads to a million deaths every year. Once inside the cell, S. flexneri injects the host cell cytoplasm with effector proteins to suppress host defense. The guanylate-binding proteins (GBPs) have potent antimicrobial functions against a number of pathogens including S. flexneri. For successful infection, S. flexneri relies on an effector protein known as IpaH9.8, a unique ubiquitin E3 ligase to target a subset of GBPs for proteasomal degradation. How these GBPs are specifically recognized by IpaH9.8 was unclear. Here, using a combination of structural and biochemical approaches, we reveal the molecular basis of GBP-IpaH9.8 interaction, and show that subtle differences in the seven human GBPs can significantly impact the targeting specificity of IpaH9.8. We also show that the GBPs have considerable structural flexibility, which is likely important for their function. Our results provide further insights into S. flexneri pathogenesis, and laid the groundwork for future biophysical and biochemical studies to investigate the functional mechanism of GBPs.
Collapse
Affiliation(s)
- Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peng Li
- National Institute of Biological Science (NIBS), Beijing, China
| | - Qinyu Zhu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoke Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chunhong Long
- Beijing Computational Science Research Center, Beijing, China
| | - Jin Yu
- Beijing Computational Science Research Center, Beijing, China
| | - Feng Shao
- National Institute of Biological Science (NIBS), Beijing, China
- * E-mail: (FS); (JX)
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail: (FS); (JX)
| |
Collapse
|
59
|
Ludwicki MB, Li J, Stephens EA, Roberts RW, Koide S, Hammond PT, DeLisa MP. Broad-Spectrum Proteome Editing with an Engineered Bacterial Ubiquitin Ligase Mimic. ACS CENTRAL SCIENCE 2019; 5:852-866. [PMID: 31139721 PMCID: PMC6535771 DOI: 10.1021/acscentsci.9b00127] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 05/03/2023]
Abstract
Manipulation of the ubiquitin-proteasome pathway to achieve targeted silencing of cellular proteins has emerged as a reliable and customizable strategy for remodeling the mammalian proteome. One such approach involves engineering bifunctional proteins called ubiquibodies that are comprised of a synthetic binding protein fused to an E3 ubiquitin ligase, thus enabling post-translational ubiquitination and degradation of a target protein independent of its function. Here, we have designed a panel of new ubiquibodies based on E3 ubiquitin ligase mimics from bacterial pathogens that are capable of effectively interfacing with the mammalian proteasomal degradation machinery for selective removal of proteins of interest. One of these, the Shigella flexneri effector protein IpaH9.8 fused to a fibronectin type III (FN3) monobody that specifically recognizes green fluorescent protein (GFP), was observed to potently eliminate GFP and its spectral derivatives as well as 15 different FP-tagged mammalian proteins that varied in size (27-179 kDa) and subcellular localization (cytoplasm, nucleus, membrane-associated, and transmembrane). To demonstrate therapeutically relevant delivery of ubiquibodies, we leveraged a bioinspired molecular assembly method whereby synthetic mRNA encoding the GFP-specific ubiquibody was coassembled with poly A binding proteins and packaged into nanosized complexes using biocompatible, structurally defined polypolypeptides bearing cationic amine side groups. The resulting nanoplexes delivered ubiquibody mRNA in a manner that caused efficient target depletion in cultured mammalian cells stably expressing GFP as well as in transgenic mice expressing GFP ubiquitously. Overall, our results suggest that IpaH9.8-based ubiquibodies are a highly modular proteome editing technology with the potential for pharmacologically modulating disease-causing proteins.
Collapse
Affiliation(s)
- Morgan B. Ludwicki
- Robert F. Smith
School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New
York 14853, United
States
| | - Jiahe Li
- Department of Chemical Engineering and Koch Institute for
Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erin A. Stephens
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| | - Richard W. Roberts
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Shohei Koide
- Perlmutter Cancer Center, New York University
Langone Medical Center, New York, New York 10016, United States
- Department of Biochemistry and Molecular
Pharmacology, New York University School
of Medicine, New York, New York 10016, United States
| | - Paula T. Hammond
- Department of Chemical Engineering and Koch Institute for
Integrative Cancer Research, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Matthew P. DeLisa
- Robert F. Smith
School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New
York 14853, United
States
- Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
60
|
Mitchell PS, Sandstrom A, Vance RE. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr Opin Immunol 2019; 60:37-45. [PMID: 31121538 DOI: 10.1016/j.coi.2019.04.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/25/2022]
Abstract
Nucleotide-binding domain, leucine-rich repeat (NLR) proteins constitute a diverse class of innate immune sensors that detect pathogens or stress-associated stimuli in plants and animals. Some NLRs are activated upon direct binding to pathogen-derived ligands. In contrast, we focus here on a vertebrate NLR called NLRP1 that responds to the enzymatic activities of pathogen effectors. We discuss a newly proposed 'functional degradation' mechanism that explains activation and assembly of NLRP1 into an oligomeric complex called an inflammasome. We also discuss how NLRP1 is activated by non-pathogen-associated triggers such as the anti-cancer drug Val-boroPro, or by human disease-associated mutations. Finally, we discuss how research on NLRP1 has led to additional biological insights, including the unexpected discovery of a new CARD8 inflammasome.
Collapse
Affiliation(s)
- Patrick S Mitchell
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Andrew Sandstrom
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Russell E Vance
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
61
|
Parajuli P, Rajput MI, Verma NK. Plasmids of Shigella flexneri serotype 1c strain Y394 provide advantages to bacteria in the host. BMC Microbiol 2019; 19:86. [PMID: 31035948 PMCID: PMC6489325 DOI: 10.1186/s12866-019-1455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
Abstract
Background Shigella flexneri has an extremely complex genome with a significant number of virulence traits acquired by mobile genetic elements including bacteriophages and plasmids. S. flexneri serotype 1c is an emerging etiological agent of bacillary dysentery in developing countries. In this study, the complete nucleotide sequence of two plasmids of S. flexneri serotype 1c strain Y394 was determined and analysed. Results The plasmid pINV-Y394 is an invasive or virulence plasmid of size 221,293 bp composed of a large number of insertion sequences (IS), virulence genes, regulatory and maintenance genes. Three hundred and twenty-eight open reading frames (ORFs) were identified in pINV-Y394, of which about a half (159 ORFs) were identified as IS elements. Ninety-seven ORFs were related to characterized genes (majority of which are associated with virulence and their regulons), and 72 ORFs were uncharacterized or hypothetical genes. The second plasmid pNV-Y394 is of size 10,866 bp and encodes genes conferring resistance against multiple antibiotics of clinical importance. The multidrug resistance gene cassette consists of tetracycline resistance gene tetA, streptomycin resistance gene strA-strB and sulfonamide-resistant dihydropteroate synthase gene sul2. Conclusions These two plasmids together play a key role in the fitness of Y394 in the host environment. The findings from this study indicate that the pathogenic S. flexneri is a highly niche adaptive pathogen which is able to co-evolve with its host and respond to the selection pressure in its environment. Electronic supplementary material The online version of this article (10.1186/s12866-019-1455-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pawan Parajuli
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Munazza I Rajput
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Naresh K Verma
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
62
|
Ubiquitination-Mediated Inflammasome Activation during Bacterial Infection. Int J Mol Sci 2019; 20:ijms20092110. [PMID: 31035661 PMCID: PMC6539186 DOI: 10.3390/ijms20092110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammasome activation is essential for host immune responses during pathogenic infection and sterile signals insult, whereas excessive activation is injurious. Thus, inflammasome activation is tightly regulated at multiple layers. Ubiquitination is an important post-translational modification for orchestrating inflammatory immune responses during pathogenic infection, and a major target hijacked by pathogenic bacteria for promoting their survival and proliferation. This review summarizes recent insights into distinct mechanisms of the inflammasome activation and ubiquitination process triggered by bacterial infection. We discuss the complex regulatory of inflammasome activation mediated by ubiquitination machinery during bacterial infection, and provide therapeutic approaches for specifically targeting aberrant inflammasome activation.
Collapse
|
63
|
Abstract
ABSTRACT
Shigella
is a genus of Gram-negative enteropathogens that have long been, and continue to be, an important public health concern worldwide. Over the past several decades,
Shigella
spp. have also served as model pathogens in the study of bacterial pathogenesis, and
Shigella flexneri
has become one of the best-studied pathogens on a molecular, cellular, and tissue level. In the arms race between
Shigella
and the host immune system,
Shigella
has developed highly sophisticated mechanisms to subvert host cell processes in order to promote infection, escape immune detection, and prevent bacterial clearance. Here, we give an overview of
Shigella
pathogenesis while highlighting innovative techniques and methods whose application has significantly advanced our understanding of
Shigella
pathogenesis in recent years.
Collapse
|
64
|
Man Z, Chen T, Zhu Z, Zhang H, Ao L, Xi L, Zhou J, Tang Z. High expression of TRIM36 is associated with radiosensitivity in gastric cancer. Oncol Lett 2019; 17:4401-4408. [PMID: 30944633 PMCID: PMC6444413 DOI: 10.3892/ol.2019.10122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Radiotherapy is one of the main adjuvant treatments for gastric cancer (GC) that can effectively reduce local recurrence and improve survival rates. However, radiotherapy may result in cytotoxicity and not benefit all patients. This highlights the requirement for identifying potential radiosensitivity genes in GC. The current study investigated the association between tripartite motif containing 36 (TRIM36) status and the prognosis of patients with GC receiving radiotherapy. A total of 371 patients with GC were selected from The Cancer Genome Atlas and randomly divided into test and the validation groups. The results revealed that TRIM36 expression was not associated with the overall survival (OS) rate. Patients who received radiotherapy with high TRIM36 expression had an improved OS rate compared with patients who did not receive radiotherapy in the test group, as demonstrated by univariate analysis [hazard ratio (HR), 0.062; 95% confidence interval (CI), 0.008–0.462; P=0.007] and multivariate analysis (HR, 0.095; 95% CI, 0.012–0.748; P=0.025). In the validation group, patients with high TRIM36 expression had decreased mortality risk when they received radiotherapy compared with patients who did not receive radiotherapy, as determined by univariate analysis (HR, 0.190; 95% CI, 0.067–0.540; P=0.002) and multivariate analysis (HR, 0.075; 95% CI, 0.020–0.276; P<0.001). However, for patients with low expression, no significant difference was identified in the overall survival rates between the radiotherapy and non-radiotherapy groups. Chi-squared analysis revealed that the expression status of TRIM36 was an independent factor and was not associated with clinicopathological factors. The results indicated that patients with high TRIM36 expression receiving radiotherapy exhibited an improved OS rate. TRIM36 may therefore be an important factor affecting the clinical prognosis of patients with GC receiving radiotherapy and may be considered as a potential radiosensitivity gene signature.
Collapse
Affiliation(s)
- Zhongsong Man
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tao Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhongwei Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haitao Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Ao
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liting Xi
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
65
|
Sandstrom A, Mitchell PS, Goers L, Mu EW, Lesser CF, Vance RE. Functional degradation: A mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes. Science 2019; 364:science.aau1330. [PMID: 30872533 PMCID: PMC6532986 DOI: 10.1126/science.aau1330] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/05/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are multiprotein platforms that initiate innate immunity by recruitment and activation of caspase-1. The NLRP1B inflammasome is activated upon direct cleavage by the anthrax lethal toxin protease. However, the mechanism by which cleavage results in NLRP1B activation is unknown. In this study, we find that cleavage results in proteasome-mediated degradation of the amino-terminal domains of NLRP1B, liberating a carboxyl-terminal fragment that is a potent caspase-1 activator. Proteasome-mediated degradation of NLRP1B is both necessary and sufficient for NLRP1B activation. Consistent with our functional degradation model, we identify IpaH7.8, a Shigella flexneri ubiquitin ligase secreted effector, as an enzyme that induces NLRP1B degradation and activation. Our results provide a unified mechanism for NLRP1B activation by diverse pathogen-encoded enzymatic activities.
Collapse
Affiliation(s)
- Andrew Sandstrom
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Patrick S Mitchell
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Lisa Goers
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Edward W Mu
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Russell E Vance
- Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology, and Cancer Research Laboratory, University of California, Berkeley, CA, USA. .,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
66
|
Schesser Bartra S, Lorica C, Qian L, Gong X, Bahnan W, Barreras H, Hernandez R, Li Z, Plano GV, Schesser K. Chromosomally-Encoded Yersinia pestis Type III Secretion Effector Proteins Promote Infection in Cells and in Mice. Front Cell Infect Microbiol 2019; 9:23. [PMID: 30854334 PMCID: PMC6396649 DOI: 10.3389/fcimb.2019.00023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/22/2019] [Indexed: 11/17/2022] Open
Abstract
Yersinia pestis, the causative agent of plague, possesses a number of virulence mechanisms that allows it to survive and proliferate during its interaction with the host. To discover additional infection-specific Y. pestis factors, a transposon site hybridization (TraSH)-based genome-wide screen was employed to identify genomic regions required for its survival during cellular infection. In addition to several well-characterized infection-specific genes, this screen identified three chromosomal genes (y3397, y3399, and y3400), located in an apparent operon, that promoted successful infection. Each of these genes is predicted to encode a leucine-rich repeat family protein with or without an associated ubiquitin E3 ligase domain. These genes were designated Yersinia leucine-rich repeat gene A (ylrA), B (ylrB), and C (ylrC). Engineered strains with deletions of y3397 (ylrC), y3399 (ylrB), or y3400 (ylrA), exhibited infection defects both in cultured cells and in the mouse. C-terminal FLAG-tagged YlrA, YlrB, and YlrC were secreted by Y. pestis in the absence but not the presence of extracellular calcium and deletions of the DNA sequences encoding the predicted N-terminal type III secretion signals of YlrA, YlrB, and YlrC prevented their secretion, indicating that these proteins are substrates of the type III secretion system (T3SS). Further strengthening the connection with the T3SS, YlrB was readily translocated into HeLa cells and expression of the YlrA and YlrC proteins in yeast inhibited yeast growth, indicating that these proteins may function as anti-host T3S effector proteins.
Collapse
Affiliation(s)
- Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Cherish Lorica
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Lianfen Qian
- Department of Mathematics, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Xin Gong
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Wael Bahnan
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Henry Barreras
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhongwei Li
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Kurt Schesser
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
67
|
Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS. Diversity and Evolution of Type III Secreted Effectors: A Case Study of Three Families. Curr Top Microbiol Immunol 2019; 427:201-230. [DOI: 10.1007/82_2019_165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
68
|
Otsubo R, Mimuro H, Ashida H, Hamazaki J, Murata S, Sasakawa C. Shigella effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cell Microbiol 2018; 21:e12974. [PMID: 30414351 DOI: 10.1111/cmi.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Subversion of antigen-specific immune responses by intracellular pathogens is pivotal for successful colonisation. Bacterial pathogens, including Shigella, deliver effectors into host cells via the type III secretion system (T3SS) in order to manipulate host innate and adaptive immune responses, thereby promoting infection. However, the strategy for subverting antigen-specific immunity is not well understood. Here, we show that Shigella flexneri invasion plasmid antigen H (IpaH) 4.5, a member of the E3 ubiquitin ligase effector family, targets the proteasome regulatory particle non-ATPase 13 (RPN13) and induces its degradation via the ubiquitin-proteasome system (UPS). IpaH4.5-mediated RPN13 degradation causes dysfunction of the 19S regulatory particle (RP) in the 26S proteasome, inhibiting guidance of ubiquitinated proteins to the proteolytically active 20S core particle (CP) of 26S proteasome and thereby suppressing proteasome-catalysed peptide splicing. This, in turn, reduces antigen cross-presentation to CD8+ T cells via major histocompatibility complex (MHC) class I in vitro. In RPN13 knockout mouse embryonic fibroblasts (MEFs), loss of RPN13 suppressed CD8+ T cell priming during Shigella infection. Our results uncover the unique tactics employed by Shigella to dampen the antigen-specific cytotoxic T lymphocyte (CTL) response.
Collapse
Affiliation(s)
- Ryota Otsubo
- Department of infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Hitomi Mimuro
- Department of infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan.,Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Bacterial pathogenesis, Infection and Host Response, Graduate of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Sasakawa
- Research Department, Nippon Institute for Biological Science, Tokyo, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
69
|
Cook M, Delbecq SP, Schweppe TP, Guttman M, Klevit RE, Brzovic PS. The ubiquitin ligase SspH1 from Salmonella uses a modular and dynamic E3 domain to catalyze substrate ubiquitylation. J Biol Chem 2018; 294:783-793. [PMID: 30459234 DOI: 10.1074/jbc.ra118.004247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
SspH/IpaH bacterial effector E3 ubiquitin (Ub) ligases, unrelated in sequence or structure to eukaryotic E3s, are utilized by a wide variety of Gram-negative bacteria during pathogenesis. These E3s function in a eukaryotic environment, utilize host cell E2 ubiquitin-conjugating enzymes of the Ube2D family, and target host proteins for ubiquitylation. Despite several crystal structures, details of Ube2D∼Ub binding and the mechanism of ubiquitin transfer are poorly understood. Here, we show that the catalytic E3 ligase domain of SspH1 can be divided into two subdomains: an N-terminal subdomain that harbors the active-site cysteine and a C-terminal subdomain containing the Ube2D∼Ub-binding site. SspH1 mutations designed to restrict subdomain motions show rapid formation of an E3∼Ub intermediate, but impaired Ub transfer to substrate. NMR experiments using paramagnetic spin labels reveal how SspH1 binds Ube2D∼Ub and targets the E2∼Ub active site. Unexpectedly, hydrogen/deuterium exchange MS shows that the E2∼Ub-binding region is dynamic but stabilized in the E3∼Ub intermediate. Our results support a model in which both subunits of an Ube2D∼Ub clamp onto a dynamic region of SspH1, promoting an E3 conformation poised for transthiolation. A conformational change is then required for Ub transfer from E3∼Ub to substrate.
Collapse
Affiliation(s)
- Matt Cook
- From the Departments of Biochemistry and
| | | | | | - Miklos Guttman
- Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| | | | | |
Collapse
|
70
|
Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation. Int J Mol Sci 2018; 19:ijms19113576. [PMID: 30428531 PMCID: PMC6274744 DOI: 10.3390/ijms19113576] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023] Open
Abstract
Protein ubiquitylation plays a central role in eukaryotic cell physiology. It is involved in several regulatory processes, ranging from protein folding or degradation, subcellular localization of proteins, vesicular trafficking and endocytosis to DNA repair, cell cycle, innate immunity, autophagy, and apoptosis. As such, it is reasonable that pathogens have developed a way to exploit such a crucial system to enhance their virulence against the host. Hence, bacteria have evolved a wide range of effectors capable of mimicking the main players of the eukaryotic ubiquitin system, in particular ubiquitin ligases, by interfering with host physiology. Here, we give an overview of this topic and, in particular, we detail and discuss the mechanisms developed by pathogenic bacteria to hijack the host ubiquitination system for their own benefit.
Collapse
|
71
|
Rüter C, Lubos ML, Norkowski S, Schmidt MA. All in—Multiple parallel strategies for intracellular delivery by bacterial pathogens. Int J Med Microbiol 2018; 308:872-881. [DOI: 10.1016/j.ijmm.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/01/2018] [Accepted: 06/16/2018] [Indexed: 02/06/2023] Open
|
72
|
Norkowski S, Schmidt MA, Rüter C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol 2018; 20:e12945. [PMID: 30137651 DOI: 10.1111/cmi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
73
|
Xu CC, Zhang D, Hann DR, Xie ZP, Staehelin C. Biochemical properties and in planta effects of NopM, a rhizobial E3 ubiquitin ligase. J Biol Chem 2018; 293:15304-15315. [PMID: 30120198 DOI: 10.1074/jbc.ra118.004444] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Indexed: 01/18/2023] Open
Abstract
Nodulation outer protein M (NopM) is an IpaH family type three (T3) effector secreted by the nitrogen-fixing nodule bacterium Sinorhizobium sp. strain NGR234. Previous work indicated that NopM is an E3 ubiquitin ligase required for an optimal symbiosis between NGR234 and the host legume Lablab purpureus Here, we continued to analyze the function of NopM. Recombinant NopM was biochemically characterized using an in vitro ubiquitination system with Arabidopsis thaliana proteins. In this assay, NopM forms unanchored polyubiquitin chains and possesses auto-ubiquitination activity. In a NopM variant lacking any lysine residues, auto-ubiquitination was not completely abolished, indicating noncanonical auto-ubiquitination of the protein. In addition, we could show intermolecular ubiquitin transfer from NopM to C338A (enzymatically inactive NopM form) in vitro Bimolecular fluorescence complementation analysis provided clues about NopM-NopM interactions at plasma membranes in planta NopM, but not C338A, expressed in tobacco cells induced cell death, suggesting that E3 ubiquitin ligase activity of NopM induced effector-triggered immunity responses. Likewise, expression of NopM in Lotus japonicus caused reduced nodule formation, whereas expression of C338A showed no obvious effects on symbiosis. Further experiments indicated that serine residue 26 of NopM is phosphorylated in planta and that NopM can be phosphorylated in vitro by salicylic acid-induced protein kinase (NtSIPK), a mitogen-activated protein kinase (MAPK) of tobacco. Hence, NopM is a phosphorylated T3 effector that can interact with itself, with ubiquitin, and with MAPKs.
Collapse
Affiliation(s)
- Chang-Chao Xu
- From the State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Di Zhang
- From the State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China
| | - Dagmar R Hann
- the Institute of Genetics, Ludwig-Maximilians-Universität München, D-82152 Martinsried, Germany, and
| | - Zhi-Ping Xie
- From the State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China, .,the Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen 518057, China
| | - Christian Staehelin
- From the State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, China, .,the Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen 518057, China
| |
Collapse
|
74
|
Wandel MP, Pathe C, Werner EI, Ellison CJ, Boyle KB, von der Malsburg A, Rohde J, Randow F. GBPs Inhibit Motility of Shigella flexneri but Are Targeted for Degradation by the Bacterial Ubiquitin Ligase IpaH9.8. Cell Host Microbe 2018; 22:507-518.e5. [PMID: 29024643 PMCID: PMC5644667 DOI: 10.1016/j.chom.2017.09.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/11/2017] [Accepted: 09/18/2017] [Indexed: 01/04/2023]
Abstract
Interferon exposure boosts cell-autonomous immunity for more efficient pathogen control. But how interferon-enhanced immunity protects the cytosol against bacteria and how professionally cytosol-dwelling bacteria avoid clearance are insufficiently understood. Here we demonstrate that the interferon-induced GTPase family of guanylate-binding proteins (GBPs) coats Shigella flexneri in a hierarchical manner reliant on GBP1. GBPs inhibit actin-dependent motility and cell-to-cell spread of bacteria but are antagonized by IpaH9.8, a bacterial ubiquitin ligase secreted into the host cytosol. IpaH9.8 ubiquitylates GBP1, GBP2, and GBP4 to cause the proteasome-dependent destruction of existing GBP coats. This ubiquitin coating of Shigella favors the pathogen as it liberates bacteria from GBP encapsulation to resume actin-mediated motility and cell-to-cell spread. We conclude that an important function of GBP recruitment to S. flexneri is to prevent the spread of infection to neighboring cells while IpaH9.8 helps bacterial propagation by counteracting GBP-dependent cell-autonomous immunity. Guanylate-binding proteins (GBPs) coat S. flexneri in a GBP1-dependent manner GBP coats antagonize bacterial actin-dependent motility and cell-to-cell spreading IpaH9.8, a bacterial E3 ubiquitin ligase, targets GBPs for degradation IpaH9.8 re-establishes bacterial motility and cell-to-cell spread
Collapse
Affiliation(s)
- Michal P Wandel
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claudio Pathe
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Emma I Werner
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Cara J Ellison
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Keith B Boyle
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Alexander von der Malsburg
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - John Rohde
- Department of Microbiology and Immunology, Dalhousie University Halifax, Halifax, NS B3H 4R2, Canada
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
75
|
Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol 2018; 28:926-940. [PMID: 30107971 DOI: 10.1016/j.tcb.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Manipulation of host protein post-translational modifications (PTMs) is used by various pathogens to interfere with host cell functions. Among these modifications, ubiquitin (UBI) and ubiquitin-like proteins (UBLs) constitute key targets because they are regulators of pathways essential for the host cell. In particular, these PTM modifiers control pathways that have been described as crucial for infection such as pathogen entry, replication, propagation, or detection by the host. Although bacterial pathogens lack eucaryotic-like UBI or UBL systems, many of them produce proteins that specifically interfere with these host PTMs during infection. In this review we discuss the different mechanisms used by bacteria to interfere with host UBI and the two UBLs, SUMO and NEDD8.
Collapse
|
76
|
Effector Gene xopAE of Xanthomonas euvesicatoria 85-10 Is Part of an Operon and Encodes an E3 Ubiquitin Ligase. J Bacteriol 2018; 200:JB.00104-18. [PMID: 29784884 DOI: 10.1128/jb.00104-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/13/2018] [Indexed: 01/08/2023] Open
Abstract
The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles (AEal) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) comprise a single open reading frame (ORF) (xopAE), while in 5 alleles, including AEal 37 of the X. euvesicatoria 85-10 strain, a frameshift splits the locus into two ORFs (hpaF and a truncated xopAE). To test whether the second ORF of AEal 37 (xopAE85-10 ) is translated, we examined expression of yellow fluorescent protein (YFP) fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity to an internal ribosome binding site upstream of a rare ATT start codon in the xopAE85-10 ORF but was severely reduced when these elements were abolished. In agreement with the notion that xopAE85-10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system, and translocation was dependent on its upstream ORF, hpaF Homology modeling predicted that XopAE85-10 contains an E3 ligase XL box domain at the C terminus, and in vitro assays demonstrated that this domain displays monoubiquitination activity. Remarkably, the XL box was essential for XopAE85-10 to inhibit pathogen-associated molecular pattern (PAMP)-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT and encodes a novel XL box E3 ligase.IMPORTANCEXanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into the evolution, translocation, and biochemical function of the XopAE type III secreted effector, contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as a core effector of seven Xanthomonas species and elucidate the evolution of the Xanthomonas euvesicatoriaxopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multidomain gene into two ORFs that conserved the original domain function. Analysis of xopAE85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE85-10 is an XL box E3 ubiquitin ligase and provide insights into the structure and function of this effector family.
Collapse
|
77
|
Grishin AM, Barber KR, Gu RX, Tieleman DP, Shaw GS, Cygler M. Regulation of Shigella Effector Kinase OspG through Modulation of Its Dynamic Properties. J Mol Biol 2018; 430:2096-2112. [DOI: 10.1016/j.jmb.2018.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
|
78
|
Norkowski S, Körner B, Greune L, Stolle AS, Lubos ML, Hardwidge PR, Schmidt MA, Rüter C. Bacterial LPX motif-harboring virulence factors constitute a species-spanning family of cell-penetrating effectors. Cell Mol Life Sci 2018; 75:2273-2289. [PMID: 29285573 PMCID: PMC11105228 DOI: 10.1007/s00018-017-2733-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
Abstract
Effector proteins are key virulence factors of pathogenic bacteria that target and subvert the functions of essential host defense mechanisms. Typically, these proteins are delivered into infected host cells via the type III secretion system (T3SS). Recently, however, several effector proteins have been found to enter host cells in a T3SS-independent manner thereby widening the potential range of these virulence factors. Prototypes of such bacteria-derived cell-penetrating effectors (CPEs) are the Yersinia enterocolitica-derived YopM as well as the Salmonella typhimurium effector SspH1. Here, we investigated specifically the group of bacterial LPX effector proteins comprising the Shigella IpaH proteins, which constitute a subtype of the leucine-rich repeat protein family and share significant homologies in sequence and structure. With particular emphasis on the Shigella-effector IpaH9.8, uptake into eukaryotic cell lines was shown. Recombinant IpaH9.8 (rIpaH9.8) is internalized via endocytic mechanisms and follows the endo-lysosomal pathway before escaping into the cytosol. The N-terminal alpha-helical domain of IpaH9.8 was identified as the protein transduction domain required for its CPE ability as well as for being able to deliver other proteinaceous cargo. rIpaH9.8 is functional as an ubiquitin E3 ligase and targets NEMO for poly-ubiquitination upon cell penetration. Strikingly, we could also detect other recombinant LPX effector proteins from Shigella and Salmonella intracellularly when applied to eukaryotic cells. In this study, we provide further evidence for the general concept of T3SS-independent translocation by identifying novel cell-penetrating features of these LPX effectors revealing an abundant species-spanning family of CPE.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Britta Körner
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Marie-Luise Lubos
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, 1710 Denison Ave, 101 Trotter Hall, Manhattan, KS, 66506-5600, USA
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
| |
Collapse
|
79
|
Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infect Immun 2018; 86:IAI.00560-17. [PMID: 29339461 DOI: 10.1128/iai.00560-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.
Collapse
|
80
|
Wang L, Yan J, Niu H, Huang R, Wu S. Autophagy and Ubiquitination in Salmonella Infection and the Related Inflammatory Responses. Front Cell Infect Microbiol 2018; 8:78. [PMID: 29594070 PMCID: PMC5861197 DOI: 10.3389/fcimb.2018.00078] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
Salmonellae are facultative intracellular pathogens that cause globally distributed diseases with massive morbidity and mortality in humans and animals. In the past decades, numerous studies were focused on host defenses against Salmonella infection. Autophagy has been demonstrated to be an important defense mechanism to clear intracellular pathogenic organisms, as well as a regulator of immune responses. Ubiquitin modification also has multiple effects on the host immune system against bacterial infection. It has been indicated that ubiquitination plays critical roles in recognition and clearance of some invading bacteria by autophagy. Additionally, the ubiquitination of autophagy proteins in autophagy flux and inflammation-related substance determines the outcomes of infection. However, many intracellular pathogens manipulate the ubiquitination system to counteract the host immunity. Salmonellae interfere with host responses via the delivery of ~30 effector proteins into cytosol to promote their survival and proliferation. Among them, some could link the ubiquitin-proteasome system with autophagy during infection and affect the host inflammatory responses. In this review, novel findings on the issue of ubiquitination and autophagy connection as the mechanisms of host defenses against Salmonella infection and the subverted processes are introduced.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Jing Yan
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Hua Niu
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Rui Huang
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| | - Shuyan Wu
- Department of Microbiology, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
81
|
Scott NE, Hartland EL. Post-translational Mechanisms of Host Subversion by Bacterial Effectors. Trends Mol Med 2017; 23:1088-1102. [PMID: 29150361 DOI: 10.1016/j.molmed.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
Bacterial effector proteins are a specialized class of secreted proteins that are translocated directly into the host cytoplasm by bacterial pathogens. Effector proteins have diverse activities and targets, and many mediate post-translational modifications of host proteins. Effector proteins offer potential in novel biotechnological and medical applications as enzymes that may modify human proteins. Here, we discuss the mechanisms used by effectors to subvert the human host through blocking, blunting, or subverting immune mechanisms. This capacity allows bacteria to control host cell function to support pathogen survival, replication and dissemination to other hosts. In addition, we highlight that knowledge of effector protein activity may be used to develop chemical inhibitors as a new approach to treat bacterial infections.
Collapse
Affiliation(s)
- Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton 3168, Australia; Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia.
| |
Collapse
|
82
|
Herhaus L, Dikic I. Regulation of Salmonella-host cell interactions via the ubiquitin system. Int J Med Microbiol 2017; 308:176-184. [PMID: 29126744 DOI: 10.1016/j.ijmm.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 01/29/2023] Open
Abstract
Salmonella infections cause acute intestinal inflammatory responses through the action of bacterial effector proteins secreted into the host cytosol. These proteins promote Salmonella survival, amongst others, by deregulating the host innate immune system and interfering with host cell ubiquitylation signaling. This review describes the recent findings of dynamic changes of the host ubiquitinome during pathogen infection, how bacterial effector proteins modulate the host ubiquitin system and how the host innate immune system counteracts Salmonella invasion by using these pathogens as signaling platforms to initiate immune responses.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
83
|
Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 2017; 551:378-383. [PMID: 29144452 DOI: 10.1038/nature24467] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 10/03/2017] [Indexed: 12/27/2022]
Abstract
Interferon-inducible guanylate-binding proteins (GBPs) mediate cell-autonomous antimicrobial defences. Shigella flexneri, a Gram-negative cytoplasmic free-living bacterium that causes bacillary dysentery, encodes a repertoire of highly similar type III secretion system effectors called invasion plasmid antigen Hs (IpaHs). IpaHs represent a large family of bacterial ubiquitin-ligases, but their function is poorly understood. Here we show that S. flexneri infection induces rapid proteasomal degradation of human guanylate binding protein-1 (hGBP1). We performed a transposon screen to identify a mutation in the S. flexneri gene ipaH9.8 that prevented hGBP1 degradation. IpaH9.8 targets hGBP1 for degradation via Lys48-linked ubiquitination. IpaH9.8 targets multiple GBPs in the cytoplasm independently of their nucleotide-bound states and their differential function in antibacterial defence, promoting S. flexneri replication and resulting in the death of infected mice. In the absence of IpaH9.8, or when binding of GBPs to IpaH9.8 was disrupted, GBPs such as hGBP1 and mouse GBP2 (mGBP2) translocated to intracellular S. flexneri and inhibited bacterial replication. Like wild-type mice, mutant mice deficient in GBP1-3, 5 and 7 succumbed to S. flexneri infection, but unlike wild-type mice, mice deficient in these GBPs were also susceptible to S. flexneri lacking ipaH9.8. The mode of IpaH9.8 action highlights the functional importance of GBPs in antibacterial defences. IpaH9.8 and S. flexneri provide a unique system for dissecting GBP-mediated immunity.
Collapse
|
84
|
Nakano M, Oda K, Mukaihara T. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants. MICROBIOLOGY (READING, ENGLAND) 2017; 163:992-1002. [PMID: 28708051 DOI: 10.1099/mic.0.000495] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects more than 70 effector proteins into host plant cells via the Hrp type III secretion system to cause a successful infection. However, the function of these effectors in plant cells, especially in the suppression of plant immunity, remains largely unknown. In this study, we characterized two Ralstonia solanacearum effectors, RipAW and RipAR, which share homology with the IpaH family of effectors from animal and plant pathogenic bacteria, that have a novel E3 ubiquitin ligase (NEL) domain. Recombinant RipAW and RipAR show E3 ubiquitin ligase activity in vitro. RipAW and RipAR localized to the cytoplasm of plant cells and significantly suppressed pattern-triggered immunity (PTI) responses such as the production of reactive oxygen species and the expression of defence-related genes when expressed in leaves of Nicotiana benthamiana. Mutation in the conserved cysteine residue in the NEL domain of RipAW completely abolished the E3 ubiquitin ligase activity in vitro and the ability to suppress PTI responses in plant leaves. These results indicate that RipAW suppresses plant PTI responses through the E3 ubiquitin ligase activity. Unlike other members of the IpaH family of effectors, RipAW and RipAR had no leucine-rich repeat motifs in their amino acid sequences. A conserved C-terminal region of RipAW is indispensable for PTI suppression. Transgenic Arabidopsis plants expressing RipAW and RipAR showed increased disease susceptibility, suggesting that RipAW and RipAR contribute to bacterial virulence in plants.
Collapse
Affiliation(s)
- Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| | - Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| |
Collapse
|
85
|
Abstract
Ubiquitin E3 ligases control every aspect of eukaryotic biology by promoting protein ubiquitination and degradation. At the end of a three-enzyme cascade, ubiquitin ligases mediate the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to specific substrate proteins. Early investigations of E3s of the RING (really interesting new gene) and HECT (homologous to the E6AP carboxyl terminus) types shed light on their enzymatic activities, general architectures, and substrate degron-binding modes. Recent studies have provided deeper mechanistic insights into their catalysis, activation, and regulation. In this review, we summarize the current progress in structure-function studies of ubiquitin ligases as well as exciting new discoveries of novel classes of E3s and diverse substrate recognition mechanisms. Our increased understanding of ubiquitin ligase function and regulation has provided the rationale for developing E3-targeting therapeutics for the treatment of human diseases.
Collapse
Affiliation(s)
- Ning Zheng
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98195; ,
| | - Nitzan Shabek
- Howard Hughes Medical Institute and Department of Pharmacology, University of Washington, Seattle, Washington 98195; ,
| |
Collapse
|
86
|
Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 2017; 130:1985-1996. [PMID: 28476939 PMCID: PMC5482977 DOI: 10.1242/jcs.188482] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
87
|
|
88
|
Hatakeyama S. TRIM Family Proteins: Roles in Autophagy, Immunity, and Carcinogenesis. Trends Biochem Sci 2017; 42:297-311. [DOI: 10.1016/j.tibs.2017.01.002] [Citation(s) in RCA: 588] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 01/19/2023]
|
89
|
Mattock E, Blocker AJ. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front Cell Infect Microbiol 2017; 7:64. [PMID: 28393050 PMCID: PMC5364150 DOI: 10.3389/fcimb.2017.00064] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 01/01/2023] Open
Abstract
Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae, and S. boydii, which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan-Shigella vaccine.
Collapse
Affiliation(s)
- Emily Mattock
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| | - Ariel J Blocker
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| |
Collapse
|
90
|
Grabowski B, Schmidt MA, Rüter C. Immunomodulatory Yersinia outer proteins (Yops)-useful tools for bacteria and humans alike. Virulence 2017; 8:1124-1147. [PMID: 28296562 DOI: 10.1080/21505594.2017.1303588] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human-pathogenic Yersinia produce plasmid-encoded Yersinia outer proteins (Yops), which are necessary to down-regulate anti-bacterial responses that constrict bacterial survival in the host. These Yops are effectively translocated directly from the bacterial into the target cell cytosol by the type III secretion system (T3SS). Cell-penetrating peptides (CPPs) in contrast are characterized by their ability to autonomously cross cell membranes and to transport cargo - independent of additional translocation systems. The recent discovery of bacterial cell-penetrating effector proteins (CPEs) - with the prototype being the T3SS effector protein YopM - established a new class of autonomously translocating immunomodulatory proteins. CPEs represent a vast source of potential self-delivering, anti-inflammatory therapeutics. In this review, we give an update on the characteristic features of the plasmid-encoded Yops and, based on recent findings, propose the further development of these proteins for potential therapeutic applications as natural or artificial cell-penetrating forms of Yops might be of value as bacteria-derived biologics.
Collapse
Affiliation(s)
- Benjamin Grabowski
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - M Alexander Schmidt
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| | - Christian Rüter
- a Institute of Infectiology - Centre for Molecular Biology of Inflammation (ZMBE), University of Münster , Münster , Germany
| |
Collapse
|
91
|
Mechanism of catalysis, E2 recognition, and autoinhibition for the IpaH family of bacterial E3 ubiquitin ligases. Proc Natl Acad Sci U S A 2017; 114:1311-1316. [PMID: 28115697 DOI: 10.1073/pnas.1611595114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IpaH enzymes are secreted bacterial effectors that function within host cells as E3 ubiquitin (Ub) ligases. Catalytic activity is imparted by a conserved novel E3 ligase (NEL) domain that is unique to Gram-negative pathogens and whose activity is repressed by a flanking substrate-binding leucine-rich repeat (LRR) domain when substrate is absent. How the NEL domain catalyzes the conjugation of Ub onto substrates, recognizes host E2s, and maintains its autoinhibited state remain poorly understood. Here we used mutagenesis and enzyme kinetic analyses to address these gaps in knowledge. Mutagenesis of conserved residues on two remote surfaces of the NEL domain identified functional clusters proximal to and distal to the active site cysteine. By analyzing the kinetics of Ub charging and discharging, we identified proximal active site residues that function as either the catalytic acid or catalytic base for aminolysis. Further analysis revealed that distal site residues mediate the direct binding of E2. In studying the full-length protein, we also have uncovered that IpaH family autoinhibition is achieved by a short-circuiting mechanism wherein the LRR domain selectively blocks productive aminolysis, but not the nonproductive discharge of Ub from the E3 to solvent. This mode of autoinhibition, which is not shared by the HECT domain ligase Smurf2, leads to the unanticipated depletion of E2∼Ub and thus a concomitant dominant-negative effect on other E3s in vitro, raising the possibility that short circuiting also may serve to restrict the function of host E3s in cells.
Collapse
|
92
|
Ashida H, Sasakawa C. Bacterial E3 ligase effectors exploit host ubiquitin systems. Curr Opin Microbiol 2016; 35:16-22. [PMID: 27907841 DOI: 10.1016/j.mib.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Ubiquitination is a crucial post-translational protein modification involved in regulation of various cellular processes in eukaryotes. In particular, ubiquitination is involved in multiple aspects of bacterial infection and host defense mechanisms. In parallel with the identification of ubiquitination as a component of host defense systems, recently accumulated evidence shows that many bacterial pathogens exploit host ubiquitin systems to achieve successful infection. Here, we highlight the strategies by which bacteria subvert host ubiquitin systems by mimicking E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Immunology, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| | - Chihiro Sasakawa
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, 198-0024, Tokyo, Japan; Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8673, Chiba, Japan
| |
Collapse
|
93
|
The Type III Secretion System Effector SeoC of Salmonella enterica subsp. salamae and S. enterica subsp. arizonae ADP-Ribosylates Src and Inhibits Opsonophagocytosis. Infect Immun 2016; 84:3618-3628. [PMID: 27736780 PMCID: PMC5116738 DOI: 10.1128/iai.00704-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/02/2016] [Indexed: 01/23/2023] Open
Abstract
Salmonella species utilize type III secretion systems (T3SSs) to translocate effectors into the cytosol of mammalian host cells, subverting cell signaling and facilitating the onset of gastroenteritis. In this study, we compared a draft genome assembly of Salmonella enterica subsp. salamae strain 3588/07 against the genomes of S. enterica subsp. enterica serovar Typhimurium strain LT2 and Salmonella bongori strain 12419. S. enterica subsp. salamae encodes the Salmonella pathogenicity island 1 (SPI-1), SPI-2, and the locus of enterocyte effacement (LEE) T3SSs. Though several key S Typhimurium effector genes are missing (e.g., avrA, sopB, and sseL), S. enterica subsp. salamae invades HeLa cells and contains homologues of S. bongori sboK and sboC, which we named seoC SboC and SeoC are homologues of EspJ from enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), which inhibit Src kinase-dependent phagocytosis by ADP-ribosylation. By screening 73 clinical and environmental Salmonella isolates, we identified EspJ homologues in S. bongori, S. enterica subsp. salamae, and Salmonella enterica subsp. arizonae The β-lactamase TEM-1 reporter system showed that SeoC is translocated by the SPI-1 T3SS. All the Salmonella SeoC/SboC homologues ADP-ribosylate Src E310 in vitro Ectopic expression of SeoC/SboC inhibited phagocytosis of IgG-opsonized beads into Cos-7 cells stably expressing green fluorescent protein (GFP)-FcγRIIa. Concurrently, S. enterica subsp. salamae infection of J774.A1 macrophages inhibited phagocytosis of beads, in a seoC-dependent manner. These results show that S. bongori, S. enterica subsp. salamae, and S. enterica subsp. arizonae share features of the infection strategy of extracellular pathogens EPEC and EHEC and shed light on the complexities of the T3SS effector repertoires of Enterobacteriaceae.
Collapse
|
94
|
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiol Mol Biol Rev 2016; 80:1011-1027. [PMID: 27784797 DOI: 10.1128/mmbr.00032-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed.
Collapse
|
95
|
Rüter C, Schmidt MA. Cell-Penetrating Bacterial Effector Proteins: Better Tools than Targets. Trends Biotechnol 2016; 35:109-120. [PMID: 27592802 DOI: 10.1016/j.tibtech.2016.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/20/2022]
Abstract
Bacterial pathogens have developed intriguing virulence mechanisms, including several sophisticated nanomachines, for injecting effector proteins to manipulate host immune signaling pathways for their own benefit. Therefore, bacterial genomes harbor a wealth of information about how to manipulate the defense systems of the host. Current understanding addresses virulence mechanisms mostly as targets for antimicrobials. We propose a change of paradigm by exploiting bacterial effectors not as targets but as tools for the directed manipulation of host signaling - for the benefit of the host. Recently, effector proteins have been identified that autonomously translocate into host cells, representing a novel class of cell-penetrating peptides (CPPs) or effectors (CPEs). Moreover, autonomous cell penetration overcomes a major hurdle in pharmacology by transducing specific therapeutic agents to intracellular targets.
Collapse
Affiliation(s)
- Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany.
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), Westfälische Wilhelms-Universität Münster, Von-Esmarch-Strasse 56, 48149 Münster, Germany.
| |
Collapse
|
96
|
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
97
|
Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol 2016; 1:16084. [PMID: 27572974 PMCID: PMC5010086 DOI: 10.1038/nmicrobiol.2016.84] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a multimeric E3 ligase that catalyses M1 or linear ubiquitination of activated immune receptor signalling complexes (RSCs). Mutations that disrupt linear ubiquitin assembly lead to complex disease pathologies including immunodeficiency and autoinflammation in both humans and mice, but microbial toxins that target LUBAC function have not yet been discovered. Here, we report the identification of two homologous Shigella flexneri type III secretion system effector E3 ligases IpaH1.4 and IpaH2.5, which directly interact with LUBAC subunit Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1L) and conjugate K48-linked ubiquitin chains to the catalytic RING-between-RING domain of HOIL-1-interacting protein (HOIP). Proteasomal degradation of HOIP leads to irreversible inactivation of linear ubiquitination and blunting of NF-κB nuclear translocation in response to tumour-necrosis factor (TNF), IL-1β and pathogen-associated molecular patterns. Loss of function studies in mammallian cells in combination with bacterial genetics explains how Shigella evades a broad spectrum of immune surveillance systems by cooperative inhibition of receptor ubiquitination and reveals the critical importance of LUBAC in host defence against pathogens.
Collapse
|
98
|
Abstract
Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets.
Collapse
|
99
|
Campbell-Valois FX, Pontier SM. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally. Front Cell Infect Microbiol 2016; 6:28. [PMID: 27014638 PMCID: PMC4783576 DOI: 10.3389/fcimb.2016.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa, ON, Canada
| | | |
Collapse
|
100
|
Cordero-Alba M, García-Gómez JJ, Aguilera-Herce J, Ramos-Morales F. Proteomic insight into the effects of the Salmonella ubiquitin ligase SlrP on host cells. Biochem Biophys Res Commun 2016; 472:539-44. [PMID: 26966069 DOI: 10.1016/j.bbrc.2016.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/06/2016] [Indexed: 11/15/2022]
Abstract
The virulence of the human and animal pathogen Salmonella enterica serovar Typhimurium is dependent on two type III secretion systems. These systems translocate proteins called effectors into eukaryotic host cells. SlrP is a Salmonella type III secretion effector with ubiquitin ligase activity. Here, we used two complementary proteomic approaches, two-dimensional gel electrophoresis and iTRAQ (isobaric tags for relative and absolute quantification) to study the consequences of the presence of SlrP in human epithelial cells. We identified 37 proteins that were differentially expressed in HeLa cells expressing slrP compared to control cells. Microarray analysis revealed that more than a half of differentially expressed proteins did not show changes in the transcriptome, suggesting post-transcriptional regulation. A gene ontology overrepresentation test carried out on the differentially expressed proteins revealed enrichment of ontology terms related to several types of junctions mediating adhesion in epithelial cells. Consistently, slrP-transfected cells showed defects in migration and adhesion. Our results suggest that the modification of cell-cell interaction ability of the host could be one of the final consequences of the action of SlrP during an infection.
Collapse
Affiliation(s)
- Mar Cordero-Alba
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.
| | - Juan José García-Gómez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.
| | - Julia Aguilera-Herce
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Apartado 1095, 41080 Sevilla, Spain.
| |
Collapse
|